Using a mediator system to increase the delignification of sugarcane residues with fungal enzymes
Los residuos industriales son recursos que generan una seguridad energética regional, pero ellos no han sido suficientemente valorizados. En el sur de Colombia, el sector de la caña de azúcar produce aproximadamente 9´000 000 T/año de residuos, principalmente representados por hojas y cogollos. De e...
- Autores:
-
Flórez Pardo, Luz Marina
Parra Paz, Angela Sofía
López Galán, Jorge Enrique
Figueroa Oviedo, Jersson Ivan
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2015
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11805
- Acceso en línea:
- http://red.uao.edu.co//handle/10614/11805
http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0122-53832015000200007
https://red.uao.edu.co/
- Palabra clave:
- Enzymatic delignification
Mediators
Laccase
Pleurotus ostreatus
Lignoperoxidase
Ultrasound pretreatment
Tops and leaves
Deslignificación enzimática
Lacasa
Mediadores
Lignoperoxidasa
Tratamiento con ultrasonido
Hojas y cogollos
Deslignificação enzimática
Lacase
Tratamento com ultrassom
Folhas e miolos
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_9cde2cf42cf8c9182ba08cd331fe5790 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11805 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Using a mediator system to increase the delignification of sugarcane residues with fungal enzymes |
dc.title.alternative.spa.fl_str_mv |
Uso de un sistema mediador para incrementar la deslignificación de residuos de caña de azúcar con enzimas fúngicas = Uso de um sistema mediador para incrementar a deslignificação de resíduos de cana de açúcar com enzimas fúngicas |
title |
Using a mediator system to increase the delignification of sugarcane residues with fungal enzymes |
spellingShingle |
Using a mediator system to increase the delignification of sugarcane residues with fungal enzymes Enzymatic delignification Mediators Laccase Pleurotus ostreatus Lignoperoxidase Ultrasound pretreatment Tops and leaves Deslignificación enzimática Lacasa Mediadores Lignoperoxidasa Tratamiento con ultrasonido Hojas y cogollos Deslignificação enzimática Lacase Tratamento com ultrassom Folhas e miolos |
title_short |
Using a mediator system to increase the delignification of sugarcane residues with fungal enzymes |
title_full |
Using a mediator system to increase the delignification of sugarcane residues with fungal enzymes |
title_fullStr |
Using a mediator system to increase the delignification of sugarcane residues with fungal enzymes |
title_full_unstemmed |
Using a mediator system to increase the delignification of sugarcane residues with fungal enzymes |
title_sort |
Using a mediator system to increase the delignification of sugarcane residues with fungal enzymes |
dc.creator.fl_str_mv |
Flórez Pardo, Luz Marina Parra Paz, Angela Sofía López Galán, Jorge Enrique Figueroa Oviedo, Jersson Ivan |
dc.contributor.author.none.fl_str_mv |
Flórez Pardo, Luz Marina |
dc.contributor.author.spa.fl_str_mv |
Parra Paz, Angela Sofía López Galán, Jorge Enrique Figueroa Oviedo, Jersson Ivan |
dc.subject.eng.fl_str_mv |
Enzymatic delignification Mediators Laccase Pleurotus ostreatus Lignoperoxidase Ultrasound pretreatment Tops and leaves Deslignificación enzimática Lacasa |
topic |
Enzymatic delignification Mediators Laccase Pleurotus ostreatus Lignoperoxidase Ultrasound pretreatment Tops and leaves Deslignificación enzimática Lacasa Mediadores Lignoperoxidasa Tratamiento con ultrasonido Hojas y cogollos Deslignificação enzimática Lacase Tratamento com ultrassom Folhas e miolos |
dc.subject.spa.fl_str_mv |
Mediadores Lignoperoxidasa Tratamiento con ultrasonido Hojas y cogollos |
dc.subject.por.fl_str_mv |
Deslignificação enzimática Lacase Tratamento com ultrassom Folhas e miolos |
description |
Los residuos industriales son recursos que generan una seguridad energética regional, pero ellos no han sido suficientemente valorizados. En el sur de Colombia, el sector de la caña de azúcar produce aproximadamente 9´000 000 T/año de residuos, principalmente representados por hojas y cogollos. De estos residuos es posible obtener etanol y una de las etapas más críticas es su deslignificación. En este proceso, la remoción de lignina con el uso de extractos de enzima extracelular y mediadores, todavía no ha sido ampliamente estudiada. Por consiguiente, se desarrolló una metodología para extraer del hongo Pleurotus ostreatus, el cual fue cultivado por fermentación en substrato sólido, un coctel de enzimas compuesto por lacasa, manganeso peroxidasa (MnP) y lignoperoxidasa (LiP). Estos extractos enzimáticos fueron probados con el uso de dos mediadores: 1) ABTS: 2,2´-azino-bis-3- tilbenzotiazolina-6-ácido sulfonico y 2) vainillina, sobre dos diferentes tipos de residuos: no tratados y pretratados con ultrasonido. Como resultado se encontró que el extracto crudo de enzima estuvo compuesto por actividad lacasa (0.432 U/mL), LiP (0.116 U/mL) y MnP (0.025 U/mL). Adicionalmente, los resultados confirmaron que este extracto crudo en asocio con ABTS como mediador de lacasa, fue capaz de remover el 52.7% de la lignina de los residuos de caña de azúcar pretratados con ultrasonido. También es importante resaltar que estos resultados fueron muy promisorios, sobre todo si se puede usar un extracto extracelular más concentrado |
publishDate |
2015 |
dc.date.issued.spa.fl_str_mv |
2015-12 |
dc.date.accessioned.spa.fl_str_mv |
2020-01-15T19:39:41Z |
dc.date.available.spa.fl_str_mv |
2020-01-15T19:39:41Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
01225383 (impreso) 23824581 (en línea) |
dc.identifier.uri.spa.fl_str_mv |
http://red.uao.edu.co//handle/10614/11805 http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0122-53832015000200007 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital, UAO |
dc.identifier.repourl.esp.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
01225383 (impreso) 23824581 (en línea) Universidad Autónoma de Occidente Repositorio Educativo Digital, UAO |
url |
http://red.uao.edu.co//handle/10614/11805 http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0122-53832015000200007 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.eng.fl_str_mv |
C T y F - Ciencia, Tecnologia y Futuro. Volúmen 6, número 2 (Diciembre de 2015); páginas 81-92 |
dc.relation.citationendpage.spa.fl_str_mv |
92 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationstartpage.spa.fl_str_mv |
81 |
dc.relation.citationvolume.spa.fl_str_mv |
6 |
dc.relation.cites.spa.fl_str_mv |
Flórez Pardo, Luz Marina; Parra Paz, Angela Sofía; López Galán, Jorge Enrique y Figueroa Oviedo, Jersson Ivan (Diciembre de 2015). Using a mediator system to increase the delignification of sugarcane residues with fungal enzymes. En: C T y F - Ciencia, Tecnologia y Futuro. 6(2),81-92. http://red.uao.edu.co//handle/10614/11805 |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
12 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Ecopetrol SA |
dc.publisher.place.spa.fl_str_mv |
Santander, Colombia |
institution |
Universidad Autónoma de Occidente |
dc.source.bibliographiccitation.spa.fl_str_mv |
Bajpai, P. (2004). Biological bleaching of chemical pulps. Crit. Rev.Biotechnol., 24(1), 1-58. Benazzi, T., Calgaroto, S., Astolfi, V., Rosa, C. D., Oliveira, J. V. & Mazutti, M. A. (2013). Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis. Enzyme Microb. Technol., 52(4-5), 247-250. Bourbonnais, R. & Paice, M. (1992). Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2'-azinobis-(3-ethylbenzthiazoline-6- sulphonate). Appl. Microbiol. Biotechnol., 36(6), 823-827. Bourbonnais, R., Paice, M., Freiermuth, B., Bodie, E. & Borneman, S. (1997). Reactivities of various mediators and laccases with Kraft pulp and lignin model compounds. Appl. Environ. Microbiol., 63(12), 4627-4632. Camarero, S., Ibarra, D., Martínez, M. & Martínez, A. (2005). Lignin derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl. Environ. Microbiol., 71(4), 1775-1784. Cañas, A., Alcalde, M., Plou, F., Martínez, M., Martínez, A. & Camarero, S. (2007). Transformation of polycyclic aromatic hydrocarbons by lacasse is strongly enhanced by phenolic compounds present in soil. Environ. Sci. Technol., 41(8), 2964-2971. Cañas, A. & Camarero, S. (2010). Laccases and their natural mediators: Biotechnological tools for sustainable ecofriendly processes. Biotechnol. Adv., 28(6), 694-705. Cenicaña. (2010). Boletines diarios de la red meteorológica automatizada-RMA. [Online]. [Accessed: 03-Jun-2014]. Available from: <http://www.cenicana.org/clima_/boletin_meteoro_diario.php>. Elisashvili, V. & Kachlishvili, E. (2009). Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. J. Biotechnol., 144(1), 37-42. Filson, P. B. & Dawson-Andoh, B. E. (2009). Sono-chemical preparation of cellulose nanocrrystals from lignocellulose derived materials. Bioresource Technol., 100(7), 2259- 2264. Flickinger, M. & Drew, S. (1999). Encyclopedia of bioprocess technology: Fermentation, biocatalysis and bioseparation. New York: John Wiley and Sons. Fujian, X., Hongzhang, C. & Zuohu, L. (2001). Solid state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour. Technol., 80(2), 149-155. Fujii, K., Uemura, M., Hayakawa, C., Funakawa, S. & Kosaki, T. (2013). Environmental control of lignin peroxidase, manganese peroxidase, and laccase activities in forest floor layers in humid Asia. Soil Biol. Biochem., 57: 109-115. Garcia-Ubasart, J., Esteban, A., Vila, C., Roncero, M. B., Colom, J. F. & Vidal, T. (2011). Enzymatic treatments of pulp using laccase and hydrophobic compounds. Bioresour. Technol., 102(3), 2799-2803. Hartree, E. F. (1972). Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem., 48(2), 422-427. Jeon, J. R., Murugesan, K., Kim, Y., Kim, E. & Chang, Y. (2008). Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase. Appl. Microbiol. Biotechnol., 81(4), 783-790. Karp, S. G., Faraco, V., Amore, A., Birolo, L., Giangrande, C., Soccol, V. T., Pandey, A. & Soccol, C. R. (2012). Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse. Bioresour. Technol., 114: 735-739. Kudanga, T. & Le Roes-Hill, M. (2014). Laccase applications in biofuels production: Current status and future prospects. Appl. Microbiol. Biotechnol., 98(15), 6525-6542. Liu, L., Lin, Z., Zheng, T., Lin, L., Zheng, C., Lin, Z., Wang, S. & Wang, Z. (2009). Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969. Enzyme Microb. Technol., 44(6-7), 426-433. Lowry, O. H., Rosebrough, N., Farr, A. L. & Randall, R. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem., 193: 265-275. Maté, D., García-Burgos, C., García-Ruiz, E., Ballesteros, A.O., Camarero, S. & Alcalde, M. (2010). Laboratory evolution of high-redox potential laccases. Chem. Biol., 17(9), 1030-1041. Morozova, O. V., Shumakovich, G. P., Shleev, S. V. & Yaropolov, Y. I. (2007). Laccase-mediator systems and their applications: A review. Appl. Biochem. Microbiol., 43(5), 523-535. Oliveira, F. M. V., Pinheiro, I. O., Souto-Maior, A. M., Martin, C., Gonçalves, A. R. & Rocha, G. J. M. (2013). Industrialscale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresource Technol., 130: 168-173. Park, N. & Park, S. S. (2014). Purification and characterization of a novel laccase from Fomitopsis pinicola mycelia. Int. J. Biol. Macromol., 70: 583-589. Peng, F., Peng, P., Xu, F. & Sun, R. C. (2012). Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv., 30(4), 879-903. Piscitelli, A., Giardina, P., Mazzoni, C. & Sannia, G. (2005). Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 29(4), 428-439. Reddy, G. V., Ravindra-Babu, P., Komaraiah, P., Roy, K. R. R. M. & Kothari, L. (2003). Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem., 38(10), 1457-1462. Rocha, G. J. M., Gonçalves, A. R., Oliveira, B. R., Olivares, E. G. & Rossell, C. E. V. (2012). Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind. Crop. Prod., 35(1), 274-279. Rodríguez Couto, S. & Sanromán, M. (2005). Application of solid-state fermentation to lignolytic enzyme production. Biochem. Eng. J., 22(3), 211-219. Salcedo, J. G., López, J. E. & Flórez, L. M. (2011). Evaluación de enzimas para la hidrólisis de residuos (hojas y cogollos) de la cosecha caña de azúcar. DYNA, 78(169), 182-190. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. & Crocker, D. (2011). Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618. Golden, CO, 18 pp. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J. & Templeton, D. (2008). Determination of extractives in biomass. Technical Report NREL/TP-510-42619. Golden, CO, 12 pp. Sun, J. X., Sun, R. C., Sun, X. F. & Su, Y. Q. (2004). Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohydr. Res., 339(2), 291-300. Sun, R. & Tomkinson, J. (2002). Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason. Sonochem., 9(2), 85-93. Szczerbowski, D., Pitarelo, A. P., Zandoná Filho, A. & Pereira Ramos, L. (2014). Sugarcane biomass for biorefineries: Comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr. Polym., 114: 95-101. TAPPI. (1999). Technical Association of the Pulp and Paper Industry. Kappa number of pulp. T 236 om-99. Canada, 4p. Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74(10), 3583-3597. Velmurugan, R. & Muthukumar, K. (2012). Ultrasoundassisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: Optimization through response surface methodology. Bioresource Technol., 112: 293-299. Yachmenev, V., Condon, B., Klasson, T. & Lambert, A. (2009). Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J. Biobased Mater. Bio., 3(1-7), 25-31. Yaldagard, M., Mortazavi, S. A. & Tabatabaie, F. (2008). The effect of ultrasound in combination with thermal treatment on the germinated barley´s alpha-amylase activity. Korean J. Chem. Eng., 25(3), 517-523. |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/8b4a9717-3305-403e-a7d0-f79ac6056b04/download https://red.uao.edu.co/bitstreams/d2cf379e-9f8b-4a6b-bf80-4471ed512a9f/download https://red.uao.edu.co/bitstreams/2a0c4430-3a0e-4845-8d9b-92d808110b98/download https://red.uao.edu.co/bitstreams/0195ba30-1571-40b7-aa6f-9a55f4eedf89/download https://red.uao.edu.co/bitstreams/ba50983d-94af-4f12-aeff-1afa6f28a3ee/download |
bitstream.checksum.fl_str_mv |
9d510fa68cad14e3c15042c6c1051624 f8a250d7d69b77a4b6c5b3534490f24d 37e8ae8c8d9e4dc0ccefed78916f0eac 4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260084879917056 |
spelling |
Flórez Pardo, Luz Marinavirtual::1702-1Parra Paz, Angela Sofía58beb630857d7c9b65c47a1e76a26bc2-1López Galán, Jorge Enriquec28f842fdc151536a90f2149d7bd6b1f-1Figueroa Oviedo, Jersson Ivan8191bb0561b62762ba82fc73830c427e-12020-01-15T19:39:41Z2020-01-15T19:39:41Z2015-1201225383 (impreso)23824581 (en línea)http://red.uao.edu.co//handle/10614/11805http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0122-53832015000200007Universidad Autónoma de OccidenteRepositorio Educativo Digital, UAOhttps://red.uao.edu.co/Los residuos industriales son recursos que generan una seguridad energética regional, pero ellos no han sido suficientemente valorizados. En el sur de Colombia, el sector de la caña de azúcar produce aproximadamente 9´000 000 T/año de residuos, principalmente representados por hojas y cogollos. De estos residuos es posible obtener etanol y una de las etapas más críticas es su deslignificación. En este proceso, la remoción de lignina con el uso de extractos de enzima extracelular y mediadores, todavía no ha sido ampliamente estudiada. Por consiguiente, se desarrolló una metodología para extraer del hongo Pleurotus ostreatus, el cual fue cultivado por fermentación en substrato sólido, un coctel de enzimas compuesto por lacasa, manganeso peroxidasa (MnP) y lignoperoxidasa (LiP). Estos extractos enzimáticos fueron probados con el uso de dos mediadores: 1) ABTS: 2,2´-azino-bis-3- tilbenzotiazolina-6-ácido sulfonico y 2) vainillina, sobre dos diferentes tipos de residuos: no tratados y pretratados con ultrasonido. Como resultado se encontró que el extracto crudo de enzima estuvo compuesto por actividad lacasa (0.432 U/mL), LiP (0.116 U/mL) y MnP (0.025 U/mL). Adicionalmente, los resultados confirmaron que este extracto crudo en asocio con ABTS como mediador de lacasa, fue capaz de remover el 52.7% de la lignina de los residuos de caña de azúcar pretratados con ultrasonido. También es importante resaltar que estos resultados fueron muy promisorios, sobre todo si se puede usar un extracto extracelular más concentrado Industrial residues are resources that generate regional energy security but they have not been sufficiently valued. In southern Colombia, the sugar cane sector produces approximately 9´000 000 T/year of residues, mostly represented by tops and leaves. Delignification is a critical step in the process of obtaining ethanol from these residues. The removal of lignin using extracellular enzyme extracts and mediators has not been widely studied. Therefore, a methodology was developed to extract, a cocktail of enzymes consisting of laccase, manganese peroxidase (MnP) and lignoperoxidase (LiP) from Pleurotus ostreatus, which was cultivated by solid substrate fermentation. The extracts with two mediators: 1) ABTS: 2,2´-azino-bis-3-ethylbenzthiazoline-6-sulfonic-acid and 2) vanillin, were tested on two different types of residues: untreated residues and pretreated residues with ultrasound. It was found that the crude enzyme extract contained laccase (0.432 U/mL), LiP (0.116 U/mL) and MnP (0.025 U/mL) activity. Additionally, the results confirmed that this extract was capable of removing 52.7% of lignin from ultrasound pretreated sugar cane residues and ABTS as the laccase mediator. It is important to highlight that the results obtained were very promising mainly if a more concentrated extracellular extract can be used Os resíduos industriais são recursos que geram uma segurança energética regional, mas eles não são suficientemente valorizados. No sul da Colômbia, o setor da cana de açúcar produz aproximadamente 9'000 000 T/ano de resíduos, principalmente representados por folhas e miolos. Destes resíduos podemos obter etanol e uma das etapas mais críticas é a deslignificação. Neste processo, a remoção de lignina com o uso de extratos de enzima extracelular e mediadores, ainda não foi amplamente estudada. Consequentemente, foi desenvolvida uma metodologia para a extração do fungo Pleurotus ostreatus, o qual foi cultivado por fermentação em substrato sólido, um coquetel de enzimas composto por lacase, manganês peroxidase (MnP) e lignoperoxidase (LiP). Estes extratos enzimáticos foram testados com o uso dos mediadores: 1) ABTS: 2,2'-azino-bis-3-etilbenzotiazoline-6-ácido sulfônico e 2) vanilina, sobre dois diferentes tipos de resíduos: não tratados e pré-tratados com ultrassom. Como resultado verificou-se que o extrato cru de enzima esteve composto por atividade lacase (0.432 U/mL), LiP (0.116 U/mL) e MnP (0.025 U/mL). Adicionalmente, os resultados confirmaram que esse extrato cru junto com o ABTS como mediador de lacase foi capaz de remover 52.7% da lignina dos resíduos de cana de açúcar pré-tratados com ultrassom. Também é importante salientar que estes resultados foram muito promissórios, designadamente, se é possível utilizar um extrato extracelular mais concentrado12 páginas application/pdfengEcopetrol SASantander, ColombiaC T y F - Ciencia, Tecnologia y Futuro. Volúmen 6, número 2 (Diciembre de 2015); páginas 81-92922816Flórez Pardo, Luz Marina; Parra Paz, Angela Sofía; López Galán, Jorge Enrique y Figueroa Oviedo, Jersson Ivan (Diciembre de 2015). Using a mediator system to increase the delignification of sugarcane residues with fungal enzymes. En: C T y F - Ciencia, Tecnologia y Futuro. 6(2),81-92. http://red.uao.edu.co//handle/10614/11805Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Enzymatic delignificationMediatorsLaccasePleurotus ostreatusLignoperoxidaseUltrasound pretreatmentTops and leavesDeslignificación enzimáticaLacasaMediadoresLignoperoxidasaTratamiento con ultrasonidoHojas y cogollosDeslignificação enzimáticaLacaseTratamento com ultrassomFolhas e miolosUsing a mediator system to increase the delignification of sugarcane residues with fungal enzymesUso de un sistema mediador para incrementar la deslignificación de residuos de caña de azúcar con enzimas fúngicas = Uso de um sistema mediador para incrementar a deslignificação de resíduos de cana de açúcar com enzimas fúngicasArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Bajpai, P. (2004). Biological bleaching of chemical pulps. Crit. Rev.Biotechnol., 24(1), 1-58.Benazzi, T., Calgaroto, S., Astolfi, V., Rosa, C. D., Oliveira, J. V. & Mazutti, M. A. (2013). Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis. Enzyme Microb. Technol., 52(4-5), 247-250.Bourbonnais, R. & Paice, M. (1992). Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2'-azinobis-(3-ethylbenzthiazoline-6- sulphonate). Appl. Microbiol. Biotechnol., 36(6), 823-827.Bourbonnais, R., Paice, M., Freiermuth, B., Bodie, E. & Borneman, S. (1997). Reactivities of various mediators and laccases with Kraft pulp and lignin model compounds. Appl. Environ. Microbiol., 63(12), 4627-4632.Camarero, S., Ibarra, D., Martínez, M. & Martínez, A. (2005). Lignin derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl. Environ. Microbiol., 71(4), 1775-1784.Cañas, A., Alcalde, M., Plou, F., Martínez, M., Martínez, A. & Camarero, S. (2007). Transformation of polycyclic aromatic hydrocarbons by lacasse is strongly enhanced by phenolic compounds present in soil. Environ. Sci. Technol., 41(8), 2964-2971.Cañas, A. & Camarero, S. (2010). Laccases and their natural mediators: Biotechnological tools for sustainable ecofriendly processes. Biotechnol. Adv., 28(6), 694-705.Cenicaña. (2010). Boletines diarios de la red meteorológica automatizada-RMA. [Online]. [Accessed: 03-Jun-2014]. Available from: <http://www.cenicana.org/clima_/boletin_meteoro_diario.php>.Elisashvili, V. & Kachlishvili, E. (2009). Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. J. Biotechnol., 144(1), 37-42.Filson, P. B. & Dawson-Andoh, B. E. (2009). Sono-chemical preparation of cellulose nanocrrystals from lignocellulose derived materials. Bioresource Technol., 100(7), 2259- 2264.Flickinger, M. & Drew, S. (1999). Encyclopedia of bioprocess technology: Fermentation, biocatalysis and bioseparation. New York: John Wiley and Sons.Fujian, X., Hongzhang, C. & Zuohu, L. (2001). Solid state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour. Technol., 80(2), 149-155.Fujii, K., Uemura, M., Hayakawa, C., Funakawa, S. & Kosaki, T. (2013). Environmental control of lignin peroxidase, manganese peroxidase, and laccase activities in forest floor layers in humid Asia. Soil Biol. Biochem., 57: 109-115.Garcia-Ubasart, J., Esteban, A., Vila, C., Roncero, M. B., Colom, J. F. & Vidal, T. (2011). Enzymatic treatments of pulp using laccase and hydrophobic compounds. Bioresour. Technol., 102(3), 2799-2803.Hartree, E. F. (1972). Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem., 48(2), 422-427.Jeon, J. R., Murugesan, K., Kim, Y., Kim, E. & Chang, Y. (2008). Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase. Appl. Microbiol. Biotechnol., 81(4), 783-790.Karp, S. G., Faraco, V., Amore, A., Birolo, L., Giangrande, C., Soccol, V. T., Pandey, A. & Soccol, C. R. (2012). Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse. Bioresour. Technol., 114: 735-739.Kudanga, T. & Le Roes-Hill, M. (2014). Laccase applications in biofuels production: Current status and future prospects. Appl. Microbiol. Biotechnol., 98(15), 6525-6542.Liu, L., Lin, Z., Zheng, T., Lin, L., Zheng, C., Lin, Z., Wang, S. & Wang, Z. (2009). Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969. Enzyme Microb. Technol., 44(6-7), 426-433.Lowry, O. H., Rosebrough, N., Farr, A. L. & Randall, R. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem., 193: 265-275.Maté, D., García-Burgos, C., García-Ruiz, E., Ballesteros, A.O., Camarero, S. & Alcalde, M. (2010). Laboratory evolution of high-redox potential laccases. Chem. Biol., 17(9), 1030-1041.Morozova, O. V., Shumakovich, G. P., Shleev, S. V. & Yaropolov, Y. I. (2007). Laccase-mediator systems and their applications: A review. Appl. Biochem. Microbiol., 43(5), 523-535.Oliveira, F. M. V., Pinheiro, I. O., Souto-Maior, A. M., Martin, C., Gonçalves, A. R. & Rocha, G. J. M. (2013). Industrialscale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresource Technol., 130: 168-173.Park, N. & Park, S. S. (2014). Purification and characterization of a novel laccase from Fomitopsis pinicola mycelia. Int. J. Biol. Macromol., 70: 583-589.Peng, F., Peng, P., Xu, F. & Sun, R. C. (2012). Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv., 30(4), 879-903.Piscitelli, A., Giardina, P., Mazzoni, C. & Sannia, G. (2005). Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 29(4), 428-439.Reddy, G. V., Ravindra-Babu, P., Komaraiah, P., Roy, K. R. R. M. & Kothari, L. (2003). Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem., 38(10), 1457-1462.Rocha, G. J. M., Gonçalves, A. R., Oliveira, B. R., Olivares, E. G. & Rossell, C. E. V. (2012). Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind. Crop. Prod., 35(1), 274-279.Rodríguez Couto, S. & Sanromán, M. (2005). Application of solid-state fermentation to lignolytic enzyme production. Biochem. Eng. J., 22(3), 211-219.Salcedo, J. G., López, J. E. & Flórez, L. M. (2011). Evaluación de enzimas para la hidrólisis de residuos (hojas y cogollos) de la cosecha caña de azúcar. DYNA, 78(169), 182-190.Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. & Crocker, D. (2011). Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618. Golden, CO, 18 pp.Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J. & Templeton, D. (2008). Determination of extractives in biomass. Technical Report NREL/TP-510-42619. Golden, CO, 12 pp.Sun, J. X., Sun, R. C., Sun, X. F. & Su, Y. Q. (2004). Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohydr. Res., 339(2), 291-300.Sun, R. & Tomkinson, J. (2002). Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason. Sonochem., 9(2), 85-93.Szczerbowski, D., Pitarelo, A. P., Zandoná Filho, A. & Pereira Ramos, L. (2014). Sugarcane biomass for biorefineries: Comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr. Polym., 114: 95-101.TAPPI. (1999). Technical Association of the Pulp and Paper Industry. Kappa number of pulp. T 236 om-99. Canada, 4p.Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74(10), 3583-3597.Velmurugan, R. & Muthukumar, K. (2012). Ultrasoundassisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: Optimization through response surface methodology. Bioresource Technol., 112: 293-299.Yachmenev, V., Condon, B., Klasson, T. & Lambert, A. (2009). Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J. Biobased Mater. Bio., 3(1-7), 25-31.Yaldagard, M., Mortazavi, S. A. & Tabatabaie, F. (2008). The effect of ultrasound in combination with thermal treatment on the germinated barley´s alpha-amylase activity. Korean J. Chem. Eng., 25(3), 517-523.Publicationcc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1702-1cc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1702-1https://scholar.google.com/citations?user=88OyeaAAAAAJ&hl=es&oi=aovirtual::1702-10000-0001-8779-8120virtual::1702-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000002410virtual::1702-1TEXTA0224.pdf.txtA0224.pdf.txtExtracted texttext/plain42692https://red.uao.edu.co/bitstreams/8b4a9717-3305-403e-a7d0-f79ac6056b04/download9d510fa68cad14e3c15042c6c1051624MD54THUMBNAILA0224.pdf.jpgA0224.pdf.jpgGenerated Thumbnailimage/jpeg11069https://red.uao.edu.co/bitstreams/d2cf379e-9f8b-4a6b-bf80-4471ed512a9f/downloadf8a250d7d69b77a4b6c5b3534490f24dMD55ORIGINALA0224.pdfA0224.pdfapplication/pdf909189https://red.uao.edu.co/bitstreams/2a0c4430-3a0e-4845-8d9b-92d808110b98/download37e8ae8c8d9e4dc0ccefed78916f0eacMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/0195ba30-1571-40b7-aa6f-9a55f4eedf89/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/ba50983d-94af-4f12-aeff-1afa6f28a3ee/download20b5ba22b1117f71589c7318baa2c560MD5310614/11805oai:red.uao.edu.co:10614/118052024-04-19 10:06:34.624https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |