Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions

Impedance Spectroscopy (IS) has been shown to be a non-invasive and reliable technique for the electrical characterization of biological materials. This paper presents the design and implementation of reliable, reusable wells that are used to perform IS measurements of aqueous solutions. These reusa...

Full description

Autores:
Neuta-Arciniegas, Paola
García-Arrunátegui, María Fernanda
Campo, Oscar
Velasco-Medina, Jaime
Cabrera Lopez, John Jairo
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13390
Acceso en línea:
https://hdl.handle.net/10614/13390
Palabra clave:
Espectroscopia de impedancia
Impedance spectroscopy
Rights
openAccess
License
Derechos reservados - Institute of Physics, 2019
id REPOUAO2_9e2cdebab61f33ca1e84c9fe369b4de7
oai_identifier_str oai:red.uao.edu.co:10614/13390
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions
title Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions
spellingShingle Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions
Espectroscopia de impedancia
Impedance spectroscopy
title_short Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions
title_full Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions
title_fullStr Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions
title_full_unstemmed Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions
title_sort Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions
dc.creator.fl_str_mv Neuta-Arciniegas, Paola
García-Arrunátegui, María Fernanda
Campo, Oscar
Velasco-Medina, Jaime
Cabrera Lopez, John Jairo
dc.contributor.author.spa.fl_str_mv Neuta-Arciniegas, Paola
García-Arrunátegui, María Fernanda
Campo, Oscar
Velasco-Medina, Jaime
dc.contributor.author.none.fl_str_mv Cabrera Lopez, John Jairo
dc.subject.lemb.spa.fl_str_mv Espectroscopia de impedancia
topic Espectroscopia de impedancia
Impedance spectroscopy
dc.subject.lemb.eng.fl_str_mv Impedance spectroscopy
description Impedance Spectroscopy (IS) has been shown to be a non-invasive and reliable technique for the electrical characterization of biological materials. This paper presents the design and implementation of reliable, reusable wells that are used to perform IS measurements of aqueous solutions. These reusable wells are detachable, easy to clean and low-cost and they are made up of a platen on a Printed Circuit Board (PCB) and the chambers are manufactured using 3D-printing technology. In this case, in order to verify its functionality, IS measurements of electrolytic and non-electrolytic aqueous solutions were carried out. Initially, as a reference, the impedance spectrum of a Hanks’ solution was obtained following a proposed measurement protocol. Then, we analyse this spectrum and we propose an Equivalent Electrical Model (EEM) for validating the reusable wells. Finally, IS measurements are carried out on aqueous solutions of molecular D-glucose and sodium chloride prepared in Hanks’ solution and deionized water, by considering physiological concentrations. The parameter values of the EEMs of each solution tested were obtained using genetic algorithms and Matlab and, from these values, it is possible to conclude that the measurements performed are unable to differentiate the physiological concentration of glucose in the aqueous solution used. Also, from these results, it can be concluded that the designed wells are suitable for IS measurements of aqueous solutions and that they can be used in Electrical Cell Impedance Sensing (ECIS) or applications that require electrical characterization of solutions.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2021-11-02T22:02:45Z
dc.date.available.none.fl_str_mv 2021-11-02T22:02:45Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13390
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/1272/1/012017
dc.identifier.eissn.none.fl_str_mv 17426588
url https://hdl.handle.net/10614/13390
identifier_str_mv 10.1088/1742-6596/1272/1/012017
17426588
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Volumen 1272, (2019)
dc.relation.citationendpage.spa.fl_str_mv 7
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 1272
dc.relation.cites.eng.fl_str_mv Cabrera López, J J., García Arrunátegui, M. F., Neuta Arciniegas, P., Campo, O., Velasco Medina, J. (2019). Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions. Journal of Physics: Conference Series. (Vol. 1272), pp.1-7. doi:10.1088/1742-6596/1272/1/012017
dc.relation.ispartofjournal.eng.fl_str_mv Journal of Physics: Conference Series
dc.relation.references.none.fl_str_mv [1] Cabrera J J, Velasco J, Denis E, Calderon J F B and Guevara O J G 2016 Bioimpedance measurement using mixed-signal embedded system IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS) 335-8
[2] Gonzalez C 2018 Body composition by bioelectrical impedance analysis Bioimpedance in Biomedical Applications and Research 219-41
[3] Freeborn T J, Maundy B and Elwakil A S 2014 Extracting the parameters of the double-dispersion cole bioimpedance model from magnitude response measurements Med. Biol. Eng. Comput. 52 749-58
[4] Dai T and Adler A 2009 In vivo blood characterization from bioimpedance spectroscopy of blood pooling IEEE Trans. Instrum. Meas. 58 3831-8
[5] Qiao G, Wang W, Duan W, Zheng F, Sinclair J and Chatwin C R 2012 Bioimpedance analysis for the characterization of breast cancer cells in suspension IEEE Trans. Biomed. Eng. 59 2321-9
[6] Olmo A, Buzón B, Yúfera A and Risco R 2010 Bioimpedance monitoring for cryopreservation process control 2010 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC’10 6555-8
[7] Lima L F, Vieira A L, Mukai H, Andrade C M G and Fernandes P R G 2017 Electric impedance of aqueous KCl solutions: salt concentration dependence on component of the equivalent electric circuit J. Mol. Liq. 1 1-29
[8] Mirtaheri P, Grimnes S and Martinsen O G 2005 Electrode polarization impedance in weak NaCl aqueous solutions IEEE Trans. Biomed. Eng. 52 2093-9
[9] McAdams E 2014 Bio-impedance spectroscopy problems to avoid Int. Conf. Des. Technol. Integr. Syst. Nanoscale Era 1-2
[10] Petrovic V, Haro V, Jordá O, Delgado J, Blasco J R and Portolés L 2011 Additive layered manufacturing: sectors of industrial application shown through case studies Int. J. Prod. Res. 49 1061-79
[11] Yan Q, Dong H, Su J, Han J, Song B, Wei Q and Shi Y 2018 A Review of 3D printing technology for medical applications Engineering. Elsevier Ltd. 4 729-42.
[12] Bogue R 2013 3D printing: the dawn of a new era in manufacturing? Assem. Autom. 33 307-11
[13] Avery J, Aristovich K, Low B and Holder D 2017 Reproducible 3D printed head tanks for electrical impedance tomography with realistic shape and conductivity distribution Physiol. Meas. 38 1116-31
[14] Hegarty M, Grant E and Reid L 2015 A wearable bioimpedance spectroscopy system for characterizing fluid distribution in the lower limbs IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst. 328-33
[15] Kazilas M, Skordos A and Partridge I K 2005 Parameter estimation in equivalent circuit analysis of dielectric cure monitoring signals using genetic algorithms Inverse Problems in Science and Engineering 157-76
[16] Kamat D K, Bagul D, and Patil P M 2014 Blood glucose measurement using bioimpedance technique Adv. Electron. 4-9
dc.rights.eng.fl_str_mv Derechos reservados - Institute of Physics, 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Institute of Physics, 2019
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 7 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IOP Publishing
dc.publisher.place.spa.fl_str_mv United Kingdom
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/668a6ca4-6a3d-4f7f-9778-91a9ae1e63c9/download
https://red.uao.edu.co/bitstreams/6e73e14d-9b0c-4f14-8433-ccda70ffceed/download
https://red.uao.edu.co/bitstreams/dfa6c2fc-4c4d-44e3-ae8d-43a14a4f7ee2/download
https://red.uao.edu.co/bitstreams/961bec87-87ff-4ade-9201-2ee618326bc2/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
c3a28f2b169fefaf5c688647f83f04e1
40d7fbcdbe671599ca432a21f99cf6f3
4a761b568b33ccc153d14bb8f52626f0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260146517311488
spelling Neuta-Arciniegas, Paolaf12d6cc0eb11ddf742dadbd88cc8e3baGarcía-Arrunátegui, María Fernanda4f3220c269c916eb1dc88018a839abb0Campo, Oscare0fbd8a4646d5a5046d0f716e71aa3eaVelasco-Medina, Jaimed4e006adb8e75a93ca733db30c27810bCabrera Lopez, John Jairovirtual::742-12021-11-02T22:02:45Z2021-11-02T22:02:45Z2019https://hdl.handle.net/10614/1339010.1088/1742-6596/1272/1/01201717426588Impedance Spectroscopy (IS) has been shown to be a non-invasive and reliable technique for the electrical characterization of biological materials. This paper presents the design and implementation of reliable, reusable wells that are used to perform IS measurements of aqueous solutions. These reusable wells are detachable, easy to clean and low-cost and they are made up of a platen on a Printed Circuit Board (PCB) and the chambers are manufactured using 3D-printing technology. In this case, in order to verify its functionality, IS measurements of electrolytic and non-electrolytic aqueous solutions were carried out. Initially, as a reference, the impedance spectrum of a Hanks’ solution was obtained following a proposed measurement protocol. Then, we analyse this spectrum and we propose an Equivalent Electrical Model (EEM) for validating the reusable wells. Finally, IS measurements are carried out on aqueous solutions of molecular D-glucose and sodium chloride prepared in Hanks’ solution and deionized water, by considering physiological concentrations. The parameter values of the EEMs of each solution tested were obtained using genetic algorithms and Matlab and, from these values, it is possible to conclude that the measurements performed are unable to differentiate the physiological concentration of glucose in the aqueous solution used. Also, from these results, it can be concluded that the designed wells are suitable for IS measurements of aqueous solutions and that they can be used in Electrical Cell Impedance Sensing (ECIS) or applications that require electrical characterization of solutions.7 páginasapplication/pdfengIOP PublishingUnited KingdomDerechos reservados - Institute of Physics, 2019https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutionsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Espectroscopia de impedanciaImpedance spectroscopyVolumen 1272, (2019)711272Cabrera López, J J., García Arrunátegui, M. F., Neuta Arciniegas, P., Campo, O., Velasco Medina, J. (2019). Pcb-3d-printed, reliable and reusable wells for impedance spectroscopy of aqueous solutions. Journal of Physics: Conference Series. (Vol. 1272), pp.1-7. doi:10.1088/1742-6596/1272/1/012017Journal of Physics: Conference Series[1] Cabrera J J, Velasco J, Denis E, Calderon J F B and Guevara O J G 2016 Bioimpedance measurement using mixed-signal embedded system IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS) 335-8[2] Gonzalez C 2018 Body composition by bioelectrical impedance analysis Bioimpedance in Biomedical Applications and Research 219-41[3] Freeborn T J, Maundy B and Elwakil A S 2014 Extracting the parameters of the double-dispersion cole bioimpedance model from magnitude response measurements Med. Biol. Eng. Comput. 52 749-58[4] Dai T and Adler A 2009 In vivo blood characterization from bioimpedance spectroscopy of blood pooling IEEE Trans. Instrum. Meas. 58 3831-8[5] Qiao G, Wang W, Duan W, Zheng F, Sinclair J and Chatwin C R 2012 Bioimpedance analysis for the characterization of breast cancer cells in suspension IEEE Trans. Biomed. Eng. 59 2321-9[6] Olmo A, Buzón B, Yúfera A and Risco R 2010 Bioimpedance monitoring for cryopreservation process control 2010 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC’10 6555-8[7] Lima L F, Vieira A L, Mukai H, Andrade C M G and Fernandes P R G 2017 Electric impedance of aqueous KCl solutions: salt concentration dependence on component of the equivalent electric circuit J. Mol. Liq. 1 1-29[8] Mirtaheri P, Grimnes S and Martinsen O G 2005 Electrode polarization impedance in weak NaCl aqueous solutions IEEE Trans. Biomed. Eng. 52 2093-9[9] McAdams E 2014 Bio-impedance spectroscopy problems to avoid Int. Conf. Des. Technol. Integr. Syst. Nanoscale Era 1-2[10] Petrovic V, Haro V, Jordá O, Delgado J, Blasco J R and Portolés L 2011 Additive layered manufacturing: sectors of industrial application shown through case studies Int. J. Prod. Res. 49 1061-79[11] Yan Q, Dong H, Su J, Han J, Song B, Wei Q and Shi Y 2018 A Review of 3D printing technology for medical applications Engineering. Elsevier Ltd. 4 729-42.[12] Bogue R 2013 3D printing: the dawn of a new era in manufacturing? Assem. Autom. 33 307-11[13] Avery J, Aristovich K, Low B and Holder D 2017 Reproducible 3D printed head tanks for electrical impedance tomography with realistic shape and conductivity distribution Physiol. Meas. 38 1116-31[14] Hegarty M, Grant E and Reid L 2015 A wearable bioimpedance spectroscopy system for characterizing fluid distribution in the lower limbs IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst. 328-33[15] Kazilas M, Skordos A and Partridge I K 2005 Parameter estimation in equivalent circuit analysis of dielectric cure monitoring signals using genetic algorithms Inverse Problems in Science and Engineering 157-76[16] Kamat D K, Bagul D, and Patil P M 2014 Blood glucose measurement using bioimpedance technique Adv. Electron. 4-9GeneralPublication5f003138-bfcd-4407-904b-9b9a0010990cvirtual::742-15f003138-bfcd-4407-904b-9b9a0010990cvirtual::742-1https://scholar.google.com/citations?user=dkpsiDsAAAAJ&hl=esvirtual::742-10000-0002-2608-755Xvirtual::742-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000821276virtual::742-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/668a6ca4-6a3d-4f7f-9778-91a9ae1e63c9/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALPCB-3D-printed, reliable and reusable wells for impedance spectroscopy of aqueous solution.pdfPCB-3D-printed, reliable and reusable wells for impedance spectroscopy of aqueous solution.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf742183https://red.uao.edu.co/bitstreams/6e73e14d-9b0c-4f14-8433-ccda70ffceed/downloadc3a28f2b169fefaf5c688647f83f04e1MD53TEXTPCB-3D-printed, reliable and reusable wells for impedance spectroscopy of aqueous solution.pdf.txtPCB-3D-printed, reliable and reusable wells for impedance spectroscopy of aqueous solution.pdf.txtExtracted texttext/plain22537https://red.uao.edu.co/bitstreams/dfa6c2fc-4c4d-44e3-ae8d-43a14a4f7ee2/download40d7fbcdbe671599ca432a21f99cf6f3MD54THUMBNAILPCB-3D-printed, reliable and reusable wells for impedance spectroscopy of aqueous solution.pdf.jpgPCB-3D-printed, reliable and reusable wells for impedance spectroscopy of aqueous solution.pdf.jpgGenerated Thumbnailimage/jpeg13617https://red.uao.edu.co/bitstreams/961bec87-87ff-4ade-9201-2ee618326bc2/download4a761b568b33ccc153d14bb8f52626f0MD5510614/13390oai:red.uao.edu.co:10614/133902024-02-28 15:14:22.688https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Institute of Physics, 2019open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K