Diseño de un dispositivo para monitorear gases nocivos en entornos hospitalarios

El presente proyecto tiene como objetivo desarrollar un dispositivo que permita monitorear la calidad del aire en instituciones hospitalarias. La función específica del dispositivo consiste en la detección de gases nocivos como CO2 y PM2.5. Su diseño busca proporcionar información en tiempo real sob...

Full description

Autores:
Giraldo Reyes, Juan Esteban
Malvehy Cadavid, Camila
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/15915
Acceso en línea:
https://hdl.handle.net/10614/15915
https://red.uao.edu.co/
Palabra clave:
Ingeniería Biomédica
Calidad del Aire Interior (CAI)
Enfermedades respiratorias
Sensores
Contaminantes del aire
Salud
Instalaciones sanitarias
Indoor Air Quality (IAQ)
Respiratory diseases
Sensors
Contaminants
Health
Healthcare facilities
Rights
closedAccess
License
)-- Universidad Autónoma de Occidente, 2024
id REPOUAO2_91f68a8ff9eb13507e1111165152630b
oai_identifier_str oai:red.uao.edu.co:10614/15915
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.spa.fl_str_mv Diseño de un dispositivo para monitorear gases nocivos en entornos hospitalarios
title Diseño de un dispositivo para monitorear gases nocivos en entornos hospitalarios
spellingShingle Diseño de un dispositivo para monitorear gases nocivos en entornos hospitalarios
Ingeniería Biomédica
Calidad del Aire Interior (CAI)
Enfermedades respiratorias
Sensores
Contaminantes del aire
Salud
Instalaciones sanitarias
Indoor Air Quality (IAQ)
Respiratory diseases
Sensors
Contaminants
Health
Healthcare facilities
title_short Diseño de un dispositivo para monitorear gases nocivos en entornos hospitalarios
title_full Diseño de un dispositivo para monitorear gases nocivos en entornos hospitalarios
title_fullStr Diseño de un dispositivo para monitorear gases nocivos en entornos hospitalarios
title_full_unstemmed Diseño de un dispositivo para monitorear gases nocivos en entornos hospitalarios
title_sort Diseño de un dispositivo para monitorear gases nocivos en entornos hospitalarios
dc.creator.fl_str_mv Giraldo Reyes, Juan Esteban
Malvehy Cadavid, Camila
dc.contributor.advisor.none.fl_str_mv Cabrera Lopez, John Jairo
dc.contributor.author.none.fl_str_mv Giraldo Reyes, Juan Esteban
Malvehy Cadavid, Camila
dc.contributor.corporatename.spa.fl_str_mv Universidad Autónoma de Occidente
dc.contributor.jury.none.fl_str_mv Ordóñez Medina, Stephanie
dc.subject.proposal.spa.fl_str_mv Ingeniería Biomédica
Calidad del Aire Interior (CAI)
Enfermedades respiratorias
Sensores
Contaminantes del aire
Salud
Instalaciones sanitarias
topic Ingeniería Biomédica
Calidad del Aire Interior (CAI)
Enfermedades respiratorias
Sensores
Contaminantes del aire
Salud
Instalaciones sanitarias
Indoor Air Quality (IAQ)
Respiratory diseases
Sensors
Contaminants
Health
Healthcare facilities
dc.subject.proposal.eng.fl_str_mv Indoor Air Quality (IAQ)
Respiratory diseases
Sensors
Contaminants
Health
Healthcare facilities
description El presente proyecto tiene como objetivo desarrollar un dispositivo que permita monitorear la calidad del aire en instituciones hospitalarias. La función específica del dispositivo consiste en la detección de gases nocivos como CO2 y PM2.5. Su diseño busca proporcionar información en tiempo real sobre los niveles de estos gases, con el fin de ayudar a tomar decisiones y acciones que mejoren la salud y seguridad de pacientes y personal médico. También incluye la consulta de normativas vigentes, la selección de sensores adecuados, el desarrollo de una tarjeta de circuito impreso (PCB), y la validación del prototipo mediante pruebas en laboratorio. Este proyecto se llevará a cabo en entornos hospitalarios, donde la calidad del aire es crucial debido a la presencia de personas con diversas condiciones de salud. Los resultados esperados incluyen la identificación oportuna de concentraciones peligrosas de gases, lo que facilitará la implementación de medidas correctivas y contribuirá a crear un ambiente más seguro y saludable. El beneficio que se espera que esta herramienta proporcione consistirá en su carácter innovadora y su aplicación efectiva en el monitoreo continuo de la calidad del aire en hospitales, con el potencial de reducir la exposición a contaminantes y mejorar significativamente la seguridad y bienestar de los ocupantes.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-19T20:14:50Z
dc.date.available.none.fl_str_mv 2024-11-19T20:14:50Z
dc.date.issued.none.fl_str_mv 2024-11-01
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Giraldo Reyes, J. E. y Malvehy Cadavid, C. (2024). Diseño de un dispositivo para monitorear gases nocivos en entornos hospitalarios. (Pasantía de investigación). Universidad Autónoma de Occidente. Cali. Colombia. https://hdl.handle.net/10614/15915
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/15915
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Giraldo Reyes, J. E. y Malvehy Cadavid, C. (2024). Diseño de un dispositivo para monitorear gases nocivos en entornos hospitalarios. (Pasantía de investigación). Universidad Autónoma de Occidente. Cali. Colombia. https://hdl.handle.net/10614/15915
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/15915
https://red.uao.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv [1] V. Van Tran, D. Park, and Y.-C. Lee, “Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality,” Apr. 23, 2020, MDPI AG. doi: 10.3390/ijerph17082927.
[2] D. N. Omeokachie, T. A. Laniyan, D. B. Olawade, O. Abayomi-Agbaje, D. T. Esan, and G. R. E. E. Ana, “Indoor environmental conditions of selected shopping malls in Nigeria: A comparative study of microclimatic conditions, noise levels, and microbial burdens,” Science of the Total Environment, vol. 906, Jan. 2024, doi: 10.1016/j.scitotenv.2023.167620.
[3] C. Alejandro Alarcón Hernández, J. Sebastián Poveda Guarín, and U. Antonio Nariño, “Control de material particulado en espacios cerrados (laboratorio, preclínica y oficinas) a través de la utilización de un filtro portátil HEPA Notas del autor.”
[4] L. Carazo Fernández, R. Fernández Alvarez, F. J. González-Barcala, and J. A. Rodríguez Portal, “Indoor Air Contaminants and their Impact on Respiratory Pathologies,” Arch Bronconeumol, vol. 49, no. 1, pp. 22–27, Jan. 2013, doi: 10.1016/j.arbr.2012.11.004.
[5] M. J. Butler et al., “Impact of supplementary air filtration on aerosols and particulate matter in a UK hospital ward: a case study,” Journal of Hospital Infection, vol. 135, pp. 81–89, May 2023, doi: 10.1016/j.jhin.2023.02.006.
[6] L. R. López et al., “CO2 in indoor environments: From environmental and health risk to potential renewable carbon source,” Science of The Total Environment, vol. 856, p. 159088, Jan. 2023, doi: 10.1016/J.SCITOTENV.2022.159088.
[7] D. E. Schraufnagel et al., “Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems,” Feb. 01, 2019, Elsevier Inc. doi: 10.1016/j.chest.2018.10.041.
[8] N. M. Wilson et al., “Quantifying hospital environmental ventilation using carbon dioxide monitoring – a multicentre study,” Anaesthesia, vol. 79, no. 2, pp. 147–155, Feb. 2024, doi: 10.1111/anae.16124.
[9] S. U. Zaman, M. Yesmin, Md. R. S. Pavel, F. Jeba, and A. Salam, “Indoor air quality indicators and toxicity potential at the hospitals’ environment in Dhaka, Bangladesh,” Environmental Science and Pollution Research, vol. 28, no. 28, pp. 37727–37740, 2021, doi: 10.1007/s11356-021-13162-8.
[10] M. J. Butler et al., “Impact of supplementary air filtration on aerosols and particulate matter in a UK hospital ward: a case study,” Journal of Hospital Infection, vol. 135, pp. 81–89, May 2023, doi: 10.1016/J.JHIN.2023.02.006.
[11] A. Fonseca, I. Abreu, M. J. Guerreiro, and N. Barros, “Indoor Air Quality in Healthcare Units—A Systematic Literature Review Focusing Recent Research,” Jan. 01, 2022, MDPI. doi: 10.3390/su14020967.
[12] F. Antunes, S. Safdar, A. Monteiro, and E. Z. Samsudin, “Hospital indoor air quality and its relationships with building design, building operation, and occupant-related factors: A mini-review.”
[13] “Air Quality,” Pan American Health Organization (PAHO). Accessed: Aug. 25, 2024. [Online]. Available: https://www.paho.org/en/topics/air-quality
[14] D. E. Schraufnagel et al., “Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems,” Feb. 01, 2019, Elsevier Inc. doi: 10.1016/j.chest.2018.10.041.
[15] United States Environment Protection Agency, “Introduction to Indoor Air Quality.” Accessed: May 04, 2024. [Online]. Available: https://www.epa.gov/indoor-air-quality-iaq/introduction-indoor-air-quality
[16] H. H. T. C. Le et al., “Indoor air pollution is associated with respiratory symptoms in children in urban Vietnam,” Science of The Total Environment, vol. 917, p. 170556, 2024, doi: https://doi.org/10.1016/j.scitotenv.2024.170556.
[17] E. Z. S. , A. R. I. and J. S. Farha Ibrahim, “Hospital indoor air quality and its relationships with building design, building operation, and occupant-related factors: A mini-review.”
[18] World Health Organization, “Household air pollution.”
[19] N. Korukire et al., “Indoor and Outdoor Air Quality Concentration Levels in Selected Hospital Environments in Kigali, Rwanda,” Rwanda Journal of Medicine and Health Sciences, vol. 6, no. 3, pp. 389–397, 2023, doi: 10.4314/rjmhs.v6i3.12.
[20] S. H. Hwang and W. M. Park, “Indoor air concentrations of carbon dioxide (CO2), nitrogen dioxide (NO2), and ozone (O3) in multiple healthcare facilities,” Environ Geochem Health, vol. 42, no. 5, pp. 1487–1496, 2020, doi: 10.1007/s10653-019-00441-0. [
21] Comité de Entorno y Salud de la Sociedad Europea de Enfermedades Pulmonares, “European Lung Foundation.” Accessed: Aug. 22, 2024. [Online]. Available: https://europeanlung.org/es/information-hub/keeping-lungs-healthy/pulmones-y-la-contaminacion-atmosferica-en-espacios-cerrados/
[22] The safety company, “ALTAIR 5X Gas Detector | MSA Safety.” Accessed: Aug. 22, 2024. [Online]. Available: https://co.msasafety.com/Portable-Gas-Detection/Multi-Gas/ALTAIR%C2%AE-5X-Multigas-Detector/p/000080001600001023?locale=es
[23] Prana Air, “Sensible+ Monitor De Calidad Del Aire | Dispositivo Interior.” Accessed: Aug. 22, 2024. [Online]. Available: https://www.pranaair.com/es/air-quality-monitor/sensible-plus-air-monitor/?currency=INR#1599649343029-2f0d7d4f-91ac512b-b88f
[24] A. Hassan and M. Zeeshan, “Microbiological indoor air quality of hospital buildings with different ventilation systems, cleaning frequencies and occupancy levels,” Atmos Pollut Res, vol. 13, no. 4, p. 101382, 2022, doi: https://doi.org/10.1016/j.apr.2022.101382.
[25] N. Korukire et al., “Indoor and Outdoor Air Quality Concentration Levels in Selected Hospital Environments in Kigali, Rwanda,” Rwanda Journal of Medicine and Health Sciences, vol. 6, no. 3, pp. 389–397, 2023, doi: 10.4314/rjmhs.v6i3.12.
[26] J. Palmisani, A. Di Gilio, M. Viana, G. de Gennaro, and A. Ferro, “Indoor air quality evaluation in oncology units at two European hospitals: Low-cost sensors for TVOCs, PM2.5 and CO2 real-time monitoring,” Build Environ, vol. 205, Nov. 2021, doi: 10.1016/j.buildenv.2021.108237.
[27] “Air Pollution,” World Health Organization (WHO). Accessed: Aug. 29, 2024. [Online]. Available: https://www.who.int/health-topics/air-pollution#tab=tab_1
[28] “¿Cómo se mide la calidad del aire?,” ONU. Accessed: Aug. 30, 2024. [Online]. Available: https://www.unep.org/es/noticias-y-reportajes/reportajes/como-se-mide-la-calidad-del-aire
[29] D. Becerra Moreno, L. F. Ramirez Rios, L. F. Plaza Galvez, C. H. Oviedo Sanabria, and M. V. Niño Ovalles, “Relationship between air quality and incidence of respiratory diseases in communes 4, 6, 7 and 8 of the municipality of Cúcuta, Norte de Santander,” INGENIERÍA Y COMPETITIVIDAD, vol. 23, no. 2, p. e2029698, May 2021, doi: 10.25100/iyc.v23i2.9698.
[30] P. G.-U. Inc. Christopher J. Stipe, “Indoor air quality in hospitals,” Consulting - Specifying Engineer, Milwaukee, Jul. 14, 2015.
[31] M. Leroutier and P. Quirion, “Air pollution and CO2 from daily mobility: Who emits and Why? Evidence from Paris,” Energy Econ, vol. 109, p. 105941, 2022, doi: https://doi.org/10.1016/j.eneco.2022.105941.
[32] D. E. Schraufnagel et al., “Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems,” Feb. 01, 2019, Elsevier Inc. doi: 10.1016/j.chest.2018.10.041.
[33] D. K. T. Ng et al., “NDIR CO2 gas sensing using CMOS compatible MEMS ScAlN-based pyroelectric detector,” Sens Actuators B Chem, vol. 346, p. 130437, Nov. 2021, doi: 10.1016/J.SNB.2021.130437.
[34] H. R. Shwetha, S. M. Sharath, B. Guruprasad, and S. B. Rudraswamy, “MEMS based metal oxide semiconductor carbon dioxide gas sensor,” Micro and Nano Engineering, vol. 16, p. 100156, Aug. 2022, doi: 10.1016/J.MNE.2022.100156.
[35] P. F. Pereira and N. M. M. Ramos, “Low-cost Arduino-based temperature, relative humidity and CO2 sensors - An assessment of their suitability for indoor built environments,” Journal of Building Engineering, vol. 60, p. 105151, Nov. 2022, doi: 10.1016/J.JOBE.2022.105151.
[36] S. B. Sørensen and K. Kristensen, “Low-cost sensor-based investigation of CO2 and volatile organic compounds in classrooms: Exploring dynamics, ventilation effects and perceived air quality relations,” Build Environ, vol. 254, p. 111369, Apr. 2024, doi: 10.1016/J.BUILDENV.2024.111369.
[37] K. Shukla and S. G. Aggarwal, “Particulate Matter Measurement Techniques,” in Handbook of Metrology and Applications, Springer Nature Singapore, 2022, pp. 1–29. doi: 10.1007/978-981-19-1550-5_133-1.
[38] P. D. M. Nguyen et al., “Using low-cost sensors to assess fine particulate matter infiltration (Pm2.5) during a wildfire smoke episode at a large inpatient healthcare facility,” Int J Environ Res Public Health, vol. 18, no. 18, Sep. 2021, doi: 10.3390/ijerph18189811.
[39] M. A. Posyniak et al., “Experimental study of smog microphysical and optical vertical structure in the Silesian Beskids, Poland,” Atmos Pollut Res, vol. 12, no. 9, Sep. 2021, doi: 10.1016/j.apr.2021.101171.
[40] R. Jayaratne et al., “Low-cost PM2.5 sensors: An assessment of their suitability for various applications,” Aerosol Air Qual Res, vol. 20, no. 3, pp. 520–532, Mar. 2020, doi: 10.4209/aaqr.2018.10.0390.
[41] “Tipos De SENSORES De Temperatura Y Sus Diferencias | SRC,” Sistemas de Regulación y Control, S.L.U. Accessed: Sep. 12, 2024. [Online]. Available: https://srcsl.com/tipos-sensores-temperatura/
[42] “Sensores de humedad tipos y aplicaciones,” SENSORES E INSTRUMENTACION GUEMISA S.L. Accessed: Sep. 12, 2024. [Online]. Available: https://guemisa.com/articulos/tutorial-humedad.pdf
[43] A. López-Vargas and A. Ledezma-Espino, “Iot application for energy poverty detection based on thermal comfort monitoring,” Heliyon, vol. 9, no. 1, p. e12943, Jan. 2023, doi: 10.1016/J.HELIYON.2023.E12943.
[44] “NORMA TÉCNICA NTC COLOMBIANA 5183,” 2003.
[45] “Directrices mundiales de la OMS sobre la calidad del aire Resumen ejecutivo.”
[46] M. José Berenguer Subils Licenciada en Ciencias Químicas Ma Carmen Martí Solé, “NTP 243: Ambientes cerrados: calidad del aire.”
[47] L. en C. B. Ana Hernández Calleja, “NTP 742: Ventilación general de edificios”.
dc.rights.spa.fl_str_mv )-- Universidad Autónoma de Occidente, 2024
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv )-- Universidad Autónoma de Occidente, 2024
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 55 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Autónoma de Occidente
dc.publisher.program.spa.fl_str_mv Ingeniería Biomédica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Cali
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/6a5d8480-301e-4c96-a44b-43bd946cca5d/download
https://red.uao.edu.co/bitstreams/aa3c87c5-1c61-4654-9849-e50d311fad48/download
https://red.uao.edu.co/bitstreams/918b6903-6923-4a42-942f-488a33597a40/download
https://red.uao.edu.co/bitstreams/09fc2362-843c-4855-aff0-ad96b1661e4f/download
https://red.uao.edu.co/bitstreams/6ff7ff12-83d7-467a-a913-53620576050f/download
https://red.uao.edu.co/bitstreams/466d7100-008d-4b1e-994d-682f599b1602/download
https://red.uao.edu.co/bitstreams/6825726c-e1bb-4f32-8b6c-d9dcb55d408b/download
bitstream.checksum.fl_str_mv dfe5b5a95e7698ddb5ebf72feeb712fa
9622ff1bc2f4dbdd3481129869409a5e
6987b791264a2b5525252450f99b10d1
91114b9cdd19bc5ce26b5725c8b8b151
f212fd7a6642156c1aa79b1195670a0a
94083372e05d88f667c9421cd8492380
a58fa07382d666a82a99b9f29ab48e94
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1831928838362234880
spelling Cabrera Lopez, John Jairovirtual::5803-1Giraldo Reyes, Juan EstebanMalvehy Cadavid, CamilaUniversidad Autónoma de OccidenteOrdóñez Medina, Stephanie2024-11-19T20:14:50Z2024-11-19T20:14:50Z2024-11-01Giraldo Reyes, J. E. y Malvehy Cadavid, C. (2024). Diseño de un dispositivo para monitorear gases nocivos en entornos hospitalarios. (Pasantía de investigación). Universidad Autónoma de Occidente. Cali. Colombia. https://hdl.handle.net/10614/15915https://hdl.handle.net/10614/15915Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/El presente proyecto tiene como objetivo desarrollar un dispositivo que permita monitorear la calidad del aire en instituciones hospitalarias. La función específica del dispositivo consiste en la detección de gases nocivos como CO2 y PM2.5. Su diseño busca proporcionar información en tiempo real sobre los niveles de estos gases, con el fin de ayudar a tomar decisiones y acciones que mejoren la salud y seguridad de pacientes y personal médico. También incluye la consulta de normativas vigentes, la selección de sensores adecuados, el desarrollo de una tarjeta de circuito impreso (PCB), y la validación del prototipo mediante pruebas en laboratorio. Este proyecto se llevará a cabo en entornos hospitalarios, donde la calidad del aire es crucial debido a la presencia de personas con diversas condiciones de salud. Los resultados esperados incluyen la identificación oportuna de concentraciones peligrosas de gases, lo que facilitará la implementación de medidas correctivas y contribuirá a crear un ambiente más seguro y saludable. El beneficio que se espera que esta herramienta proporcione consistirá en su carácter innovadora y su aplicación efectiva en el monitoreo continuo de la calidad del aire en hospitales, con el potencial de reducir la exposición a contaminantes y mejorar significativamente la seguridad y bienestar de los ocupantes.The objective of this project is to develop a device that allows air quality monitoring in hospital institutions. The specific function of the device involves detecting harmful gases such as CO2 and PM2.5. Its design aims to provide real-time information on the levels of these gases to support decision-making and actions that improve the health and safety of patients and medical staff. The project also includes reviewing current regulations, selecting appropriate sensors, developing a printed circuit board (PCB), and validating the prototype through laboratory testing. This project will be conducted in hospital environments where air quality is crucial due to the presence of individuals with various health conditions. The expected outcomes include the timely identification of dangerous gas concentrations, facilitating the implementation of corrective measures, and contributing to a safer and healthier environment. The anticipated benefit of this tool is its innovative nature and effective application in the continuous monitoring of air quality in hospitals, with the potential to reduce exposure to pollutants and significantly improve the safety and well-being of the occupantsPasantía de investigación (Ingeniero Biomédico)-- Universidad Autónoma de Occidente, 2024PregradoIngeniero(a) Biomédico(a)55 páginasapplication/pdfspaUniversidad Autónoma de OccidenteIngeniería BiomédicaFacultad de IngenieríaCali)-- Universidad Autónoma de Occidente, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_14cbDiseño de un dispositivo para monitorear gases nocivos en entornos hospitalariosTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85[1] V. Van Tran, D. Park, and Y.-C. Lee, “Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality,” Apr. 23, 2020, MDPI AG. doi: 10.3390/ijerph17082927.[2] D. N. Omeokachie, T. A. Laniyan, D. B. Olawade, O. Abayomi-Agbaje, D. T. Esan, and G. R. E. E. Ana, “Indoor environmental conditions of selected shopping malls in Nigeria: A comparative study of microclimatic conditions, noise levels, and microbial burdens,” Science of the Total Environment, vol. 906, Jan. 2024, doi: 10.1016/j.scitotenv.2023.167620.[3] C. Alejandro Alarcón Hernández, J. Sebastián Poveda Guarín, and U. Antonio Nariño, “Control de material particulado en espacios cerrados (laboratorio, preclínica y oficinas) a través de la utilización de un filtro portátil HEPA Notas del autor.”[4] L. Carazo Fernández, R. Fernández Alvarez, F. J. González-Barcala, and J. A. Rodríguez Portal, “Indoor Air Contaminants and their Impact on Respiratory Pathologies,” Arch Bronconeumol, vol. 49, no. 1, pp. 22–27, Jan. 2013, doi: 10.1016/j.arbr.2012.11.004.[5] M. J. Butler et al., “Impact of supplementary air filtration on aerosols and particulate matter in a UK hospital ward: a case study,” Journal of Hospital Infection, vol. 135, pp. 81–89, May 2023, doi: 10.1016/j.jhin.2023.02.006.[6] L. R. López et al., “CO2 in indoor environments: From environmental and health risk to potential renewable carbon source,” Science of The Total Environment, vol. 856, p. 159088, Jan. 2023, doi: 10.1016/J.SCITOTENV.2022.159088.[7] D. E. Schraufnagel et al., “Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems,” Feb. 01, 2019, Elsevier Inc. doi: 10.1016/j.chest.2018.10.041.[8] N. M. Wilson et al., “Quantifying hospital environmental ventilation using carbon dioxide monitoring – a multicentre study,” Anaesthesia, vol. 79, no. 2, pp. 147–155, Feb. 2024, doi: 10.1111/anae.16124.[9] S. U. Zaman, M. Yesmin, Md. R. S. Pavel, F. Jeba, and A. Salam, “Indoor air quality indicators and toxicity potential at the hospitals’ environment in Dhaka, Bangladesh,” Environmental Science and Pollution Research, vol. 28, no. 28, pp. 37727–37740, 2021, doi: 10.1007/s11356-021-13162-8.[10] M. J. Butler et al., “Impact of supplementary air filtration on aerosols and particulate matter in a UK hospital ward: a case study,” Journal of Hospital Infection, vol. 135, pp. 81–89, May 2023, doi: 10.1016/J.JHIN.2023.02.006.[11] A. Fonseca, I. Abreu, M. J. Guerreiro, and N. Barros, “Indoor Air Quality in Healthcare Units—A Systematic Literature Review Focusing Recent Research,” Jan. 01, 2022, MDPI. doi: 10.3390/su14020967.[12] F. Antunes, S. Safdar, A. Monteiro, and E. Z. Samsudin, “Hospital indoor air quality and its relationships with building design, building operation, and occupant-related factors: A mini-review.”[13] “Air Quality,” Pan American Health Organization (PAHO). Accessed: Aug. 25, 2024. [Online]. Available: https://www.paho.org/en/topics/air-quality[14] D. E. Schraufnagel et al., “Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems,” Feb. 01, 2019, Elsevier Inc. doi: 10.1016/j.chest.2018.10.041.[15] United States Environment Protection Agency, “Introduction to Indoor Air Quality.” Accessed: May 04, 2024. [Online]. Available: https://www.epa.gov/indoor-air-quality-iaq/introduction-indoor-air-quality[16] H. H. T. C. Le et al., “Indoor air pollution is associated with respiratory symptoms in children in urban Vietnam,” Science of The Total Environment, vol. 917, p. 170556, 2024, doi: https://doi.org/10.1016/j.scitotenv.2024.170556.[17] E. Z. S. , A. R. I. and J. S. Farha Ibrahim, “Hospital indoor air quality and its relationships with building design, building operation, and occupant-related factors: A mini-review.”[18] World Health Organization, “Household air pollution.”[19] N. Korukire et al., “Indoor and Outdoor Air Quality Concentration Levels in Selected Hospital Environments in Kigali, Rwanda,” Rwanda Journal of Medicine and Health Sciences, vol. 6, no. 3, pp. 389–397, 2023, doi: 10.4314/rjmhs.v6i3.12.[20] S. H. Hwang and W. M. Park, “Indoor air concentrations of carbon dioxide (CO2), nitrogen dioxide (NO2), and ozone (O3) in multiple healthcare facilities,” Environ Geochem Health, vol. 42, no. 5, pp. 1487–1496, 2020, doi: 10.1007/s10653-019-00441-0. [21] Comité de Entorno y Salud de la Sociedad Europea de Enfermedades Pulmonares, “European Lung Foundation.” Accessed: Aug. 22, 2024. [Online]. Available: https://europeanlung.org/es/information-hub/keeping-lungs-healthy/pulmones-y-la-contaminacion-atmosferica-en-espacios-cerrados/[22] The safety company, “ALTAIR 5X Gas Detector | MSA Safety.” Accessed: Aug. 22, 2024. [Online]. Available: https://co.msasafety.com/Portable-Gas-Detection/Multi-Gas/ALTAIR%C2%AE-5X-Multigas-Detector/p/000080001600001023?locale=es[23] Prana Air, “Sensible+ Monitor De Calidad Del Aire | Dispositivo Interior.” Accessed: Aug. 22, 2024. [Online]. Available: https://www.pranaair.com/es/air-quality-monitor/sensible-plus-air-monitor/?currency=INR#1599649343029-2f0d7d4f-91ac512b-b88f[24] A. Hassan and M. Zeeshan, “Microbiological indoor air quality of hospital buildings with different ventilation systems, cleaning frequencies and occupancy levels,” Atmos Pollut Res, vol. 13, no. 4, p. 101382, 2022, doi: https://doi.org/10.1016/j.apr.2022.101382.[25] N. Korukire et al., “Indoor and Outdoor Air Quality Concentration Levels in Selected Hospital Environments in Kigali, Rwanda,” Rwanda Journal of Medicine and Health Sciences, vol. 6, no. 3, pp. 389–397, 2023, doi: 10.4314/rjmhs.v6i3.12.[26] J. Palmisani, A. Di Gilio, M. Viana, G. de Gennaro, and A. Ferro, “Indoor air quality evaluation in oncology units at two European hospitals: Low-cost sensors for TVOCs, PM2.5 and CO2 real-time monitoring,” Build Environ, vol. 205, Nov. 2021, doi: 10.1016/j.buildenv.2021.108237.[27] “Air Pollution,” World Health Organization (WHO). Accessed: Aug. 29, 2024. [Online]. Available: https://www.who.int/health-topics/air-pollution#tab=tab_1[28] “¿Cómo se mide la calidad del aire?,” ONU. Accessed: Aug. 30, 2024. [Online]. Available: https://www.unep.org/es/noticias-y-reportajes/reportajes/como-se-mide-la-calidad-del-aire[29] D. Becerra Moreno, L. F. Ramirez Rios, L. F. Plaza Galvez, C. H. Oviedo Sanabria, and M. V. Niño Ovalles, “Relationship between air quality and incidence of respiratory diseases in communes 4, 6, 7 and 8 of the municipality of Cúcuta, Norte de Santander,” INGENIERÍA Y COMPETITIVIDAD, vol. 23, no. 2, p. e2029698, May 2021, doi: 10.25100/iyc.v23i2.9698.[30] P. G.-U. Inc. Christopher J. Stipe, “Indoor air quality in hospitals,” Consulting - Specifying Engineer, Milwaukee, Jul. 14, 2015.[31] M. Leroutier and P. Quirion, “Air pollution and CO2 from daily mobility: Who emits and Why? Evidence from Paris,” Energy Econ, vol. 109, p. 105941, 2022, doi: https://doi.org/10.1016/j.eneco.2022.105941.[32] D. E. Schraufnagel et al., “Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems,” Feb. 01, 2019, Elsevier Inc. doi: 10.1016/j.chest.2018.10.041.[33] D. K. T. Ng et al., “NDIR CO2 gas sensing using CMOS compatible MEMS ScAlN-based pyroelectric detector,” Sens Actuators B Chem, vol. 346, p. 130437, Nov. 2021, doi: 10.1016/J.SNB.2021.130437.[34] H. R. Shwetha, S. M. Sharath, B. Guruprasad, and S. B. Rudraswamy, “MEMS based metal oxide semiconductor carbon dioxide gas sensor,” Micro and Nano Engineering, vol. 16, p. 100156, Aug. 2022, doi: 10.1016/J.MNE.2022.100156.[35] P. F. Pereira and N. M. M. Ramos, “Low-cost Arduino-based temperature, relative humidity and CO2 sensors - An assessment of their suitability for indoor built environments,” Journal of Building Engineering, vol. 60, p. 105151, Nov. 2022, doi: 10.1016/J.JOBE.2022.105151.[36] S. B. Sørensen and K. Kristensen, “Low-cost sensor-based investigation of CO2 and volatile organic compounds in classrooms: Exploring dynamics, ventilation effects and perceived air quality relations,” Build Environ, vol. 254, p. 111369, Apr. 2024, doi: 10.1016/J.BUILDENV.2024.111369.[37] K. Shukla and S. G. Aggarwal, “Particulate Matter Measurement Techniques,” in Handbook of Metrology and Applications, Springer Nature Singapore, 2022, pp. 1–29. doi: 10.1007/978-981-19-1550-5_133-1.[38] P. D. M. Nguyen et al., “Using low-cost sensors to assess fine particulate matter infiltration (Pm2.5) during a wildfire smoke episode at a large inpatient healthcare facility,” Int J Environ Res Public Health, vol. 18, no. 18, Sep. 2021, doi: 10.3390/ijerph18189811.[39] M. A. Posyniak et al., “Experimental study of smog microphysical and optical vertical structure in the Silesian Beskids, Poland,” Atmos Pollut Res, vol. 12, no. 9, Sep. 2021, doi: 10.1016/j.apr.2021.101171.[40] R. Jayaratne et al., “Low-cost PM2.5 sensors: An assessment of their suitability for various applications,” Aerosol Air Qual Res, vol. 20, no. 3, pp. 520–532, Mar. 2020, doi: 10.4209/aaqr.2018.10.0390.[41] “Tipos De SENSORES De Temperatura Y Sus Diferencias | SRC,” Sistemas de Regulación y Control, S.L.U. Accessed: Sep. 12, 2024. [Online]. Available: https://srcsl.com/tipos-sensores-temperatura/[42] “Sensores de humedad tipos y aplicaciones,” SENSORES E INSTRUMENTACION GUEMISA S.L. Accessed: Sep. 12, 2024. [Online]. Available: https://guemisa.com/articulos/tutorial-humedad.pdf[43] A. López-Vargas and A. Ledezma-Espino, “Iot application for energy poverty detection based on thermal comfort monitoring,” Heliyon, vol. 9, no. 1, p. e12943, Jan. 2023, doi: 10.1016/J.HELIYON.2023.E12943.[44] “NORMA TÉCNICA NTC COLOMBIANA 5183,” 2003.[45] “Directrices mundiales de la OMS sobre la calidad del aire Resumen ejecutivo.”[46] M. José Berenguer Subils Licenciada en Ciencias Químicas Ma Carmen Martí Solé, “NTP 243: Ambientes cerrados: calidad del aire.”[47] L. en C. B. Ana Hernández Calleja, “NTP 742: Ventilación general de edificios”.Ingeniería BiomédicaCalidad del Aire Interior (CAI)Enfermedades respiratoriasSensoresContaminantes del aireSaludInstalaciones sanitariasIndoor Air Quality (IAQ)Respiratory diseasesSensorsContaminantsHealthHealthcare facilitiesComunidad generalPublicationhttps://scholar.google.com/citations?user=dkpsiDsAAAAJ&hl=esvirtual::5803-10000-0002-2608-755Xvirtual::5803-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000821276virtual::5803-15f003138-bfcd-4407-904b-9b9a0010990cvirtual::5803-15f003138-bfcd-4407-904b-9b9a0010990cvirtual::5803-1ORIGINALT11259_Diseño de un dispositivo para monitorear gases nocivos en entornos hospitalarios.pdfT11259_Diseño de un dispositivo para monitorear gases nocivos en entornos hospitalarios.pdfArchivo texto completo del trabajo de grado, PDFapplication/pdf1123448https://red.uao.edu.co/bitstreams/6a5d8480-301e-4c96-a44b-43bd946cca5d/downloaddfe5b5a95e7698ddb5ebf72feeb712faMD52T11259_Autorización trabajo de grado.pdfT11259_Autorización trabajo de grado.pdfAutorización para publicación del trabajo de gradoapplication/pdf407795https://red.uao.edu.co/bitstreams/aa3c87c5-1c61-4654-9849-e50d311fad48/download9622ff1bc2f4dbdd3481129869409a5eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/918b6903-6923-4a42-942f-488a33597a40/download6987b791264a2b5525252450f99b10d1MD53TEXTT11259_Diseño de un dispositivo para monitorear gases nocivos en entornos hospitalarios.pdf.txtT11259_Diseño de un dispositivo para monitorear gases nocivos en entornos hospitalarios.pdf.txtExtracted texttext/plain84070https://red.uao.edu.co/bitstreams/09fc2362-843c-4855-aff0-ad96b1661e4f/download91114b9cdd19bc5ce26b5725c8b8b151MD54T11259_Autorización trabajo de grado.pdf.txtT11259_Autorización trabajo de grado.pdf.txtExtracted texttext/plain5321https://red.uao.edu.co/bitstreams/6ff7ff12-83d7-467a-a913-53620576050f/downloadf212fd7a6642156c1aa79b1195670a0aMD56THUMBNAILT11259_Diseño de un dispositivo para monitorear gases nocivos en entornos hospitalarios.pdf.jpgT11259_Diseño de un dispositivo para monitorear gases nocivos en entornos hospitalarios.pdf.jpgGenerated Thumbnailimage/jpeg6758https://red.uao.edu.co/bitstreams/466d7100-008d-4b1e-994d-682f599b1602/download94083372e05d88f667c9421cd8492380MD55T11259_Autorización trabajo de grado.pdf.jpgT11259_Autorización trabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg13472https://red.uao.edu.co/bitstreams/6825726c-e1bb-4f32-8b6c-d9dcb55d408b/downloada58fa07382d666a82a99b9f29ab48e94MD5710614/15915oai:red.uao.edu.co:10614/159152024-11-20 03:01:59.034https://creativecommons.org/licenses/by-nc-nd/4.0/)-- Universidad Autónoma de Occidente, 2024restrictedhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==