Estandarización de un protocolo para la obtención de células diferenciables a multilinaje por medio de estrés químico
Las células diferenciables a multilinaje resistentes al estrés (Muse) son una población celular descubierta en el 2010, que está presente en los distintos tejidos mesenquimales. Por su pluripotencialidad, capacidad de integración tisular y baja tumorigénesis, las células Muse prometen ser una forma...
- Autores:
-
Giraldo Palacios, Alvaro José
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/13024
- Acceso en línea:
- https://hdl.handle.net/10614/13024
- Palabra clave:
- Ingeniería Biomédica
Células Muse
Incubación con tripsina a largo plazo
Inmunocitoquímica
Células madre
Medicina regenerativa
Ingeniería de tejidos
Stem cells
Regenerative medicine
Tissue engineering
- Rights
- openAccess
- License
- Derechos reservados - Universidad Autónoma de Occidente, 2021
id |
REPOUAO2_9fdf1e829e89122a499bbf46986fc1bc |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13024 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estandarización de un protocolo para la obtención de células diferenciables a multilinaje por medio de estrés químico |
title |
Estandarización de un protocolo para la obtención de células diferenciables a multilinaje por medio de estrés químico |
spellingShingle |
Estandarización de un protocolo para la obtención de células diferenciables a multilinaje por medio de estrés químico Ingeniería Biomédica Células Muse Incubación con tripsina a largo plazo Inmunocitoquímica Células madre Medicina regenerativa Ingeniería de tejidos Stem cells Regenerative medicine Tissue engineering |
title_short |
Estandarización de un protocolo para la obtención de células diferenciables a multilinaje por medio de estrés químico |
title_full |
Estandarización de un protocolo para la obtención de células diferenciables a multilinaje por medio de estrés químico |
title_fullStr |
Estandarización de un protocolo para la obtención de células diferenciables a multilinaje por medio de estrés químico |
title_full_unstemmed |
Estandarización de un protocolo para la obtención de células diferenciables a multilinaje por medio de estrés químico |
title_sort |
Estandarización de un protocolo para la obtención de células diferenciables a multilinaje por medio de estrés químico |
dc.creator.fl_str_mv |
Giraldo Palacios, Alvaro José |
dc.contributor.advisor.none.fl_str_mv |
Neuta Arciniegas, Paola Andrea |
dc.contributor.author.none.fl_str_mv |
Giraldo Palacios, Alvaro José |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.subject.spa.fl_str_mv |
Ingeniería Biomédica Células Muse Incubación con tripsina a largo plazo Inmunocitoquímica |
topic |
Ingeniería Biomédica Células Muse Incubación con tripsina a largo plazo Inmunocitoquímica Células madre Medicina regenerativa Ingeniería de tejidos Stem cells Regenerative medicine Tissue engineering |
dc.subject.armarc.spa.fl_str_mv |
Células madre Medicina regenerativa Ingeniería de tejidos |
dc.subject.armarc.eng.fl_str_mv |
Stem cells Regenerative medicine Tissue engineering |
description |
Las células diferenciables a multilinaje resistentes al estrés (Muse) son una población celular descubierta en el 2010, que está presente en los distintos tejidos mesenquimales. Por su pluripotencialidad, capacidad de integración tisular y baja tumorigénesis, las células Muse prometen ser una forma de tratamiento eficiente en el campo de la medicina regenerativa para diversas enfermedades. Sin embargo, la mayoría de protocolos establecidos para su aislamiento involucran el uso del marcador celular SSEA-3 con la técnica de clasificación de células activada por fluorescencia (FACS), que requiere el uso de un citómetro de flujo que no es un equipo de rutina. El propósito de esta investigación fue verificar la existencia de células tipo Muse en rata y estandarizar un protocolo para su obtención sin utilizar la técnica de FACS. Se partió de un cultivo de células madre mesenquimales (MSC) que fueron sometidas a 4, 8 y 12 horas de incubación con tripsina a largo plazo (ITLP). El tiempo de 8 horas de ITLP demostró ser el más apropiado debido a que se lograba aislar las células tipo Muse de las MSC, sin perjudicar su crecimiento. La obtención de células tipo Muse se confirmó mediante una caracterización por inmunocitoquímica, donde los cúmulos y células resistentes al estrés demostraron la presencia del marcador SSEA-3. El protocolo establecido en este documento representa un método más asequible y reproducible que sirve como punto de partida para llevar a cabo más estudios con esta población celular. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-04T20:57:05Z |
dc.date.available.none.fl_str_mv |
2021-06-04T20:57:05Z |
dc.date.issued.none.fl_str_mv |
2021-05-24 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_71e4c1898caa6e32 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.eng.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13024 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital |
url |
https://hdl.handle.net/10614/13024 |
identifier_str_mv |
Universidad Autónoma de Occidente Repositorio Educativo Digital |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
[1] Y. Kuroda et al., “Unique multipotent cells in adult human mesenchymal cell populations,” Proceedings of the National Academy of Sciences, vol. 107, no. 19, pp. 8639–8643, Mayo, 2010. doi: 10.1073/pnas.0911647107. [2] S. Heneidi et al., “Awakened by cellular tress: Isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue,” PLOS ONE, vol. 8, no. 6, p. e64752, Jun., 2013. doi: 10.1371/journal.pone.0064752 [3] Z. Yang et al., “Isolation and characterization of ssea3+ stem cells derived from goat skin fibroblasts,” Cellular Reprogramming, vol. 15, no. 3, pp. 195–205, Jun., 2013. doi: 10.1089/cell.2012.0080. [4] M. Iseki et al., “Human muse cells, nontumorigenic phiripotent-like stem cells, have liver regeneration capacity through specific homing and cell replacement in a mouse model of liver fibrosis,” Cell Transplantation, vol. 26, no. 5, pp. 821– 840, Mayo, 2017. doi: 10.3727/096368916X693662. [5] K. Kinoshita et al., “Therapeutic potential of adipose-derived ssea-3-positive muse cells for treating diabetic skin ulcers,” STEM CELLS Translational Medicine, vol. 4, no. 2, pp. 146–155, Ene., 2015. doi: 10.5966/sctm.2014-0181. [6] H. Uchida et al., “Transplantation of unique subpopulation of fibroblasts, muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation,” STEM CELLS, vol. 34, no. 1, pp. 160–173, Ene., 2015. doi: 10.1002/stem.2206. [7] T. Yamauchi, K. Yamasaki, K. Tsuchiyama, S. Koike y S. Aiba, “The potential of muse cells for regenerative medicine of skin: Procedures to reconstitute skin with muse cell-derived keratinocytes, fibroblasts, and melanocytes,” Journal of Investigative Dermatology, vol. 137, no. 12, pp. 2639–2642, Dic., 2017. doi: 10.1016/j.jid.2017.06.021. [8] A. M. Fouad et al., “In vitro differentiation of human multilineage differentiating stress-enduring (Muse) cells into insulin producing cells,” Journal of Genetic Engineering and Biotechnology, vol. 16, no. 2, pp. 433–440, Dic., 2018. doi: 10.1016/j.jgeb.2018.09.003. [9] E. Toyoda et al., “Multilineage-differentiating stress-enduring (Muse)-like cells exist in synovial tissue,” Regenerative Therapy, vol. 10, pp. 17–26, Jun., 2019. doi: 10.1016/j.reth.2018.10.005. [10] M. Dezawa, “Clinical Trials of Muse Cells” en Muse Cells. Japón: Springer Japan, 2018, cap. 17, p. 308. [11] Y. Kuroda, S. Wakao, M. Kitada, T. Murakami, M. Nojima y M. Dezawa, “Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells,” Nature Protocols, vol. 8, no. 7, pp. 1391–1415, Jun., 2013. doi: 10.1038/nprot.2013.076. [12] K. Tatsumi, Y. Kushida, S. Wakao, Y. Kuroda y M. Dezawa, “Protocols for Isolation and Evaluation of Muse Cells,” en Advances in Experimental Medicine and Biology. Japón: Springer Japan, 2018, pp. 69–101. doi: 10.1007/978-4- 431-56847-6_4. [13] S. C. Fisch et al., “Pluripotent nontumorigenic multilineage differentiating stress enduring cells (Muse cells): A seven-year retrospective,” Stem Cell Research & Therapy, vol. 8, no. 1, Oct., 2017. doi: 10.1186/s13287-017-0674-3. [14] S. A. Przyborski, “Differentiation of human embryonic stem cells after transplantation in immune-deficient mice,” STEM CELLS, vol. 23, no. 9, pp. 1242–1250, Oct., 2005. doi: 10.1634/stemcells.2005-0014. [15] A. A. Simerman, D. A. Dumesic y G. D. Chazenbalk, “Pluripotent muse cells derived from human adipose tissue: A new perspective on regenerative medicine and cell therapy,” Clinical and Translational Medicine, vol. 3, no. 1, pp. 3-12, Mayo, 2014. doi: 10.1186/2001-1326-3-12. [16] M. L. Gimeno et al., “Pluripotent nontumorigenic adipose tissue-derived muse cells have immunomodulatory capacity mediated by transforming growth factor-β1,” STEM CELLS Translational Medicine, vol. 6, no. 1, pp. 161–173, Ago., 2016. doi: 10.5966/sctm.2016-0014. [17] A. A. Simerman, J. D. Phan, D. A. Dumesic y G. D. Chazenbalk, “Muse cells: Nontumorigenic pluripotent stem cells present in adult tissues—A paradigm shift in tissue regeneration and evolution,” Stem Cells International, vol. 2016, pp. 1–8, Dic., 2016. doi: 10.1155/2016/1463258. [18] R. Lovell-Badge, “The future for stem cell research,” Nature, vol. 414, no. 6859, pp. 88–91, Nov., 2001. doi: 10.1038/35102150. [19] M. Dezawa, “Muse cells provide the pluripotency of mesenchymal stem cells: Direct contribution of muse cells to tissue regeneration, “ Cell Transplant, vol. 25, no. 5, pp. 849-861, Feb., 2016. doi: 10.3727/096368916X690881. [20] I. L. Weissman y J. A. Shizuru, “The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases,” Blood, vol. 112, no. 9, pp. 3543–3553, Oct., 2008. doi: 10.1182/blood-2008-08-078220. [21] Y. Kuroda, M. Kitada, S. Wakao y M. Dezawa, “Bone marrow mesenchymal cells: How do they contribute to tissue repair and are they really stem cells?,” Archivum Immunologiae et Therapiae Experimentalis, vol. 59, no. 5, pp. 369– 378, Jul., 2011. doi: 10.1007/s00005-011-0139-9. [22] Cell Culture Basics Handbook, Thermo Fischer Scientific Inc., Waltham, MA, USA, 2016, p. 19. [23] L. A. Flanagan, B. Ziaeian, T. Palmer y P. H. Schwartz, “Immunocytochemical Analysis of Stem Cells,” en Human Stem Cell Manual. USA: Elsevier, 2007, cap. 9, pp. 108–126. doi: 10.1016/B978-012370465-8/50014-4. [24] S. Marchenko y L. Flanagan, “Immunocytochemistry: Human Neural Stem Cells,” Journal of Visualized Experiments, no. 7, Ago., 2007. doi: 10.3791/267. [25] P. A. Campbell, “Alkaline Phosphatase Staining,” Bio-Protocol, vol. 4, no. 5, Mar., 2014. doi: 10.21769/BioProtoc.1060. [26] T. Tian, R. Zhang, Y. Yang, Q. Liu, D. Li y X. Pan, “Muse cells derived from dermal tissues can differentiate into melanocytes,” Cellular Reprogramming, vol. 19, no. 2, pp. 116-122, Abr., 2017. doi:10.1089/cell.2016.0032. [27] H. Yabuki, S. Wakao, Y. Kushida, M. Dezawa y Y.Okada, “Human multilineagedifferentiating stress-enduring cells exert pleiotropic effects to ameliorate acute lung ischemia-reperfusion injury in a rat model,” Cell Transplant, vol. 27, no. 6, pp. 979-993, Abr., 2018. doi: 10.1177/0963689718761657. [28] N. Uchida et al., “Beneficial effects of systemically administered human muse cells in adriamycin nephropathy,” Journal of the American Society of Nephrology, vol. 28, no. 10, pp. 2946-2960, Jul., 2017. doi: 10.1681/asn.2016070775. [29] J. Cao, Z. Yang, R. Xiao, y B. Pan, “Regenerative potential of pluripotent nontumorgenetic stem cells: Multilineage differentiating stress enduring cells (Muse cells),” Regenerative Therapy, vol. 15, pp. 92–96, Dic., 2020. doi: 10.1016/j.reth.2020.04.011. [30] F. Motoe, T. Yamauchi, K. Yamasaki y S. Aiba, “LB1606 Retainability of pluripotency and viability of multilineage-differentiating stress enduring (Muse) cells after repeated cryopreservation,” Journal of Investigative Dermatology, vol. 138, no. 9, p. B23, Sep., 2018. doi: 10.1016/j.jid.2018.06.147. [31] T. Yamauchi, K. Yamasaki, K. Tsutiyama, S. Koike y S. Aiba, “904 Adipose multilineage-differentiating stress enduring (Muse) cell maintain pluripotency regardless of donors’ age,” Journal of Investigative Dermatology, vol. 137, no. 5, p. S156, Mayo, 2017. doi: 10.1016/j.jid.2017.02.931. [32] P. A. Neuta Arciniegas, “Implementación de un modelo pre-clínico con aloinjertos de células mesenquimales diferenciadas para prevenir la insuficiencia cardiaca crónica secundaria a un infarto agudo de miocardio,” Tesis Ph.D., Fac. Salud, Dpto. Ciencias Fisiológicas, Prog. Doctorado en Ciencias Biomédicas, Univ. del Valle, Santiago de Cali, Valle, 2013. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Autónoma de Occidente, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Universidad Autónoma de Occidente, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
48 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Biomédica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Automática y Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Cali |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/479053c9-85e8-496f-bdde-5eaed8dd91c6/download https://red.uao.edu.co/bitstreams/4b209a0e-9948-479b-8fc9-1aa99237c76a/download https://red.uao.edu.co/bitstreams/7b7ecdb1-5a10-4705-b11d-6400fbcaf717/download https://red.uao.edu.co/bitstreams/b0c307dc-8261-410e-8459-8b6ef6e38a4c/download https://red.uao.edu.co/bitstreams/a13c553a-dfb6-4fff-a97b-a0ead8d71d01/download https://red.uao.edu.co/bitstreams/631d820b-142b-43c4-ae5b-f2d444187eaa/download https://red.uao.edu.co/bitstreams/ab0e32ba-83dc-4d19-bd03-e96e5b655df1/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 08f0786e92dd0b811aab40fec367ae0f a71f449dd88639a5f37e8fc95a465032 cdc5accc96cf0115d074456349978c3f e1c06d85ae7b8b032bef47e42e4c08f9 86b4fd592dc2bb019e85de00e0cbe0c8 d70a0234e67b7584fc36533293fd68d4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260012674973696 |
spelling |
Neuta Arciniegas, Paola Andreab23ceaec23223a94087e311e0de3e934Giraldo Palacios, Alvaro José4b47a3e15a29fcc431d8ad213518494fUniversidad Autónoma de Occidente2021-06-04T20:57:05Z2021-06-04T20:57:05Z2021-05-24https://hdl.handle.net/10614/13024Universidad Autónoma de OccidenteRepositorio Educativo DigitalLas células diferenciables a multilinaje resistentes al estrés (Muse) son una población celular descubierta en el 2010, que está presente en los distintos tejidos mesenquimales. Por su pluripotencialidad, capacidad de integración tisular y baja tumorigénesis, las células Muse prometen ser una forma de tratamiento eficiente en el campo de la medicina regenerativa para diversas enfermedades. Sin embargo, la mayoría de protocolos establecidos para su aislamiento involucran el uso del marcador celular SSEA-3 con la técnica de clasificación de células activada por fluorescencia (FACS), que requiere el uso de un citómetro de flujo que no es un equipo de rutina. El propósito de esta investigación fue verificar la existencia de células tipo Muse en rata y estandarizar un protocolo para su obtención sin utilizar la técnica de FACS. Se partió de un cultivo de células madre mesenquimales (MSC) que fueron sometidas a 4, 8 y 12 horas de incubación con tripsina a largo plazo (ITLP). El tiempo de 8 horas de ITLP demostró ser el más apropiado debido a que se lograba aislar las células tipo Muse de las MSC, sin perjudicar su crecimiento. La obtención de células tipo Muse se confirmó mediante una caracterización por inmunocitoquímica, donde los cúmulos y células resistentes al estrés demostraron la presencia del marcador SSEA-3. El protocolo establecido en este documento representa un método más asequible y reproducible que sirve como punto de partida para llevar a cabo más estudios con esta población celular.Multi-lineage stress-enduring (Muse) cells are a cell population that was discovered in 2010 that is present in the different mesenchymal tissues. Because of their pluripotency, tissue integration capacity and low tumorigenesis, Muse cells promise to be a form of efficient treatment in the field of regenerative medicine for various diseases. However, the majority of established protocols for their isolation involve the use of the SSEA-3 cell marker along with the fluorescence-activated cell sorting (FACS) technique, which requires the use of a flow cytometer that is not a routine equipment. The purpose of this research was to verify the existence of Muse-type cells in rats and to standardize a protocol for their collection without using the FACS technique. The starting point was a culture of mesenchymal stem cells (MSC) that underwent 4, 8, and 12 hours of long-term trypsin incubation (ITLP) The 8 hour time period proved to be the most appropriate due to it being able to isolate the Muse-type cells from the MSC, without hampering their growth. The extraction of Muse-type cells was confirmed through characterization by immunocytochemistry, where the clusters and stress resistant cells exhibited the presence of the SSEA-3 marker. The protocol established in this document represents a method that is more accessible and replicable that functions as a starting point from which to perform further studies with this cell population.Pasantía de investigación (Ingeniero Biomédico)-- Universidad Autónoma de Occidente, 2021PregradoIngeniero(a) Biomédico(a)48 páginasapplication/pdfspaUniversidad Autónoma de OccidenteIngeniería BiomédicaDepartamento de Automática y ElectrónicaFacultad de IngenieríaCaliDerechos reservados - Universidad Autónoma de Occidente, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Ingeniería BiomédicaCélulas MuseIncubación con tripsina a largo plazoInmunocitoquímicaCélulas madreMedicina regenerativaIngeniería de tejidosStem cellsRegenerative medicineTissue engineeringEstandarización de un protocolo para la obtención de células diferenciables a multilinaje por medio de estrés químicoTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_71e4c1898caa6e32[1] Y. Kuroda et al., “Unique multipotent cells in adult human mesenchymal cell populations,” Proceedings of the National Academy of Sciences, vol. 107, no. 19, pp. 8639–8643, Mayo, 2010. doi: 10.1073/pnas.0911647107.[2] S. Heneidi et al., “Awakened by cellular tress: Isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue,” PLOS ONE, vol. 8, no. 6, p. e64752, Jun., 2013. doi: 10.1371/journal.pone.0064752[3] Z. Yang et al., “Isolation and characterization of ssea3+ stem cells derived from goat skin fibroblasts,” Cellular Reprogramming, vol. 15, no. 3, pp. 195–205, Jun., 2013. doi: 10.1089/cell.2012.0080.[4] M. Iseki et al., “Human muse cells, nontumorigenic phiripotent-like stem cells, have liver regeneration capacity through specific homing and cell replacement in a mouse model of liver fibrosis,” Cell Transplantation, vol. 26, no. 5, pp. 821– 840, Mayo, 2017. doi: 10.3727/096368916X693662.[5] K. Kinoshita et al., “Therapeutic potential of adipose-derived ssea-3-positive muse cells for treating diabetic skin ulcers,” STEM CELLS Translational Medicine, vol. 4, no. 2, pp. 146–155, Ene., 2015. doi: 10.5966/sctm.2014-0181.[6] H. Uchida et al., “Transplantation of unique subpopulation of fibroblasts, muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation,” STEM CELLS, vol. 34, no. 1, pp. 160–173, Ene., 2015. doi: 10.1002/stem.2206.[7] T. Yamauchi, K. Yamasaki, K. Tsuchiyama, S. Koike y S. Aiba, “The potential of muse cells for regenerative medicine of skin: Procedures to reconstitute skin with muse cell-derived keratinocytes, fibroblasts, and melanocytes,” Journal of Investigative Dermatology, vol. 137, no. 12, pp. 2639–2642, Dic., 2017. doi: 10.1016/j.jid.2017.06.021.[8] A. M. Fouad et al., “In vitro differentiation of human multilineage differentiating stress-enduring (Muse) cells into insulin producing cells,” Journal of Genetic Engineering and Biotechnology, vol. 16, no. 2, pp. 433–440, Dic., 2018. doi: 10.1016/j.jgeb.2018.09.003.[9] E. Toyoda et al., “Multilineage-differentiating stress-enduring (Muse)-like cells exist in synovial tissue,” Regenerative Therapy, vol. 10, pp. 17–26, Jun., 2019. doi: 10.1016/j.reth.2018.10.005.[10] M. Dezawa, “Clinical Trials of Muse Cells” en Muse Cells. Japón: Springer Japan, 2018, cap. 17, p. 308.[11] Y. Kuroda, S. Wakao, M. Kitada, T. Murakami, M. Nojima y M. Dezawa, “Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells,” Nature Protocols, vol. 8, no. 7, pp. 1391–1415, Jun., 2013. doi: 10.1038/nprot.2013.076.[12] K. Tatsumi, Y. Kushida, S. Wakao, Y. Kuroda y M. Dezawa, “Protocols for Isolation and Evaluation of Muse Cells,” en Advances in Experimental Medicine and Biology. Japón: Springer Japan, 2018, pp. 69–101. doi: 10.1007/978-4- 431-56847-6_4.[13] S. C. Fisch et al., “Pluripotent nontumorigenic multilineage differentiating stress enduring cells (Muse cells): A seven-year retrospective,” Stem Cell Research & Therapy, vol. 8, no. 1, Oct., 2017. doi: 10.1186/s13287-017-0674-3.[14] S. A. Przyborski, “Differentiation of human embryonic stem cells after transplantation in immune-deficient mice,” STEM CELLS, vol. 23, no. 9, pp. 1242–1250, Oct., 2005. doi: 10.1634/stemcells.2005-0014.[15] A. A. Simerman, D. A. Dumesic y G. D. Chazenbalk, “Pluripotent muse cells derived from human adipose tissue: A new perspective on regenerative medicine and cell therapy,” Clinical and Translational Medicine, vol. 3, no. 1, pp. 3-12, Mayo, 2014. doi: 10.1186/2001-1326-3-12.[16] M. L. Gimeno et al., “Pluripotent nontumorigenic adipose tissue-derived muse cells have immunomodulatory capacity mediated by transforming growth factor-β1,” STEM CELLS Translational Medicine, vol. 6, no. 1, pp. 161–173, Ago., 2016. doi: 10.5966/sctm.2016-0014.[17] A. A. Simerman, J. D. Phan, D. A. Dumesic y G. D. Chazenbalk, “Muse cells: Nontumorigenic pluripotent stem cells present in adult tissues—A paradigm shift in tissue regeneration and evolution,” Stem Cells International, vol. 2016, pp. 1–8, Dic., 2016. doi: 10.1155/2016/1463258.[18] R. Lovell-Badge, “The future for stem cell research,” Nature, vol. 414, no. 6859, pp. 88–91, Nov., 2001. doi: 10.1038/35102150.[19] M. Dezawa, “Muse cells provide the pluripotency of mesenchymal stem cells: Direct contribution of muse cells to tissue regeneration, “ Cell Transplant, vol. 25, no. 5, pp. 849-861, Feb., 2016. doi: 10.3727/096368916X690881.[20] I. L. Weissman y J. A. Shizuru, “The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases,” Blood, vol. 112, no. 9, pp. 3543–3553, Oct., 2008. doi: 10.1182/blood-2008-08-078220.[21] Y. Kuroda, M. Kitada, S. Wakao y M. Dezawa, “Bone marrow mesenchymal cells: How do they contribute to tissue repair and are they really stem cells?,” Archivum Immunologiae et Therapiae Experimentalis, vol. 59, no. 5, pp. 369– 378, Jul., 2011. doi: 10.1007/s00005-011-0139-9.[22] Cell Culture Basics Handbook, Thermo Fischer Scientific Inc., Waltham, MA, USA, 2016, p. 19.[23] L. A. Flanagan, B. Ziaeian, T. Palmer y P. H. Schwartz, “Immunocytochemical Analysis of Stem Cells,” en Human Stem Cell Manual. USA: Elsevier, 2007, cap. 9, pp. 108–126. doi: 10.1016/B978-012370465-8/50014-4.[24] S. Marchenko y L. Flanagan, “Immunocytochemistry: Human Neural Stem Cells,” Journal of Visualized Experiments, no. 7, Ago., 2007. doi: 10.3791/267.[25] P. A. Campbell, “Alkaline Phosphatase Staining,” Bio-Protocol, vol. 4, no. 5, Mar., 2014. doi: 10.21769/BioProtoc.1060.[26] T. Tian, R. Zhang, Y. Yang, Q. Liu, D. Li y X. Pan, “Muse cells derived from dermal tissues can differentiate into melanocytes,” Cellular Reprogramming, vol. 19, no. 2, pp. 116-122, Abr., 2017. doi:10.1089/cell.2016.0032.[27] H. Yabuki, S. Wakao, Y. Kushida, M. Dezawa y Y.Okada, “Human multilineagedifferentiating stress-enduring cells exert pleiotropic effects to ameliorate acute lung ischemia-reperfusion injury in a rat model,” Cell Transplant, vol. 27, no. 6, pp. 979-993, Abr., 2018. doi: 10.1177/0963689718761657.[28] N. Uchida et al., “Beneficial effects of systemically administered human muse cells in adriamycin nephropathy,” Journal of the American Society of Nephrology, vol. 28, no. 10, pp. 2946-2960, Jul., 2017. doi: 10.1681/asn.2016070775.[29] J. Cao, Z. Yang, R. Xiao, y B. Pan, “Regenerative potential of pluripotent nontumorgenetic stem cells: Multilineage differentiating stress enduring cells (Muse cells),” Regenerative Therapy, vol. 15, pp. 92–96, Dic., 2020. doi: 10.1016/j.reth.2020.04.011.[30] F. Motoe, T. Yamauchi, K. Yamasaki y S. Aiba, “LB1606 Retainability of pluripotency and viability of multilineage-differentiating stress enduring (Muse) cells after repeated cryopreservation,” Journal of Investigative Dermatology, vol. 138, no. 9, p. B23, Sep., 2018. doi: 10.1016/j.jid.2018.06.147.[31] T. Yamauchi, K. Yamasaki, K. Tsutiyama, S. Koike y S. Aiba, “904 Adipose multilineage-differentiating stress enduring (Muse) cell maintain pluripotency regardless of donors’ age,” Journal of Investigative Dermatology, vol. 137, no. 5, p. S156, Mayo, 2017. doi: 10.1016/j.jid.2017.02.931.[32] P. A. Neuta Arciniegas, “Implementación de un modelo pre-clínico con aloinjertos de células mesenquimales diferenciadas para prevenir la insuficiencia cardiaca crónica secundaria a un infarto agudo de miocardio,” Tesis Ph.D., Fac. Salud, Dpto. Ciencias Fisiológicas, Prog. Doctorado en Ciencias Biomédicas, Univ. del Valle, Santiago de Cali, Valle, 2013.GeneralPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/479053c9-85e8-496f-bdde-5eaed8dd91c6/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALT09792_Estandarización de un protocolo para la obtención de células diferenciables a multilinaje por medio de estrés químico.pdfT09792_Estandarización de un protocolo para la obtención de células diferenciables a multilinaje por medio de estrés químico.pdfArchivo texto completo del trabajo de grado. pdfapplication/pdf731613https://red.uao.edu.co/bitstreams/4b209a0e-9948-479b-8fc9-1aa99237c76a/download08f0786e92dd0b811aab40fec367ae0fMD54TA9792_Autorización trabajo de grado.pdfTA9792_Autorización trabajo de grado.pdfAutorización para trabajo de gradoapplication/pdf901550https://red.uao.edu.co/bitstreams/7b7ecdb1-5a10-4705-b11d-6400fbcaf717/downloada71f449dd88639a5f37e8fc95a465032MD55TEXTT09792_Estandarización de un protocolo para la obtención de células diferenciables a multilinaje por medio de estrés químico.pdf.txtT09792_Estandarización de un protocolo para la obtención de células diferenciables a multilinaje por medio de estrés químico.pdf.txtExtracted texttext/plain84153https://red.uao.edu.co/bitstreams/b0c307dc-8261-410e-8459-8b6ef6e38a4c/downloadcdc5accc96cf0115d074456349978c3fMD56TA9792_Autorización trabajo de grado.pdf.txtTA9792_Autorización trabajo de grado.pdf.txtExtracted texttext/plain2https://red.uao.edu.co/bitstreams/a13c553a-dfb6-4fff-a97b-a0ead8d71d01/downloade1c06d85ae7b8b032bef47e42e4c08f9MD58THUMBNAILT09792_Estandarización de un protocolo para la obtención de células diferenciables a multilinaje por medio de estrés químico.pdf.jpgT09792_Estandarización de un protocolo para la obtención de células diferenciables a multilinaje por medio de estrés químico.pdf.jpgGenerated Thumbnailimage/jpeg6417https://red.uao.edu.co/bitstreams/631d820b-142b-43c4-ae5b-f2d444187eaa/download86b4fd592dc2bb019e85de00e0cbe0c8MD57TA9792_Autorización trabajo de grado.pdf.jpgTA9792_Autorización trabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg14986https://red.uao.edu.co/bitstreams/ab0e32ba-83dc-4d19-bd03-e96e5b655df1/downloadd70a0234e67b7584fc36533293fd68d4MD5910614/13024oai:red.uao.edu.co:10614/130242024-03-19 11:40:51.997https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Universidad Autónoma de Occidente, 2021open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |