Decomposition kinetics and lifetime estimation of natural fiber reinforced composites: Influence of plasma treatment and fiber type

In this study, two different natural fiber reinforced composites were characterized from the point of view of decomposition kinetics comparing two kinetic models, Kissinger and model-free kinetics, in order to estimate the lifetime of composites. Composite materials were prepared with low-density po...

Full description

Autores:
Enciso, María Belén
Abenojar, J.
Martınez, M.A
Aparicio Rojas, Gladis Miriam
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13424
Acceso en línea:
https://hdl.handle.net/10614/13424
Palabra clave:
Materiales compuestos
Fibras vegetales
Termogravimetría
Plant fibers
Thermogravimetry
Natural fibers
Composites
Kinetics
Lifetime
Surface treatments
Rights
openAccess
License
Derechos reservados - SAGE Journals, 2019
id REPOUAO2_91aa57e6689d97d992dfcb1dda281a44
oai_identifier_str oai:red.uao.edu.co:10614/13424
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Decomposition kinetics and lifetime estimation of natural fiber reinforced composites: Influence of plasma treatment and fiber type
title Decomposition kinetics and lifetime estimation of natural fiber reinforced composites: Influence of plasma treatment and fiber type
spellingShingle Decomposition kinetics and lifetime estimation of natural fiber reinforced composites: Influence of plasma treatment and fiber type
Materiales compuestos
Fibras vegetales
Termogravimetría
Plant fibers
Thermogravimetry
Natural fibers
Composites
Kinetics
Lifetime
Surface treatments
title_short Decomposition kinetics and lifetime estimation of natural fiber reinforced composites: Influence of plasma treatment and fiber type
title_full Decomposition kinetics and lifetime estimation of natural fiber reinforced composites: Influence of plasma treatment and fiber type
title_fullStr Decomposition kinetics and lifetime estimation of natural fiber reinforced composites: Influence of plasma treatment and fiber type
title_full_unstemmed Decomposition kinetics and lifetime estimation of natural fiber reinforced composites: Influence of plasma treatment and fiber type
title_sort Decomposition kinetics and lifetime estimation of natural fiber reinforced composites: Influence of plasma treatment and fiber type
dc.creator.fl_str_mv Enciso, María Belén
Abenojar, J.
Martınez, M.A
Aparicio Rojas, Gladis Miriam
dc.contributor.author.spa.fl_str_mv Enciso, María Belén
Abenojar, J.
Martınez, M.A
Aparicio Rojas, Gladis Miriam
dc.subject.armarc.spa.fl_str_mv Materiales compuestos
Fibras vegetales
Termogravimetría
topic Materiales compuestos
Fibras vegetales
Termogravimetría
Plant fibers
Thermogravimetry
Natural fibers
Composites
Kinetics
Lifetime
Surface treatments
dc.subject.armarc.eng.fl_str_mv Plant fibers
Thermogravimetry
dc.subject.proposal.eng.fl_str_mv Natural fibers
Composites
Kinetics
Lifetime
Surface treatments
description In this study, two different natural fiber reinforced composites were characterized from the point of view of decomposition kinetics comparing two kinetic models, Kissinger and model-free kinetics, in order to estimate the lifetime of composites. Composite materials were prepared with low-density polyethylene as matrix and plasma-treated and untreated natural fibers were used as reinforcements, in two different amounts (20 and 30 wt%). Composites were manufactured using a rotor mixer and a hot plate press. Afterwards, a thermogravimetric analysis was carried out for each material at six different heating rates (5, 7, 10, 13, 15, and 20°C/min) with a coupled mass spectrometry device to identify released elements in a specific temperature range. The influence of the low-pressure plasma treatment, as well as the fiber type, was taken into account to evaluate the activation energy of the decomposition processes of each material. Besides, lifetime was estimated from the obtained decomposition energies and the Toop equation. It was found that plasma treatment does not have a meaningful influence on decomposition kinetics, but the main composition of the natural fibers is decisive in this aspect, giving rise to much longer lifetimes when the cellulose content of the fiber is higher
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-11-01
dc.date.accessioned.none.fl_str_mv 2021-11-10T16:15:38Z
dc.date.available.none.fl_str_mv 2021-11-10T16:15:38Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 15280837
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13424
identifier_str_mv 15280837
url https://hdl.handle.net/10614/13424
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 17
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.cites.eng.fl_str_mv Enciso, B., Abenojar. J, Aparicio, G.M., Martínez, M.A. (2019). Decomposition kinetics and lifetime estimation of natural fiber reinforced composites: Influence of plasma treatment and fiber type. Journal of Industrial Textiles. pp. 1-17. https://doi.org/10.1177/1528083719886046
dc.relation.ispartofjournal.eng.fl_str_mv Journal of Industrial Textiles
dc.relation.references.none.fl_str_mv [1] Reddy N and Yang Y. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 2005; 23: 22–27.
[2] Pickering KL, Efendy MGA and Le TM. A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A: Appl Sci Manuf 2016; 83: 98–112.
[3] Herrera-Franco PJ and Valadez-Gonzalez A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos Part B: Eng 2005; 36: 597–608.
[4] Offringa AR. Thermoplastic applications composites-rapid processing applications. Compos Part A: Appl Sci Manuf 1996; 27: 329–336.
[5] Peres AM, Pires RR and Ore´fice RL. Evaluation of the effect of reprocessing on the structure and properties of low density polyethylene/thermoplastic starch blends. Carbohydr Polym 2016; 136: 210–215.
[6] Bledzki AK and Gassan J. Composites reinforced with cellulose based fibres. Prog Polym Sci 1999; 24: 221–274.
[7] Bledzki AK, Reihmane S and Gassan J. Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 1996; 59: 1329–1336.
[8] Fuqua MA, Huo S and Ulven CA. Natural fiber reinforced composites. Polym Rev 2012; 52: 259–320.
[9] Malkapuram R, Kumar V and Singh Negi Y. Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 2009; 28: 1169–1189.
[10] Tomczak F, Sydenstricker THD and Satyanarayana KG. Studies on lignocellulosic fibers of Brazil. Part II: morphology and properties of Brazilian coconut fibers. Compos Part A: Appl Sci Manuf 2007; 38: 1710–1721.
[11] Azwa ZN, Yousif BF, Manalo AC, et al. A review on the degradability of polymeric composites based on natural fibres. Mater Des 2013; 47: 424–442.
[12] Huda MS, Drzal LT, Mohanty AK, et al. Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 2008; 68: 424–432.
[13] Sepe R, Bollino F, Boccarusso L, et al. Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos Part B: Eng 2018; 133: 210–217.
[14] Sullins T, Pillay S, Komus A, et al. Hemp fiber reinforced polypropylene composites: the effects of material treatments. Compos Part B: Eng 2017; 114: 15–22.
[15] Enciso B, Abenojar J and Mart ınez MA. Influence of plasma treatment on the adhesion between a polymeric matrix and natural fibres. Cellulose 2017; 24: 1791–1801.
[16] Enciso B, Abenojar J, Paz E, et al. Influence of low pressure plasma treatment on the durability of thermoplastic composites LDPE-flax/coconut under thermal and humidity conditions. Fibers Polym 2018; 19: 1327–1334.
[17] Tendero C, Tixier C, Tristant P, et al. Atmospheric pressure plasmas: a review. Spectrochim Acta - Part B Spectrosc 2006; 61: 2–30.
[18] Braithwaite N. Introduction to gas discharges. Plasma Sources Sci Technol 2000; 9: 517–527.
[19] Alvarez VA and Va A. Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polym Degrad Stab 2004; 84: 13–21.
[20] Wollerdorfer M and Bader H. Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind Crops Prod 1998; 8: 105–112.
[21] Ichazo M, Kaiser D, Albano C, et al. Thermal stability of blends of polyolefins and sisal fiber. Polym Degrad Stab 1999; 66: 179–190.
[22] Marcovich NE, Reboredo MM and Aranguren MI. Modified wood flour as thermoset fillers II. Therm Degrad Wood Flours Compos 2001; 372: 45–57.
[23] Yang J, Miranda R and Roy C. Using the DTG curve fitting method to determine the apparent kinetic parameters of thermal decomposition of polymers. Polym Degard Stab 2001; 73: 455–461.
[24] Cooney JD, Day M, Wiles DM, et al. Thermal degradation of poly(ethylene terephthalate): a kinetic analysis of thermogravimetric data. J Appl Polym Sci 1983; 28: 2887–2902.
[25] Toop DJ. Theory of life testing and use of thermogravimetric analysis to predict the thermal life of wire enamels. IEEE Trans Electr Insul 1971; EI-6: 2–14.
[26] Abenojar J, Tutor J, Ballesteros Y, et al. Erosion-wear, mechanical and thermal properties of silica fi lled epoxy nanocomposites. Compos Part B: Eng 2017; 120: 42–53.
[27] Blaine RL and Kissinger HE. Homer Kissinger and the Kissinger equation. Thermochim Acta 2012; 540: 1–6.
[28] Kissinger HE. Reaction kinetics in differential thermal analysis. Analyt Chem 1957; 29: 1702–1706.
[29] Florez TA and Aparicio GM. Thermal characterization and lifetime estimation of the humus lombricospt. Am J Anal Chem 2014; 5: 45–49.
[30] Milosavljevict I and Suuberg EM. Cellulose thermal decomposition kinetics: global mass loss kinetics. Ind Eng Chem Res 1995; 34: 1081–1091.
[31] Antal MJ. Cellulose pyrolysis kinetics : the current state of knowledge ? Ind Eng Chem Res 1995; 34: 703–717.
[32] Varhegyif G, Antal MJ, Szekely T, et al. Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugar cane bagasse. Energy Fuels 1989; 3: 329–335.
dc.rights.spa.fl_str_mv Derechos reservados - SAGE Journals, 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - SAGE Journals, 2019
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 17 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv SAGE Journals
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/e9941859-246a-4b85-a483-ad2dfabbdc44/download
https://red.uao.edu.co/bitstreams/1b70d3d3-9ec3-43f3-8e09-e79a5cc29b95/download
https://red.uao.edu.co/bitstreams/541f57d8-548d-47b2-a237-d06cac1e334e/download
https://red.uao.edu.co/bitstreams/fa7845dd-c817-40e5-93e3-bc202957e89e/download
bitstream.checksum.fl_str_mv 30bea3fb7f0cf7e54913b1fe8f04a86f
20b5ba22b1117f71589c7318baa2c560
dc95043185ed26dc3830b0767948b8de
3460ba60198a998158a205ff502ad6bc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259997007151104
spelling Enciso, María BelénAbenojar, J.6a18baaeaa5c1d368f0775ee97d94c42Martınez, M.Afc52bcccf6682368227910cf1271caceAparicio Rojas, Gladis Miriam5cfba808641898ab3187ee7be4f6ec472021-11-10T16:15:38Z2021-11-10T16:15:38Z2019-11-0115280837https://hdl.handle.net/10614/13424In this study, two different natural fiber reinforced composites were characterized from the point of view of decomposition kinetics comparing two kinetic models, Kissinger and model-free kinetics, in order to estimate the lifetime of composites. Composite materials were prepared with low-density polyethylene as matrix and plasma-treated and untreated natural fibers were used as reinforcements, in two different amounts (20 and 30 wt%). Composites were manufactured using a rotor mixer and a hot plate press. Afterwards, a thermogravimetric analysis was carried out for each material at six different heating rates (5, 7, 10, 13, 15, and 20°C/min) with a coupled mass spectrometry device to identify released elements in a specific temperature range. The influence of the low-pressure plasma treatment, as well as the fiber type, was taken into account to evaluate the activation energy of the decomposition processes of each material. Besides, lifetime was estimated from the obtained decomposition energies and the Toop equation. It was found that plasma treatment does not have a meaningful influence on decomposition kinetics, but the main composition of the natural fibers is decisive in this aspect, giving rise to much longer lifetimes when the cellulose content of the fiber is higher17 páginasapplication/pdfengSAGE JournalsDerechos reservados - SAGE Journals, 2019https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Decomposition kinetics and lifetime estimation of natural fiber reinforced composites: Influence of plasma treatment and fiber typeArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Materiales compuestosFibras vegetalesTermogravimetríaPlant fibersThermogravimetryNatural fibersCompositesKineticsLifetimeSurface treatments171Enciso, B., Abenojar. J, Aparicio, G.M., Martínez, M.A. (2019). Decomposition kinetics and lifetime estimation of natural fiber reinforced composites: Influence of plasma treatment and fiber type. Journal of Industrial Textiles. pp. 1-17. https://doi.org/10.1177/1528083719886046Journal of Industrial Textiles[1] Reddy N and Yang Y. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 2005; 23: 22–27.[2] Pickering KL, Efendy MGA and Le TM. A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A: Appl Sci Manuf 2016; 83: 98–112.[3] Herrera-Franco PJ and Valadez-Gonzalez A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos Part B: Eng 2005; 36: 597–608.[4] Offringa AR. Thermoplastic applications composites-rapid processing applications. Compos Part A: Appl Sci Manuf 1996; 27: 329–336.[5] Peres AM, Pires RR and Ore´fice RL. Evaluation of the effect of reprocessing on the structure and properties of low density polyethylene/thermoplastic starch blends. Carbohydr Polym 2016; 136: 210–215.[6] Bledzki AK and Gassan J. Composites reinforced with cellulose based fibres. Prog Polym Sci 1999; 24: 221–274.[7] Bledzki AK, Reihmane S and Gassan J. Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 1996; 59: 1329–1336.[8] Fuqua MA, Huo S and Ulven CA. Natural fiber reinforced composites. Polym Rev 2012; 52: 259–320.[9] Malkapuram R, Kumar V and Singh Negi Y. Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 2009; 28: 1169–1189.[10] Tomczak F, Sydenstricker THD and Satyanarayana KG. Studies on lignocellulosic fibers of Brazil. Part II: morphology and properties of Brazilian coconut fibers. Compos Part A: Appl Sci Manuf 2007; 38: 1710–1721.[11] Azwa ZN, Yousif BF, Manalo AC, et al. A review on the degradability of polymeric composites based on natural fibres. Mater Des 2013; 47: 424–442.[12] Huda MS, Drzal LT, Mohanty AK, et al. Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 2008; 68: 424–432.[13] Sepe R, Bollino F, Boccarusso L, et al. Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos Part B: Eng 2018; 133: 210–217.[14] Sullins T, Pillay S, Komus A, et al. Hemp fiber reinforced polypropylene composites: the effects of material treatments. Compos Part B: Eng 2017; 114: 15–22.[15] Enciso B, Abenojar J and Mart ınez MA. Influence of plasma treatment on the adhesion between a polymeric matrix and natural fibres. Cellulose 2017; 24: 1791–1801.[16] Enciso B, Abenojar J, Paz E, et al. Influence of low pressure plasma treatment on the durability of thermoplastic composites LDPE-flax/coconut under thermal and humidity conditions. Fibers Polym 2018; 19: 1327–1334.[17] Tendero C, Tixier C, Tristant P, et al. Atmospheric pressure plasmas: a review. Spectrochim Acta - Part B Spectrosc 2006; 61: 2–30.[18] Braithwaite N. Introduction to gas discharges. Plasma Sources Sci Technol 2000; 9: 517–527.[19] Alvarez VA and Va A. Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polym Degrad Stab 2004; 84: 13–21.[20] Wollerdorfer M and Bader H. Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind Crops Prod 1998; 8: 105–112.[21] Ichazo M, Kaiser D, Albano C, et al. Thermal stability of blends of polyolefins and sisal fiber. Polym Degrad Stab 1999; 66: 179–190.[22] Marcovich NE, Reboredo MM and Aranguren MI. Modified wood flour as thermoset fillers II. Therm Degrad Wood Flours Compos 2001; 372: 45–57.[23] Yang J, Miranda R and Roy C. Using the DTG curve fitting method to determine the apparent kinetic parameters of thermal decomposition of polymers. Polym Degard Stab 2001; 73: 455–461.[24] Cooney JD, Day M, Wiles DM, et al. Thermal degradation of poly(ethylene terephthalate): a kinetic analysis of thermogravimetric data. J Appl Polym Sci 1983; 28: 2887–2902.[25] Toop DJ. Theory of life testing and use of thermogravimetric analysis to predict the thermal life of wire enamels. IEEE Trans Electr Insul 1971; EI-6: 2–14.[26] Abenojar J, Tutor J, Ballesteros Y, et al. Erosion-wear, mechanical and thermal properties of silica fi lled epoxy nanocomposites. Compos Part B: Eng 2017; 120: 42–53.[27] Blaine RL and Kissinger HE. Homer Kissinger and the Kissinger equation. Thermochim Acta 2012; 540: 1–6.[28] Kissinger HE. Reaction kinetics in differential thermal analysis. Analyt Chem 1957; 29: 1702–1706.[29] Florez TA and Aparicio GM. Thermal characterization and lifetime estimation of the humus lombricospt. Am J Anal Chem 2014; 5: 45–49.[30] Milosavljevict I and Suuberg EM. Cellulose thermal decomposition kinetics: global mass loss kinetics. Ind Eng Chem Res 1995; 34: 1081–1091.[31] Antal MJ. Cellulose pyrolysis kinetics : the current state of knowledge ? Ind Eng Chem Res 1995; 34: 703–717.[32] Varhegyif G, Antal MJ, Szekely T, et al. Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugar cane bagasse. Energy Fuels 1989; 3: 329–335.GeneralPublicationORIGINALDecomposition kinetics and lifetime estimation of natural fiber reinforced composites. Influence of plasma treatment and fiber type.pdfDecomposition kinetics and lifetime estimation of natural fiber reinforced composites. Influence of plasma treatment and fiber type.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf514739https://red.uao.edu.co/bitstreams/e9941859-246a-4b85-a483-ad2dfabbdc44/download30bea3fb7f0cf7e54913b1fe8f04a86fMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/1b70d3d3-9ec3-43f3-8e09-e79a5cc29b95/download20b5ba22b1117f71589c7318baa2c560MD52TEXTDecomposition kinetics and lifetime estimation of natural fiber reinforced composites. Influence of plasma treatment and fiber type.pdf.txtDecomposition kinetics and lifetime estimation of natural fiber reinforced composites. Influence of plasma treatment and fiber type.pdf.txtExtracted texttext/plain34667https://red.uao.edu.co/bitstreams/541f57d8-548d-47b2-a237-d06cac1e334e/downloaddc95043185ed26dc3830b0767948b8deMD54THUMBNAILDecomposition kinetics and lifetime estimation of natural fiber reinforced composites. Influence of plasma treatment and fiber type.pdf.jpgDecomposition kinetics and lifetime estimation of natural fiber reinforced composites. Influence of plasma treatment and fiber type.pdf.jpgGenerated Thumbnailimage/jpeg12856https://red.uao.edu.co/bitstreams/fa7845dd-c817-40e5-93e3-bc202957e89e/download3460ba60198a998158a205ff502ad6bcMD5510614/13424oai:red.uao.edu.co:10614/134242024-02-19 10:04:15.454https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - SAGE Journals, 2019open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K