Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions
Impedance Spectroscopy (IS) has been shown to be a non-invasive and reliable technique for the electrical characterization of biological materials. This paper presents the design and implementation of reliable, reusable wells that are used to perform IS measurements of aqueous solutions. These reusa...
- Autores:
-
Neuta-Arciniegas, Paola
García-Arrunátegui, María Fernanda
Campo, Oscar
Velasco-Medina, Jaime
Cabrera Lopez, John Jairo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13390
- Acceso en línea:
- https://hdl.handle.net/10614/13390
- Palabra clave:
- Espectroscopia de impedancia
Impedance spectroscopy
- Rights
- openAccess
- License
- Derechos reservados - Institute of Physics, 2019
id |
REPOUAO2_9e2cdebab61f33ca1e84c9fe369b4de7 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13390 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions |
title |
Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions |
spellingShingle |
Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions Espectroscopia de impedancia Impedance spectroscopy |
title_short |
Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions |
title_full |
Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions |
title_fullStr |
Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions |
title_full_unstemmed |
Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions |
title_sort |
Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions |
dc.creator.fl_str_mv |
Neuta-Arciniegas, Paola García-Arrunátegui, María Fernanda Campo, Oscar Velasco-Medina, Jaime Cabrera Lopez, John Jairo |
dc.contributor.author.spa.fl_str_mv |
Neuta-Arciniegas, Paola García-Arrunátegui, María Fernanda Campo, Oscar Velasco-Medina, Jaime |
dc.contributor.author.none.fl_str_mv |
Cabrera Lopez, John Jairo |
dc.subject.lemb.spa.fl_str_mv |
Espectroscopia de impedancia |
topic |
Espectroscopia de impedancia Impedance spectroscopy |
dc.subject.lemb.eng.fl_str_mv |
Impedance spectroscopy |
description |
Impedance Spectroscopy (IS) has been shown to be a non-invasive and reliable technique for the electrical characterization of biological materials. This paper presents the design and implementation of reliable, reusable wells that are used to perform IS measurements of aqueous solutions. These reusable wells are detachable, easy to clean and low-cost and they are made up of a platen on a Printed Circuit Board (PCB) and the chambers are manufactured using 3D-printing technology. In this case, in order to verify its functionality, IS measurements of electrolytic and non-electrolytic aqueous solutions were carried out. Initially, as a reference, the impedance spectrum of a Hanks’ solution was obtained following a proposed measurement protocol. Then, we analyse this spectrum and we propose an Equivalent Electrical Model (EEM) for validating the reusable wells. Finally, IS measurements are carried out on aqueous solutions of molecular D-glucose and sodium chloride prepared in Hanks’ solution and deionized water, by considering physiological concentrations. The parameter values of the EEMs of each solution tested were obtained using genetic algorithms and Matlab and, from these values, it is possible to conclude that the measurements performed are unable to differentiate the physiological concentration of glucose in the aqueous solution used. Also, from these results, it can be concluded that the designed wells are suitable for IS measurements of aqueous solutions and that they can be used in Electrical Cell Impedance Sensing (ECIS) or applications that require electrical characterization of solutions. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-11-02T22:02:45Z |
dc.date.available.none.fl_str_mv |
2021-11-02T22:02:45Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13390 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1742-6596/1272/1/012017 |
dc.identifier.eissn.none.fl_str_mv |
17426588 |
url |
https://hdl.handle.net/10614/13390 |
identifier_str_mv |
10.1088/1742-6596/1272/1/012017 17426588 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Volumen 1272, (2019) |
dc.relation.citationendpage.spa.fl_str_mv |
7 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
1272 |
dc.relation.cites.eng.fl_str_mv |
Cabrera López, J J., García Arrunátegui, M. F., Neuta Arciniegas, P., Campo, O., Velasco Medina, J. (2019). Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions. Journal of Physics: Conference Series. (Vol. 1272), pp.1-7. doi:10.1088/1742-6596/1272/1/012017 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Journal of Physics: Conference Series |
dc.relation.references.none.fl_str_mv |
[1] Cabrera J J, Velasco J, Denis E, Calderon J F B and Guevara O J G 2016 Bioimpedance measurement using mixed-signal embedded system IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS) 335-8 [2] Gonzalez C 2018 Body composition by bioelectrical impedance analysis Bioimpedance in Biomedical Applications and Research 219-41 [3] Freeborn T J, Maundy B and Elwakil A S 2014 Extracting the parameters of the double-dispersion cole bioimpedance model from magnitude response measurements Med. Biol. Eng. Comput. 52 749-58 [4] Dai T and Adler A 2009 In vivo blood characterization from bioimpedance spectroscopy of blood pooling IEEE Trans. Instrum. Meas. 58 3831-8 [5] Qiao G, Wang W, Duan W, Zheng F, Sinclair J and Chatwin C R 2012 Bioimpedance analysis for the characterization of breast cancer cells in suspension IEEE Trans. Biomed. Eng. 59 2321-9 [6] Olmo A, Buzón B, Yúfera A and Risco R 2010 Bioimpedance monitoring for cryopreservation process control 2010 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC’10 6555-8 [7] Lima L F, Vieira A L, Mukai H, Andrade C M G and Fernandes P R G 2017 Electric impedance of aqueous KCl solutions: salt concentration dependence on component of the equivalent electric circuit J. Mol. Liq. 1 1-29 [8] Mirtaheri P, Grimnes S and Martinsen O G 2005 Electrode polarization impedance in weak NaCl aqueous solutions IEEE Trans. Biomed. Eng. 52 2093-9 [9] McAdams E 2014 Bio-impedance spectroscopy problems to avoid Int. Conf. Des. Technol. Integr. Syst. Nanoscale Era 1-2 [10] Petrovic V, Haro V, Jordá O, Delgado J, Blasco J R and Portolés L 2011 Additive layered manufacturing: sectors of industrial application shown through case studies Int. J. Prod. Res. 49 1061-79 [11] Yan Q, Dong H, Su J, Han J, Song B, Wei Q and Shi Y 2018 A Review of 3D printing technology for medical applications Engineering. Elsevier Ltd. 4 729-42. [12] Bogue R 2013 3D printing: the dawn of a new era in manufacturing? Assem. Autom. 33 307-11 [13] Avery J, Aristovich K, Low B and Holder D 2017 Reproducible 3D printed head tanks for electrical impedance tomography with realistic shape and conductivity distribution Physiol. Meas. 38 1116-31 [14] Hegarty M, Grant E and Reid L 2015 A wearable bioimpedance spectroscopy system for characterizing fluid distribution in the lower limbs IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst. 328-33 [15] Kazilas M, Skordos A and Partridge I K 2005 Parameter estimation in equivalent circuit analysis of dielectric cure monitoring signals using genetic algorithms Inverse Problems in Science and Engineering 157-76 [16] Kamat D K, Bagul D, and Patil P M 2014 Blood glucose measurement using bioimpedance technique Adv. Electron. 4-9 |
dc.rights.eng.fl_str_mv |
Derechos reservados - Institute of Physics, 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Institute of Physics, 2019 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
7 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IOP Publishing |
dc.publisher.place.spa.fl_str_mv |
United Kingdom |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/668a6ca4-6a3d-4f7f-9778-91a9ae1e63c9/download https://red.uao.edu.co/bitstreams/6e73e14d-9b0c-4f14-8433-ccda70ffceed/download https://red.uao.edu.co/bitstreams/dfa6c2fc-4c4d-44e3-ae8d-43a14a4f7ee2/download https://red.uao.edu.co/bitstreams/961bec87-87ff-4ade-9201-2ee618326bc2/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 c3a28f2b169fefaf5c688647f83f04e1 40d7fbcdbe671599ca432a21f99cf6f3 4a761b568b33ccc153d14bb8f52626f0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260146517311488 |
spelling |
Neuta-Arciniegas, Paolaf12d6cc0eb11ddf742dadbd88cc8e3baGarcía-Arrunátegui, María Fernanda4f3220c269c916eb1dc88018a839abb0Campo, Oscare0fbd8a4646d5a5046d0f716e71aa3eaVelasco-Medina, Jaimed4e006adb8e75a93ca733db30c27810bCabrera Lopez, John Jairovirtual::742-12021-11-02T22:02:45Z2021-11-02T22:02:45Z2019https://hdl.handle.net/10614/1339010.1088/1742-6596/1272/1/01201717426588Impedance Spectroscopy (IS) has been shown to be a non-invasive and reliable technique for the electrical characterization of biological materials. This paper presents the design and implementation of reliable, reusable wells that are used to perform IS measurements of aqueous solutions. These reusable wells are detachable, easy to clean and low-cost and they are made up of a platen on a Printed Circuit Board (PCB) and the chambers are manufactured using 3D-printing technology. In this case, in order to verify its functionality, IS measurements of electrolytic and non-electrolytic aqueous solutions were carried out. Initially, as a reference, the impedance spectrum of a Hanks’ solution was obtained following a proposed measurement protocol. Then, we analyse this spectrum and we propose an Equivalent Electrical Model (EEM) for validating the reusable wells. Finally, IS measurements are carried out on aqueous solutions of molecular D-glucose and sodium chloride prepared in Hanks’ solution and deionized water, by considering physiological concentrations. The parameter values of the EEMs of each solution tested were obtained using genetic algorithms and Matlab and, from these values, it is possible to conclude that the measurements performed are unable to differentiate the physiological concentration of glucose in the aqueous solution used. Also, from these results, it can be concluded that the designed wells are suitable for IS measurements of aqueous solutions and that they can be used in Electrical Cell Impedance Sensing (ECIS) or applications that require electrical characterization of solutions.7 páginasapplication/pdfengIOP PublishingUnited KingdomDerechos reservados - Institute of Physics, 2019https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutionsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Espectroscopia de impedanciaImpedance spectroscopyVolumen 1272, (2019)711272Cabrera López, J J., García Arrunátegui, M. F., Neuta Arciniegas, P., Campo, O., Velasco Medina, J. (2019). Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions. Journal of Physics: Conference Series. (Vol. 1272), pp.1-7. doi:10.1088/1742-6596/1272/1/012017Journal of Physics: Conference Series[1] Cabrera J J, Velasco J, Denis E, Calderon J F B and Guevara O J G 2016 Bioimpedance measurement using mixed-signal embedded system IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS) 335-8[2] Gonzalez C 2018 Body composition by bioelectrical impedance analysis Bioimpedance in Biomedical Applications and Research 219-41[3] Freeborn T J, Maundy B and Elwakil A S 2014 Extracting the parameters of the double-dispersion cole bioimpedance model from magnitude response measurements Med. Biol. Eng. Comput. 52 749-58[4] Dai T and Adler A 2009 In vivo blood characterization from bioimpedance spectroscopy of blood pooling IEEE Trans. Instrum. Meas. 58 3831-8[5] Qiao G, Wang W, Duan W, Zheng F, Sinclair J and Chatwin C R 2012 Bioimpedance analysis for the characterization of breast cancer cells in suspension IEEE Trans. Biomed. Eng. 59 2321-9[6] Olmo A, Buzón B, Yúfera A and Risco R 2010 Bioimpedance monitoring for cryopreservation process control 2010 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC’10 6555-8[7] Lima L F, Vieira A L, Mukai H, Andrade C M G and Fernandes P R G 2017 Electric impedance of aqueous KCl solutions: salt concentration dependence on component of the equivalent electric circuit J. Mol. Liq. 1 1-29[8] Mirtaheri P, Grimnes S and Martinsen O G 2005 Electrode polarization impedance in weak NaCl aqueous solutions IEEE Trans. Biomed. Eng. 52 2093-9[9] McAdams E 2014 Bio-impedance spectroscopy problems to avoid Int. Conf. Des. Technol. Integr. Syst. Nanoscale Era 1-2[10] Petrovic V, Haro V, Jordá O, Delgado J, Blasco J R and Portolés L 2011 Additive layered manufacturing: sectors of industrial application shown through case studies Int. J. Prod. Res. 49 1061-79[11] Yan Q, Dong H, Su J, Han J, Song B, Wei Q and Shi Y 2018 A Review of 3D printing technology for medical applications Engineering. Elsevier Ltd. 4 729-42.[12] Bogue R 2013 3D printing: the dawn of a new era in manufacturing? Assem. Autom. 33 307-11[13] Avery J, Aristovich K, Low B and Holder D 2017 Reproducible 3D printed head tanks for electrical impedance tomography with realistic shape and conductivity distribution Physiol. Meas. 38 1116-31[14] Hegarty M, Grant E and Reid L 2015 A wearable bioimpedance spectroscopy system for characterizing fluid distribution in the lower limbs IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst. 328-33[15] Kazilas M, Skordos A and Partridge I K 2005 Parameter estimation in equivalent circuit analysis of dielectric cure monitoring signals using genetic algorithms Inverse Problems in Science and Engineering 157-76[16] Kamat D K, Bagul D, and Patil P M 2014 Blood glucose measurement using bioimpedance technique Adv. Electron. 4-9GeneralPublication5f003138-bfcd-4407-904b-9b9a0010990cvirtual::742-15f003138-bfcd-4407-904b-9b9a0010990cvirtual::742-1https://scholar.google.com/citations?user=dkpsiDsAAAAJ&hl=esvirtual::742-10000-0002-2608-755Xvirtual::742-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000821276virtual::742-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/668a6ca4-6a3d-4f7f-9778-91a9ae1e63c9/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALPCB-3D-printed, reliable and reusable wells for impedance spectroscopy of aqueous solution.pdfPCB-3D-printed, reliable and reusable wells for impedance spectroscopy of aqueous solution.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf742183https://red.uao.edu.co/bitstreams/6e73e14d-9b0c-4f14-8433-ccda70ffceed/downloadc3a28f2b169fefaf5c688647f83f04e1MD53TEXTPCB-3D-printed, reliable and reusable wells for impedance spectroscopy of aqueous solution.pdf.txtPCB-3D-printed, reliable and reusable wells for impedance spectroscopy of aqueous solution.pdf.txtExtracted texttext/plain22537https://red.uao.edu.co/bitstreams/dfa6c2fc-4c4d-44e3-ae8d-43a14a4f7ee2/download40d7fbcdbe671599ca432a21f99cf6f3MD54THUMBNAILPCB-3D-printed, reliable and reusable wells for impedance spectroscopy of aqueous solution.pdf.jpgPCB-3D-printed, reliable and reusable wells for impedance spectroscopy of aqueous solution.pdf.jpgGenerated Thumbnailimage/jpeg13617https://red.uao.edu.co/bitstreams/961bec87-87ff-4ade-9201-2ee618326bc2/download4a761b568b33ccc153d14bb8f52626f0MD5510614/13390oai:red.uao.edu.co:10614/133902024-02-28 15:14:22.688https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Institute of Physics, 2019open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |