Performance of predicting surface quality model using softcomputing, a comparative study of results
This paper describes a comparative study of performance of two models predicting surface quality in high-speed milling (HSM) processes using two different machining centers. The models were created with experimental data obtained from two machine-tools with different characteristics, but using the s...
- Autores:
-
Correa Valencia, Maritza
Flores, Víctor
Quiñónez, Alma Yadira
- Tipo de recurso:
- Part of book
- Fecha de publicación:
- 2017
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11191
- Palabra clave:
- Mecanizado
Machining
Mecanizado de alta velocidad
High-speed machining
High-speed milling
Softcomputing
Bayesian networks
Predictive models
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_99631815dee79f9fd17df76e4a6c8a49 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11191 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Performance of predicting surface quality model using softcomputing, a comparative study of results |
title |
Performance of predicting surface quality model using softcomputing, a comparative study of results |
spellingShingle |
Performance of predicting surface quality model using softcomputing, a comparative study of results Mecanizado Machining Mecanizado de alta velocidad High-speed machining High-speed milling Softcomputing Bayesian networks Predictive models |
title_short |
Performance of predicting surface quality model using softcomputing, a comparative study of results |
title_full |
Performance of predicting surface quality model using softcomputing, a comparative study of results |
title_fullStr |
Performance of predicting surface quality model using softcomputing, a comparative study of results |
title_full_unstemmed |
Performance of predicting surface quality model using softcomputing, a comparative study of results |
title_sort |
Performance of predicting surface quality model using softcomputing, a comparative study of results |
dc.creator.fl_str_mv |
Correa Valencia, Maritza Flores, Víctor Quiñónez, Alma Yadira |
dc.contributor.author.none.fl_str_mv |
Correa Valencia, Maritza Flores, Víctor Quiñónez, Alma Yadira |
dc.subject.lemb.spa.fl_str_mv |
Mecanizado |
topic |
Mecanizado Machining Mecanizado de alta velocidad High-speed machining High-speed milling Softcomputing Bayesian networks Predictive models |
dc.subject.lemb.eng.fl_str_mv |
Machining |
dc.subject.armarc.spa.fl_str_mv |
Mecanizado de alta velocidad |
dc.subject.proposal.eng.fl_str_mv |
High-speed machining High-speed milling Softcomputing Bayesian networks Predictive models |
description |
This paper describes a comparative study of performance of two models predicting surface quality in high-speed milling (HSM) processes using two different machining centers. The models were created with experimental data obtained from two machine-tools with different characteristics, but using the same experimental model. In both cases, work pieces (probes) of the same material were machined (steel and aluminum probes) with cutting parameters and characteristics proper of production processes in industries such as aeronautics and automotive. The main objective of this study was to compare surface quality prediction models created in two machining centers to establish differences in outcomes and the possible causes of these differences. In addition, this paper deals with the validation of each model concerning surface quality obtained, along with comparing the quality of the models with other predictive surface quality models based on similar techniques |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2019-10-10T13:07:49Z |
dc.date.available.none.fl_str_mv |
2019-10-10T13:07:49Z |
dc.type.spa.fl_str_mv |
Capítulo de libro |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/bookPart |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_3248 |
status_str |
publishedVersion |
dc.identifier.isbn.spa.fl_str_mv |
9783319597393 (impreso) 978-3-319-59740-9 (en línea) |
dc.identifier.issn.spa.fl_str_mv |
1611-3349 ( en línea) 0302-9743 (impresa) |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/11191 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1007/978-3-319-59740-9_23 |
identifier_str_mv |
9783319597393 (impreso) 978-3-319-59740-9 (en línea) 1611-3349 ( en línea) 0302-9743 (impresa) |
url |
http://hdl.handle.net/10614/11191 https://doi.org/10.1007/978-3-319-59740-9_23 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.eng.fl_str_mv |
Natural and Artificial Computation for Biomedicine and Neuroscience : International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2017, Corunna, Spain, June 19-23, 2017, Proceedings, Part I. Páginas 233-242 |
dc.relation.citationedition.spa.fl_str_mv |
Primera edición |
dc.relation.citationendpage.none.fl_str_mv |
242 |
dc.relation.citationstartpage.none.fl_str_mv |
233 |
dc.relation.cites.spa.fl_str_mv |
Flores, V., Correa, M., Quiñonez, Y. (2017). Desempeño del modelo de predicción de la calidad de la superficie usando Softcomputing, un estudio comparativo de resultados. En: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Natural and Artificial Computation for Biomedicine and Neuroscience. IWINAC 2017. Lecture Notes in Computer Science(), vol 10337. Springer, Cham. https://doi.org/10.1007/978-3-319-59740-9_23 |
dc.relation.ispartofbook.eng.fl_str_mv |
Natural and Artificial Computation for Biomedicine and Neuroscience. IWINAC 2017. Lecture Notes in Computer Science |
dc.relation.references.none.fl_str_mv |
1. Ahmad, N., Janahiraman, T.V.: Modelling and prediction of surface roughness and power consumption using parallel extreme learning machine based particle swarm optimization. In: Cao, J., Mao, K., Cambria, E., Man, Z., Toh, K.-A. (eds.) Proceedings of ELM-2014 Volume 2. PALO, vol. 4, pp. 321–329. Springer, Cham (2015). doi: 10.1007/978-3-319-14066-7_31Google Scholar 2. Altintas, Y., Weck, M.: Chatter stability of metal cutting and grinding. CIRP Ann. Manuf. Technol. 53, 40–51 (2004) Google Scholar 3. Badu, S., Vinayagam, B.: Surface roughness prediction model using adaptive particle swarm optimization (APSO) algorithm. Intell. Fuzzy Syst. 28, 345–360 (2015) 4. Benardos, P., Vosniakos, G.: Predicting surface roughness in machining: a review. Int. J. Mach. Tools Manuf. 43, 833–844 (2003) CrossRefGoogle Scholar 5. Correa, M., Bielza, C., Ramírez, M., Alique, J.R.: A Bayesian network model for surface roughness prediction in the machining process. Int. J. Syst. Sci. 39, 1181–1192 (2008) CrossRefzbMATHGoogle Scholar 6. Correa, M., Bielza, C., Pamies-Teixeira, P.: Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Syst. Appl. 36(3), 7270–7279 (2009) CrossRefGoogle Scholar 7. D‘Mello, G., Pai, S.: Prediction of surface roughness in high speed machining: a comparison. Proc. Int. J. Res. Eng. Technol. 1, 519–525 (2014) Google Scholar 8. Ezugwua, E., Faderea, D., Onney, J., Bonney, J., Silva, R., Sales, W.: Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using artificial neural network. Int. J. Mach. Tools Manuf. 45, 1375–1385 (2005) CrossRefGoogle Scholar 9. Flores, V., Correa, M., Alique, J.R.: Modelo Pre-Proceso de predicción de la Calidad Superficial en Fresado a Alta Velocidad basado en Soft Computing. Revista Iberoamericana de Automática e Informática Industrial RIAI 8(1), 38–43 (2011) CrossRefGoogle Scholar 10. Friedman, N., Geiger, D., Goldszmit, M.: Bayesian network classifiers. Mach. Learn. 29, 131–161 (1997) CrossRefzbMATHGoogle Scholar 11. Hao, W., Zhu, X., Li, X.: Prediction of cutting force for self-propelled rotary tool using artificial neural network. J. Mater. Process. Technol. 180, 23–29 (2006) CrossRefGoogle Scholar 12. Izamshah, R., Yuhazri, M., Hadzley, M., Amran, M.: Effects of end mill helix angle on accuracy for machining thin-rib aerospace component. Appl. Mech. Mater. 315, 773–777 (2013) CrossRefGoogle Scholar 13. Jiang, B., He, T., Gu, Y., et al.: Method for recognizing wave dynamics damage in high-speed milling cutter. Int. J. Adv. Manuf. Technol. (2017). doi: 10.1007/s00170-017-0128-1 14. Lela, B., Bajie, D., Jozié, S.: Regression analysis, support vector machines, and Bayesian neural network approaches to modelling surface roughness in face milling. Adv. Manuf. Technol. 42, 1082–1089 (2009) CrossRefGoogle Scholar 15. MacQueen, J.: Some methods for classification analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (2003) Google Scholar 16. Shang, S., Li, J.: Tool wear and cutting forces variation in high-speed end-milling Ti-6Al-4V alloy. Int. J. Adv. Manuf. Technol. 46, 69–78 (2010) CrossRefGoogle Scholar 17. Ozel, T., Esteves, A., Davim, J.: Neural network process modelling for turning of steel parts using conventional and wiper inserts. Int. J. Mater. Prod. Technol. 35, 246–258 (2009) CrossRefGoogle Scholar 18. Ramírez-Cadena, M., Correa, M., Rodríguez-González, C., Alique, J.R.: Surface roughness modeling based on surface roughness feature concept for high speed machining. Am. Soc. Mech. Eng. Manuf. Eng. Div. 16(1), 811–815 (2005) Google Scholar 19. Soleimanimehr, H., Nategh, M., Amini, S.: Modelling of surface roughness in vibration cutting by artificial neural network. Proc. World Acad. Sci. Eng. Technol. 40, 386–390 (2009) Google Scholar 20. Stone, M.: Cross-validatory choice and assessment of statistical prediction. J. Roy. Stat. Soc. 36, 111–147 (1974) MathSciNetzbMATHGoogle Scholar 21. Zhou, L., Cheng, K.: Dynamic cutting process modelling and its impact on the generation of surface topography and texture in nano/micro cutting. In: Proceedings of IMechE-2009, vol. 233, pp. 247–266 (2009) Google Scholar 22. Zuperl, U., Cus, F.: Optimization of cutting conditions during cutting by using neural networks. Robot. Comput. Integr. Manuf. 19, 189–199 (2003) CrossRefzbMATHGoogle Scholar |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
10 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.eng.fl_str_mv |
Springer, Cham |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/3892ed84-719a-40b9-bbfb-ebc7644e25de/download https://red.uao.edu.co/bitstreams/713c9c7c-fc94-46fb-aae9-e7a74d9673c5/download https://red.uao.edu.co/bitstreams/aa292dba-a02f-485a-8084-cf55c0504795/download https://red.uao.edu.co/bitstreams/26ec09ef-bc68-47b4-92b2-fc06ba578a98/download https://red.uao.edu.co/bitstreams/e05a3059-8450-47e3-b573-59c3243e7ccd/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 930b1e97ffc1976e5eb68d96c747b620 3cd2c2d07e2fd80e55e29cc148a70c26 c721f53aab1c496fdda455ee0757bfa0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260144520822784 |
spelling |
Correa Valencia, Maritzavirtual::1375-1Flores, Víctor3b45a8512db1519e39d991feb6db5397Quiñónez, Alma Yadira9a04a8f20f90bbb31878910b9a031687Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-10-10T13:07:49Z2019-10-10T13:07:49Z20179783319597393 (impreso)978-3-319-59740-9 (en línea)1611-3349 ( en línea)0302-9743 (impresa)http://hdl.handle.net/10614/11191https://doi.org/10.1007/978-3-319-59740-9_23This paper describes a comparative study of performance of two models predicting surface quality in high-speed milling (HSM) processes using two different machining centers. The models were created with experimental data obtained from two machine-tools with different characteristics, but using the same experimental model. In both cases, work pieces (probes) of the same material were machined (steel and aluminum probes) with cutting parameters and characteristics proper of production processes in industries such as aeronautics and automotive. The main objective of this study was to compare surface quality prediction models created in two machining centers to establish differences in outcomes and the possible causes of these differences. In addition, this paper deals with the validation of each model concerning surface quality obtained, along with comparing the quality of the models with other predictive surface quality models based on similar techniquesapplication/pdf10 páginasengSpringer, ChamNatural and Artificial Computation for Biomedicine and Neuroscience : International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2017, Corunna, Spain, June 19-23, 2017, Proceedings, Part I. Páginas 233-242Primera edición242233Flores, V., Correa, M., Quiñonez, Y. (2017). Desempeño del modelo de predicción de la calidad de la superficie usando Softcomputing, un estudio comparativo de resultados. En: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Natural and Artificial Computation for Biomedicine and Neuroscience. IWINAC 2017. Lecture Notes in Computer Science(), vol 10337. Springer, Cham. https://doi.org/10.1007/978-3-319-59740-9_23Natural and Artificial Computation for Biomedicine and Neuroscience. IWINAC 2017. Lecture Notes in Computer Science1. Ahmad, N., Janahiraman, T.V.: Modelling and prediction of surface roughness and power consumption using parallel extreme learning machine based particle swarm optimization. In: Cao, J., Mao, K., Cambria, E., Man, Z., Toh, K.-A. (eds.) Proceedings of ELM-2014 Volume 2. PALO, vol. 4, pp. 321–329. Springer, Cham (2015). doi: 10.1007/978-3-319-14066-7_31Google Scholar2. Altintas, Y., Weck, M.: Chatter stability of metal cutting and grinding. CIRP Ann. Manuf. Technol. 53, 40–51 (2004) Google Scholar3. Badu, S., Vinayagam, B.: Surface roughness prediction model using adaptive particle swarm optimization (APSO) algorithm. Intell. Fuzzy Syst. 28, 345–360 (2015)4. Benardos, P., Vosniakos, G.: Predicting surface roughness in machining: a review. Int. J. Mach. Tools Manuf. 43, 833–844 (2003) CrossRefGoogle Scholar5. Correa, M., Bielza, C., Ramírez, M., Alique, J.R.: A Bayesian network model for surface roughness prediction in the machining process. Int. J. Syst. Sci. 39, 1181–1192 (2008) CrossRefzbMATHGoogle Scholar6. Correa, M., Bielza, C., Pamies-Teixeira, P.: Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Syst. Appl. 36(3), 7270–7279 (2009) CrossRefGoogle Scholar7. D‘Mello, G., Pai, S.: Prediction of surface roughness in high speed machining: a comparison. Proc. Int. J. Res. Eng. Technol. 1, 519–525 (2014) Google Scholar8. Ezugwua, E., Faderea, D., Onney, J., Bonney, J., Silva, R., Sales, W.: Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using artificial neural network. Int. J. Mach. Tools Manuf. 45, 1375–1385 (2005) CrossRefGoogle Scholar9. Flores, V., Correa, M., Alique, J.R.: Modelo Pre-Proceso de predicción de la Calidad Superficial en Fresado a Alta Velocidad basado en Soft Computing. Revista Iberoamericana de Automática e Informática Industrial RIAI 8(1), 38–43 (2011) CrossRefGoogle Scholar10. Friedman, N., Geiger, D., Goldszmit, M.: Bayesian network classifiers. Mach. Learn. 29, 131–161 (1997) CrossRefzbMATHGoogle Scholar11. Hao, W., Zhu, X., Li, X.: Prediction of cutting force for self-propelled rotary tool using artificial neural network. J. Mater. Process. Technol. 180, 23–29 (2006) CrossRefGoogle Scholar12. Izamshah, R., Yuhazri, M., Hadzley, M., Amran, M.: Effects of end mill helix angle on accuracy for machining thin-rib aerospace component. Appl. Mech. Mater. 315, 773–777 (2013) CrossRefGoogle Scholar13. Jiang, B., He, T., Gu, Y., et al.: Method for recognizing wave dynamics damage in high-speed milling cutter. Int. J. Adv. Manuf. Technol. (2017). doi: 10.1007/s00170-017-0128-114. Lela, B., Bajie, D., Jozié, S.: Regression analysis, support vector machines, and Bayesian neural network approaches to modelling surface roughness in face milling. Adv. Manuf. Technol. 42, 1082–1089 (2009) CrossRefGoogle Scholar15. MacQueen, J.: Some methods for classification analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (2003) Google Scholar16. Shang, S., Li, J.: Tool wear and cutting forces variation in high-speed end-milling Ti-6Al-4V alloy. Int. J. Adv. Manuf. Technol. 46, 69–78 (2010) CrossRefGoogle Scholar17. Ozel, T., Esteves, A., Davim, J.: Neural network process modelling for turning of steel parts using conventional and wiper inserts. Int. J. Mater. Prod. Technol. 35, 246–258 (2009) CrossRefGoogle Scholar18. Ramírez-Cadena, M., Correa, M., Rodríguez-González, C., Alique, J.R.: Surface roughness modeling based on surface roughness feature concept for high speed machining. Am. Soc. Mech. Eng. Manuf. Eng. Div. 16(1), 811–815 (2005) Google Scholar19. Soleimanimehr, H., Nategh, M., Amini, S.: Modelling of surface roughness in vibration cutting by artificial neural network. Proc. World Acad. Sci. Eng. Technol. 40, 386–390 (2009) Google Scholar20. Stone, M.: Cross-validatory choice and assessment of statistical prediction. J. Roy. Stat. Soc. 36, 111–147 (1974) MathSciNetzbMATHGoogle Scholar21. Zhou, L., Cheng, K.: Dynamic cutting process modelling and its impact on the generation of surface topography and texture in nano/micro cutting. In: Proceedings of IMechE-2009, vol. 233, pp. 247–266 (2009) Google Scholar22. Zuperl, U., Cus, F.: Optimization of cutting conditions during cutting by using neural networks. Robot. Comput. Integr. Manuf. 19, 189–199 (2003) CrossRefzbMATHGoogle ScholarDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Performance of predicting surface quality model using softcomputing, a comparative study of resultsCapítulo de librohttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85MecanizadoMachiningMecanizado de alta velocidadHigh-speed machiningHigh-speed millingSoftcomputingBayesian networksPredictive modelsPublicationecc91e59-ce00-443d-bce6-ce85014e9629virtual::1375-1ecc91e59-ce00-443d-bce6-ce85014e9629virtual::1375-1https://scholar.google.com/citations?user=15MGkAQAAAAJ&hl=envirtual::1375-10000-0001-8464-2673virtual::1375-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001435997virtual::1375-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/3892ed84-719a-40b9-bbfb-ebc7644e25de/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/713c9c7c-fc94-46fb-aae9-e7a74d9673c5/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALPerformance of predicting surface quality model using softcomputing, a comparative study of results.pdfPerformance of predicting surface quality model using softcomputing, a comparative study of results.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf533986https://red.uao.edu.co/bitstreams/aa292dba-a02f-485a-8084-cf55c0504795/download930b1e97ffc1976e5eb68d96c747b620MD54TEXTPerformance of predicting surface quality model using softcomputing, a comparative study of results.pdf.txtPerformance of predicting surface quality model using softcomputing, a comparative study of results.pdf.txtExtracted texttext/plain23337https://red.uao.edu.co/bitstreams/26ec09ef-bc68-47b4-92b2-fc06ba578a98/download3cd2c2d07e2fd80e55e29cc148a70c26MD55THUMBNAILPerformance of predicting surface quality model using softcomputing, a comparative study of results.pdf.jpgPerformance of predicting surface quality model using softcomputing, a comparative study of results.pdf.jpgGenerated Thumbnailimage/jpeg11461https://red.uao.edu.co/bitstreams/e05a3059-8450-47e3-b573-59c3243e7ccd/downloadc721f53aab1c496fdda455ee0757bfa0MD5610614/11191oai:red.uao.edu.co:10614/111912024-03-04 10:37:58.915https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |