PV energy performance in a sustainable campus

The challenge of photovoltaic integration as the basis of an energy generation system has been achieved and carried out by the University Autónoma de Cali, Colombia, using an avant-garde energy technology model. This innovative sustainable campus not only fulfills its purpose as an advanced model of...

Full description

Autores:
Castrillón Mendoza, Rosaura del Pilar
Manrique Castillo, Paul Andrés
Rey Hernández, Javier M.
Rey-Martínez, Francisco Javier
González Palomino, Gabriel
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13276
Acceso en línea:
https://hdl.handle.net/10614/13276
Palabra clave:
Eficiencia energética
Universidad Autónoma de Occidente
Energía solar
Generadores de energía fotovoltaica
Solar energy
Photovoltaic power generation
Energy efficiency
Smart campus
Grid-connected photovoltaic systems
Energy simulation
Performance evaluation
Rights
openAccess
License
Derechos reservados - MDPI, 2020
id REPOUAO2_9bd4608ee7ddb68a7ab9f109bfa836c3
oai_identifier_str oai:red.uao.edu.co:10614/13276
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv PV energy performance in a sustainable campus
title PV energy performance in a sustainable campus
spellingShingle PV energy performance in a sustainable campus
Eficiencia energética
Universidad Autónoma de Occidente
Energía solar
Generadores de energía fotovoltaica
Solar energy
Photovoltaic power generation
Energy efficiency
Smart campus
Grid-connected photovoltaic systems
Energy simulation
Performance evaluation
title_short PV energy performance in a sustainable campus
title_full PV energy performance in a sustainable campus
title_fullStr PV energy performance in a sustainable campus
title_full_unstemmed PV energy performance in a sustainable campus
title_sort PV energy performance in a sustainable campus
dc.creator.fl_str_mv Castrillón Mendoza, Rosaura del Pilar
Manrique Castillo, Paul Andrés
Rey Hernández, Javier M.
Rey-Martínez, Francisco Javier
González Palomino, Gabriel
dc.contributor.author.none.fl_str_mv Castrillón Mendoza, Rosaura del Pilar
Manrique Castillo, Paul Andrés
Rey Hernández, Javier M.
Rey-Martínez, Francisco Javier
González Palomino, Gabriel
dc.contributor.corporatename.spa.fl_str_mv Multidisciplinary Digital Publishing Institute. MDPI
dc.subject.spa.fl_str_mv Eficiencia energética
Universidad Autónoma de Occidente
topic Eficiencia energética
Universidad Autónoma de Occidente
Energía solar
Generadores de energía fotovoltaica
Solar energy
Photovoltaic power generation
Energy efficiency
Smart campus
Grid-connected photovoltaic systems
Energy simulation
Performance evaluation
dc.subject.armarc.spa.fl_str_mv Energía solar
Generadores de energía fotovoltaica
dc.subject.armarc.eng.fl_str_mv Solar energy
Photovoltaic power generation
dc.subject.proposal.eng.fl_str_mv Energy efficiency
Smart campus
Grid-connected photovoltaic systems
Energy simulation
Performance evaluation
description The challenge of photovoltaic integration as the basis of an energy generation system has been achieved and carried out by the University Autónoma de Cali, Colombia, using an avant-garde energy technology model. This innovative sustainable campus not only fulfills its purpose as an advanced model of a renewable energy integration system, it also aims at environmental research, e-mobility, and energy efficiency. This paper describes how the university implements the technological innovation of integrating the photovoltaic system installation in a university campus, showing its relevant contribution to the electricity generation in the campus buildings by analyzing the different electrical parameters together with the system performance indicators. The implementation of technological solutions has allowed the generation of a quantity of renewable energy within the campus, supplying a sustainable energy response based on energy efficiency and carbon emissions savings. This innovation has been applied following the international standards for the evaluation of the energy performance of photovoltaic systems (IEC 61724), reaching very optimal values for this type of renewable solution. In this paper, the dynamic monitoring of several parameters has been carried out in order to analyze the energy performance, and an energy simulation has been used to achieve optimal solutions and to obtain the perfect modeling of the system. This study shows how to evaluate the performance of an integration of a photovoltaic system in a smart university campus, according to international standards. It achieves complete viability due to its economic savings, energy efficiency and reduction of carbon emission
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-09-28T15:55:19Z
dc.date.available.none.fl_str_mv 2021-09-28T15:55:19Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 20799292
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13276
identifier_str_mv 20799292
url https://hdl.handle.net/10614/13276
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Volumen 9, número 11 (2020)
dc.relation.citationendpage.spa.fl_str_mv 24
dc.relation.citationissue.spa.fl_str_mv Número 11
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv Volumen 9
dc.relation.cites.spa.fl_str_mv Castrillón Mendoza, R., Manrique Castillo, P. A., Rey Hernández, J. M., Rey Martínez, F. J., González Palomino, G. (2020). PV energy performance in a sustainable campus. Electronics, (Vol. 9 (11), 1874), pp. 1-24. https://doi.org/10.3390/electronics9111874
dc.relation.ispartofjournal.eng.fl_str_mv Electronics
dc.relation.references.spa.fl_str_mv 1. Biyik, E.; Araz, M.; Hepbasli, A.; Shahrestani, M.; Yao, R.; Shao, L.; Essah, E.; Oliveira, A.C.; del Caño, T.; Rico, E.; et al. A key review of building integrated photovoltaic (BIPV) systems. Eng. Sci. Technol. Int. J. 2017, 20, 833–858.
2. Obeidat, F. A comprehensive review of future photovoltaic systems. Sol. Energy 2018, 163, 545–551.
3. Kumar, B.S.; Sudhakar, K. Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India. Energy Reports 2015, 1, 184–192.
4. ren21 Renewables 2019-Global Status Report. Available online: https://www.ren21.net/wp-content/uploads/ 2019/05/gsr_2019_full_report_en.pdf (accessed on 3 August 2020).
5. IRENA Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects. Available online: http://www.irena.org (accessed on 3 September 2020).
6. Colombian Government Law 1715/2014. Available online: https://www.minenergia.gov.co/documents/10180/ 23517/22602-11506.pdf (accessed on 3 July 2020).
7. Colombian Government CREG 030/2018. Available online: http://apolo.creg.gov.co/Publicac.nsf/ 1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c4474f05258243005a1191?OpenDocument (accessed on 12 March 2020).
8. UI GreenMetric. Available online: https://greenmetric.ui.ac.id/ (accessed on 14 March 2020).
9. Elbaset, A.A.; Hassan, M.S.; Ali, H. Performance analysis of grid-connected PV system. In Proceedings of the 2016 18th International Middle-East Power Systems Conference, Cairo, Egypt, 27–29 December 2016; pp. 675–682.
10. Pelle, M.; Lucchi, E.; Maturi, L.; Astigarraga, A.; Causone, F. Coloured BIPV technologies: Methodological and experimental assessment for architecturally sensitive areas. Energies 2020, 13, 4506.
11. Marion, B.; Adelstein, J.; Boyle, K.E.; Hayden, H.; Hammond, B.; Fletcher, T.; Canada, B.; Narang, D.; Kimber, A.; Mitchell, L.; et al. Performance parameters for grid-connected PV systems. In Proceedings of the Thirty-first IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA, 3–7 January 2005; pp. 1601–1606.
12. Sundaramoorthy, R.; Lloyd, J.; Metacarpa, D.; Haldar, P. Comparison of performance of PV modules subjected to “solar thermal humidity cycles” with modified and extended IEC protocols. In Proceedings of the IEEE 44th Photovoltaic Specialists Conference (PVSC) 2017, Washington, DC, USA, 25–30 June 2017; pp. 1–4.
13. Swain, S.C. Performance Analysis of Different Types of PV. In Proceedings of the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 21–22 April 2017; pp. 1–6.
14. Kumar, N.M.; Kumar, M.R.; Rejoice, P.R.; Mathew, M. Performance analysis of 100 kWp grid connected Si-poly photovoltaic system using PVsyst simulation tool. Energy Procedia 2017, 117, 180–189.
15. Pandey, A.K.; Tyagi, V.V.; Selvaraj, J.A.; Rahim, N.A.; Tyagi, S.K. Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renew. Sustain. Energy Rev. 2016, 53, 859–884.
16. Pietruszko, S.M.; Bialecki, M. 1-kW Grid Connected PV System After 6 Years of Monitoring. In Proceedings of the Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005, Lake Buena Vista, FL, USA, 3–7 January 2005; p. 3197.
17. Chicco, G.; Schlabbach, J.; Spertino, F. Performance of grid-connected photovoltaic systems in fixed and sun-tracking configurations. In Proceedings of the 2007 IEEE Lausanne POWERTECH, Lausanne, Switzerland, 1–5 July 2007; pp. 677–682.
18. Pietruszko, S.M.; Fetlinski, B.; Bialecki, M. Analysis of the performance of grid connected photovoltaic system. In Proceedings of the 2009 34th IEEE Photovoltaic Specialists Conference (PVSC), Philadelphia, PA, USA, 7–12 June 2009; pp. 48–51.
19. de Lima, L.C.; de Araújo Ferreira, L.; de Lima Morais, F.H.B. Performance analysis of a grid connected photovoltaic system in northeastern Brazil. Energy Sustain. Dev. 2017, 37, 79–85.
20. Sharma, R.; Goel, S. Performance analysis of a 11.2 kWp roof top grid-connected PV system in Eastern India. Energy Rep. 2017, 3, 76–84.
Bayer, B.; Matschoss, P.; Thomas, H.; Marian, A. The German experience with integrating photovoltaic systems into the low-voltage grids. Renew. Energy 2018, 119, 129–141.
22. Al-Sabounchi, A.M.; Yalyali, S.A.; Al-Thani, H.A. Design and performance evaluation of a photovoltaic grid-connected system in hot weather conditions. Renew. Energy 2013, 53, 71–78.
23. Serraino, M.; Lucchi, E. Energy Efficiency, Heritage Conservation, and Landscape Integration: The Case Study of the San Martino Castle in Parella (Turin, Italy). Energy Procedia 2017, 133, 424–434.
24. Boonmee, C.; Plangklang, B.; Watjanatepin, N. System performance of a three-phase PV-grid-connected system installed in Thailand: Data monitored analysis. Renew. Energy 2009, 34, 384–389.
25. de Azevedo Dias, C.L.; Branco, D.A.C.; Arouca, M.C.; Legey, L.F.L. Performance estimation of photovoltaic technologies in Brazil. Renew. Energy 2017, 114, 367–375.
26. Chokmaviroj, S.; Wattanapong, R.; Suchart, Y. Performance of a 500 kWp grid connected photovoltaic system at Mae Hong Son Province, Thailand. Renew. Energy 2006, 31, 19–28.
27. Sasitharanuwat, A.; Rakwichian, W.; Ketjoy, N.; Yammen, S. Performance evaluation of a 10 kWp PV power system prototype for isolated building in Thailand. Renew. Energy 2007, 32, 1288–1300.
28. So, J.H.; Jung, Y.S.; Yu, G.J.; Choi, J.Y.; Choi, J.H. Performance results and analysis of 3 kW grid-connected PV systems. Renew. Energy 2007, 32, 1858–1872.
29. Aristizábal, A.J.; Gordillo, G. Performance monitoring results of the first grid-connected BIPV system in Colombia. Renew. Energy 2008, 33, 2475–2484.
Notton, G.; Lazarov, V.; Stoyanov, L. Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations. Renew. Energy 2010, 35, 541–554.
31. Wittkopf, S.; Valliappan, S.; Liu, L.; Ang, K.S.; Cheng, S.C.J. Analytical performance monitoring of a 142.5 kWp grid-connected rooftop BIPV system in Singapore. Renew. Energy 2012, 47, 9–20.
32. Drif, M.; Pérez, P.J.; Aguilera, J.; Almonacid, G.; Gomez, P.; de la Casa, J.; Aguilar, J.D. Univer Project. A grid connected photovoltaic system of 200kWp at Jaén University. Overview and performance analysis. Sol. Energy Mater. Sol. Cells 2007, 91, 670–683.
33. Prieto, M.; Pernía, A.; Nuno, F.; Diaz, J.; Villegas, P. Development of a Wireless Sensor Network for Individual Monitoring of Panels in a Photovoltaic Plant. Sensors 2014, 14, 2379–2396.
dc.rights.spa.fl_str_mv Derechos reservados - MDPI, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - MDPI, 2020
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 24 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Electronics
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/2f0e7a1e-8d04-4af6-86fa-ce6a277ed26b/download
https://red.uao.edu.co/bitstreams/cbdb5d65-cb30-4018-80ab-07389ce2756c/download
https://red.uao.edu.co/bitstreams/be49aeb9-6b59-4392-8e53-3d58c01556b1/download
https://red.uao.edu.co/bitstreams/0cc64735-e085-48c4-a095-4a3348d08914/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
0f5e7d9d74e780c6ec26feb8f7d9ebe8
6ea542f11a7b4daa6c1dc86210af3f29
41e6d9e6de809ac97db5bd210c66f981
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259801156222976
spelling Castrillón Mendoza, Rosaura del Pilarvirtual::1274-1Manrique Castillo, Paul Andrés3a1c97f84db3c2323beaabd0c0cb8ce9Rey Hernández, Javier M.a215a870b0b0a7b3c822e6a3de651d0aRey-Martínez, Francisco Javier5dd37f97688762fed5c230c2ff7274a5González Palomino, Gabriel3d52c20631e564b1f043775aa5dbc9f3Multidisciplinary Digital Publishing Institute. MDPI2021-09-28T15:55:19Z2021-09-28T15:55:19Z202020799292https://hdl.handle.net/10614/13276The challenge of photovoltaic integration as the basis of an energy generation system has been achieved and carried out by the University Autónoma de Cali, Colombia, using an avant-garde energy technology model. This innovative sustainable campus not only fulfills its purpose as an advanced model of a renewable energy integration system, it also aims at environmental research, e-mobility, and energy efficiency. This paper describes how the university implements the technological innovation of integrating the photovoltaic system installation in a university campus, showing its relevant contribution to the electricity generation in the campus buildings by analyzing the different electrical parameters together with the system performance indicators. The implementation of technological solutions has allowed the generation of a quantity of renewable energy within the campus, supplying a sustainable energy response based on energy efficiency and carbon emissions savings. This innovation has been applied following the international standards for the evaluation of the energy performance of photovoltaic systems (IEC 61724), reaching very optimal values for this type of renewable solution. In this paper, the dynamic monitoring of several parameters has been carried out in order to analyze the energy performance, and an energy simulation has been used to achieve optimal solutions and to obtain the perfect modeling of the system. This study shows how to evaluate the performance of an integration of a photovoltaic system in a smart university campus, according to international standards. It achieves complete viability due to its economic savings, energy efficiency and reduction of carbon emission24 páginasapplication/pdfengElectronicsDerechos reservados - MDPI, 2020https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Eficiencia energéticaUniversidad Autónoma de OccidenteEnergía solarGeneradores de energía fotovoltaicaSolar energyPhotovoltaic power generationEnergy efficiencySmart campusGrid-connected photovoltaic systemsEnergy simulationPerformance evaluationPV energy performance in a sustainable campusArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Volumen 9, número 11 (2020)24Número 111Volumen 9Castrillón Mendoza, R., Manrique Castillo, P. A., Rey Hernández, J. M., Rey Martínez, F. J., González Palomino, G. (2020). PV energy performance in a sustainable campus. Electronics, (Vol. 9 (11), 1874), pp. 1-24. https://doi.org/10.3390/electronics9111874Electronics1. Biyik, E.; Araz, M.; Hepbasli, A.; Shahrestani, M.; Yao, R.; Shao, L.; Essah, E.; Oliveira, A.C.; del Caño, T.; Rico, E.; et al. A key review of building integrated photovoltaic (BIPV) systems. Eng. Sci. Technol. Int. J. 2017, 20, 833–858.2. Obeidat, F. A comprehensive review of future photovoltaic systems. Sol. Energy 2018, 163, 545–551.3. Kumar, B.S.; Sudhakar, K. Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India. Energy Reports 2015, 1, 184–192.4. ren21 Renewables 2019-Global Status Report. Available online: https://www.ren21.net/wp-content/uploads/ 2019/05/gsr_2019_full_report_en.pdf (accessed on 3 August 2020).5. IRENA Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects. Available online: http://www.irena.org (accessed on 3 September 2020).6. Colombian Government Law 1715/2014. Available online: https://www.minenergia.gov.co/documents/10180/ 23517/22602-11506.pdf (accessed on 3 July 2020).7. Colombian Government CREG 030/2018. Available online: http://apolo.creg.gov.co/Publicac.nsf/ 1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c4474f05258243005a1191?OpenDocument (accessed on 12 March 2020).8. UI GreenMetric. Available online: https://greenmetric.ui.ac.id/ (accessed on 14 March 2020).9. Elbaset, A.A.; Hassan, M.S.; Ali, H. Performance analysis of grid-connected PV system. In Proceedings of the 2016 18th International Middle-East Power Systems Conference, Cairo, Egypt, 27–29 December 2016; pp. 675–682.10. Pelle, M.; Lucchi, E.; Maturi, L.; Astigarraga, A.; Causone, F. Coloured BIPV technologies: Methodological and experimental assessment for architecturally sensitive areas. Energies 2020, 13, 4506.11. Marion, B.; Adelstein, J.; Boyle, K.E.; Hayden, H.; Hammond, B.; Fletcher, T.; Canada, B.; Narang, D.; Kimber, A.; Mitchell, L.; et al. Performance parameters for grid-connected PV systems. In Proceedings of the Thirty-first IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA, 3–7 January 2005; pp. 1601–1606.12. Sundaramoorthy, R.; Lloyd, J.; Metacarpa, D.; Haldar, P. Comparison of performance of PV modules subjected to “solar thermal humidity cycles” with modified and extended IEC protocols. In Proceedings of the IEEE 44th Photovoltaic Specialists Conference (PVSC) 2017, Washington, DC, USA, 25–30 June 2017; pp. 1–4.13. Swain, S.C. Performance Analysis of Different Types of PV. In Proceedings of the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 21–22 April 2017; pp. 1–6.14. Kumar, N.M.; Kumar, M.R.; Rejoice, P.R.; Mathew, M. Performance analysis of 100 kWp grid connected Si-poly photovoltaic system using PVsyst simulation tool. Energy Procedia 2017, 117, 180–189.15. Pandey, A.K.; Tyagi, V.V.; Selvaraj, J.A.; Rahim, N.A.; Tyagi, S.K. Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renew. Sustain. Energy Rev. 2016, 53, 859–884.16. Pietruszko, S.M.; Bialecki, M. 1-kW Grid Connected PV System After 6 Years of Monitoring. In Proceedings of the Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005, Lake Buena Vista, FL, USA, 3–7 January 2005; p. 3197.17. Chicco, G.; Schlabbach, J.; Spertino, F. Performance of grid-connected photovoltaic systems in fixed and sun-tracking configurations. In Proceedings of the 2007 IEEE Lausanne POWERTECH, Lausanne, Switzerland, 1–5 July 2007; pp. 677–682.18. Pietruszko, S.M.; Fetlinski, B.; Bialecki, M. Analysis of the performance of grid connected photovoltaic system. In Proceedings of the 2009 34th IEEE Photovoltaic Specialists Conference (PVSC), Philadelphia, PA, USA, 7–12 June 2009; pp. 48–51.19. de Lima, L.C.; de Araújo Ferreira, L.; de Lima Morais, F.H.B. Performance analysis of a grid connected photovoltaic system in northeastern Brazil. Energy Sustain. Dev. 2017, 37, 79–85.20. Sharma, R.; Goel, S. Performance analysis of a 11.2 kWp roof top grid-connected PV system in Eastern India. Energy Rep. 2017, 3, 76–84.Bayer, B.; Matschoss, P.; Thomas, H.; Marian, A. The German experience with integrating photovoltaic systems into the low-voltage grids. Renew. Energy 2018, 119, 129–141.22. Al-Sabounchi, A.M.; Yalyali, S.A.; Al-Thani, H.A. Design and performance evaluation of a photovoltaic grid-connected system in hot weather conditions. Renew. Energy 2013, 53, 71–78.23. Serraino, M.; Lucchi, E. Energy Efficiency, Heritage Conservation, and Landscape Integration: The Case Study of the San Martino Castle in Parella (Turin, Italy). Energy Procedia 2017, 133, 424–434.24. Boonmee, C.; Plangklang, B.; Watjanatepin, N. System performance of a three-phase PV-grid-connected system installed in Thailand: Data monitored analysis. Renew. Energy 2009, 34, 384–389.25. de Azevedo Dias, C.L.; Branco, D.A.C.; Arouca, M.C.; Legey, L.F.L. Performance estimation of photovoltaic technologies in Brazil. Renew. Energy 2017, 114, 367–375.26. Chokmaviroj, S.; Wattanapong, R.; Suchart, Y. Performance of a 500 kWp grid connected photovoltaic system at Mae Hong Son Province, Thailand. Renew. Energy 2006, 31, 19–28.27. Sasitharanuwat, A.; Rakwichian, W.; Ketjoy, N.; Yammen, S. Performance evaluation of a 10 kWp PV power system prototype for isolated building in Thailand. Renew. Energy 2007, 32, 1288–1300.28. So, J.H.; Jung, Y.S.; Yu, G.J.; Choi, J.Y.; Choi, J.H. Performance results and analysis of 3 kW grid-connected PV systems. Renew. Energy 2007, 32, 1858–1872.29. Aristizábal, A.J.; Gordillo, G. Performance monitoring results of the first grid-connected BIPV system in Colombia. Renew. Energy 2008, 33, 2475–2484.Notton, G.; Lazarov, V.; Stoyanov, L. Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations. Renew. Energy 2010, 35, 541–554.31. Wittkopf, S.; Valliappan, S.; Liu, L.; Ang, K.S.; Cheng, S.C.J. Analytical performance monitoring of a 142.5 kWp grid-connected rooftop BIPV system in Singapore. Renew. Energy 2012, 47, 9–20.32. Drif, M.; Pérez, P.J.; Aguilera, J.; Almonacid, G.; Gomez, P.; de la Casa, J.; Aguilar, J.D. Univer Project. A grid connected photovoltaic system of 200kWp at Jaén University. Overview and performance analysis. Sol. Energy Mater. Sol. Cells 2007, 91, 670–683.33. Prieto, M.; Pernía, A.; Nuno, F.; Diaz, J.; Villegas, P. Development of a Wireless Sensor Network for Individual Monitoring of Panels in a Photovoltaic Plant. Sensors 2014, 14, 2379–2396.GeneralPublicationfe76be56-3153-45da-89c5-fc9953b918d9virtual::1274-1fe76be56-3153-45da-89c5-fc9953b918d9virtual::1274-1https://scholar.google.es/citations?user=6O9VfcAAAAAJ&hl=esvirtual::1274-10000-0002-0421-7739virtual::1274-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000144886virtual::1274-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/2f0e7a1e-8d04-4af6-86fa-ce6a277ed26b/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALPV energy performance in a sustainable campus.pdfPV energy performance in a sustainable campus.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1075853https://red.uao.edu.co/bitstreams/cbdb5d65-cb30-4018-80ab-07389ce2756c/download0f5e7d9d74e780c6ec26feb8f7d9ebe8MD53TEXTPV energy performance in a sustainable campus.pdf.txtPV energy performance in a sustainable campus.pdf.txtExtracted texttext/plain70089https://red.uao.edu.co/bitstreams/be49aeb9-6b59-4392-8e53-3d58c01556b1/download6ea542f11a7b4daa6c1dc86210af3f29MD54THUMBNAILPV energy performance in a sustainable campus.pdf.jpgPV energy performance in a sustainable campus.pdf.jpgGenerated Thumbnailimage/jpeg14454https://red.uao.edu.co/bitstreams/0cc64735-e085-48c4-a095-4a3348d08914/download41e6d9e6de809ac97db5bd210c66f981MD5510614/13276oai:red.uao.edu.co:10614/132762024-03-01 16:45:30.629https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2020open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K