Análisis sistémico in silico de la expresión diferencial de genes localizados en la región crítica del síndrome de down (DSCR) en el cerebro humano

Uno de los retos más importantes de este siglo en la neurología genómica es construir mapas de expresión espacial de genes a lo largo de las distintas estructuras cerebrales con el fin de correlacionarlos con ciertas neuropatologías. Se analizaron los perfiles de transcripción de ocho genes HAS21 lo...

Full description

Autores:
Montoya Villegas, Julio César
Peña-Gonzalez, Angela
Satizábal Soto, José María
García Vallejo, Felipe
Tipo de recurso:
Article of journal
Fecha de publicación:
2012
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/14095
Acceso en línea:
https://hdl.handle.net/10614/14095
https://red.uao.edu.co/
Palabra clave:
Genes
Bioinformática
Bioinformatics
Síndrome de Down
Cerebro
Análisis de micromatrices
Biología computacional
Perfilación de la expresión génica
Brain
Computational biology
Down syndrome
Gene expression profiling
Microarray analysis
Rights
openAccess
License
Derechos reservados - Universidad Militar Nueva Granada, 2012
id REPOUAO2_905ca9987037ec0e2f23f365d110a057
oai_identifier_str oai:red.uao.edu.co:10614/14095
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.spa.fl_str_mv Análisis sistémico in silico de la expresión diferencial de genes localizados en la región crítica del síndrome de down (DSCR) en el cerebro humano
dc.title.alternative.eng.fl_str_mv in silico systemic analysis of the differential expression of genes localized in the down syndrome critical región (DSCR) in normal human brain
dc.title.alternative.por.fl_str_mv Análise sistêmica in silico da expressão diferencial de genes localizados na região crítica da síndrome de down (DSCR) no cérebro humano
title Análisis sistémico in silico de la expresión diferencial de genes localizados en la región crítica del síndrome de down (DSCR) en el cerebro humano
spellingShingle Análisis sistémico in silico de la expresión diferencial de genes localizados en la región crítica del síndrome de down (DSCR) en el cerebro humano
Genes
Bioinformática
Bioinformatics
Síndrome de Down
Cerebro
Análisis de micromatrices
Biología computacional
Perfilación de la expresión génica
Brain
Computational biology
Down syndrome
Gene expression profiling
Microarray analysis
title_short Análisis sistémico in silico de la expresión diferencial de genes localizados en la región crítica del síndrome de down (DSCR) en el cerebro humano
title_full Análisis sistémico in silico de la expresión diferencial de genes localizados en la región crítica del síndrome de down (DSCR) en el cerebro humano
title_fullStr Análisis sistémico in silico de la expresión diferencial de genes localizados en la región crítica del síndrome de down (DSCR) en el cerebro humano
title_full_unstemmed Análisis sistémico in silico de la expresión diferencial de genes localizados en la región crítica del síndrome de down (DSCR) en el cerebro humano
title_sort Análisis sistémico in silico de la expresión diferencial de genes localizados en la región crítica del síndrome de down (DSCR) en el cerebro humano
dc.creator.fl_str_mv Montoya Villegas, Julio César
Peña-Gonzalez, Angela
Satizábal Soto, José María
García Vallejo, Felipe
dc.contributor.author.none.fl_str_mv Montoya Villegas, Julio César
Peña-Gonzalez, Angela
Satizábal Soto, José María
García Vallejo, Felipe
dc.subject.armarc.spa.fl_str_mv Genes
Bioinformática
topic Genes
Bioinformática
Bioinformatics
Síndrome de Down
Cerebro
Análisis de micromatrices
Biología computacional
Perfilación de la expresión génica
Brain
Computational biology
Down syndrome
Gene expression profiling
Microarray analysis
dc.subject.armarc.eng.fl_str_mv Bioinformatics
dc.subject.proposal.spa.fl_str_mv Síndrome de Down
Cerebro
Análisis de micromatrices
Biología computacional
Perfilación de la expresión génica
dc.subject.proposal.eng.fl_str_mv Brain
Computational biology
Down syndrome
Gene expression profiling
Microarray analysis
description Uno de los retos más importantes de este siglo en la neurología genómica es construir mapas de expresión espacial de genes a lo largo de las distintas estructuras cerebrales con el fin de correlacionarlos con ciertas neuropatologías. Se analizaron los perfiles de transcripción de ocho genes HAS21 localizados en la región crítica del síndrome de Down en diferentes estructuras del cerebro humano normal. Se tomaron como referencia los valores de expresión de ocho genes HAS21/DSCR provenientes de experimentos de micromatrices de ADN de cerebros humanos normales y cuyos valores están disponibles en la base de datos del proyecto cerebro humano del Atlas del Cerebro del Allen Institute for Brain Sciences en Seattle, Washington (http://www.brain-map.org). Se determinó una expresión diferencial de estos genes HAS21/DSCR a lo largo de las estructuras localizadas en el lóbulo frontal, el lóbulo límbico y en los núcleos centrales. En el putamen, el núcleo caudado, el giro parahipocampal y en las áreas centrales se registraron los mayores niveles de transcripción global; estas áreas del cerebro parecen estar asociadas con diversos procesos de aprendizaje y de memoria. Se correlacionó la transcripción diferencial de genes DSCR con la localización cerebral y su potencial papel funcional.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2022-08-02T14:11:51Z
dc.date.available.none.fl_str_mv 2022-08-02T14:11:51Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1215256
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/14095
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 1215256
Universidad Autónoma de Occidente
Repositorio Educativo Digital
url https://hdl.handle.net/10614/14095
https://red.uao.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.citationendpage.spa.fl_str_mv 26
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 15
dc.relation.citationvolume.spa.fl_str_mv 20
dc.relation.cites.spa.fl_str_mv Montoya Villegas, J.C; Peña González, A; Satizábal Soto, J. M. y García Vallejo, F. (enero – junio 2012). Análisis sistémico in silico de la expresión diferencial de genes localizados en la región crítica del síndrome de down (DSCR) en el cerebro humano. Revista Med. 20 (1) 15-26. Recuperado de: https://www.redalyc.org/articulo.oa?id=91025872002
dc.relation.ispartofjournal.spa.fl_str_mv Revista Med
dc.relation.references.none.fl_str_mv 1. Stevens CF. Neuronal diversity: too many cell types for comfort? Curr Biol. 1998; 8(20):R708-10.
2. Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, et al. Functional organization of the transcriptome in human brain. Nat Neurosci. 2008; 11(11):1271-82.
3. Loebrich S, Nedivi E. The function of activity-regulated genes in the nervous systen. Physiol Rev. 2009; 89:1079-103.
4. Sutcliffe JG. mRNA in the mammalian central nervous system. Annu Rev Neurosci. 1988; 11:157-98.
5. Sandberg R, Yasuda R, Pankratz DG, Carter TA, Del Rio JA, Wodicka L, et al. Regional and strain-specific gene expression mapping in the adult mouse brain. Proc Natl Acad Sci USA. 2000; 97:11038-43.
6. Geschwind DH. Mice, microarrays, and the genetic diversity of the brain. Proc Natl Acad Sci USA. 2000; 97:10676-78.
7. Zirlinger M, Kreiman G, Anderson DJ. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei. Proc Natl Acad Sci USA. 2001; 98:5270-75.
8. Lein ES, Zhao X, Gage FH. Defining a molecular atlas of the hippocampus using ADN microarrays and high-throughput in situ hybridization. J Neurosci. 2004;24:3879-89.
9. McClung CA, Nestler E. Regulation of gene expression and cocaine reward by CREB and Delta Fos B. Nat Neurosci. 2003; 6:1208-15.
10. Lewis NE, Schramm G, Bordbar A, Schellenberger J, Andersen MP, Cheng JK, et al. Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nature Biotechnol. 2010; 28(12):1279-85.
11. Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park HS, et al. Chromosome 21 mapping and sequencing consortium. The ADN sequence of human chromosome 21. Nature. 2000; 405:311-9.
12. Gardiner K, Herault Y, Lott IT, Antonarakis SE, Reeves RH, Dierssen M. Down syndrome: from understanding the neurobiology to therapy. J Neurosci.2010; 30(45):14943-5.
13. Toyoda A, Noguchi H, Taylor TD, Ito T, Pletcher MT, Sakaki S, et al. Comparative genomic sequence analysis of the human chromosome 21 Down Syndrome Critical Region. Genome Res. 2002; 12:1323-32.
14. Eggermann T, Schönherr N, Spengler S, Jäger S, Denecke B, Binder G, et al. Identification of a 21q22 duplication in a Silver-Russell syndrome patient further narrows down the Down syndrome critical region.Am J Med Genet. 2010; 152A:356-59.
15. Montoya JC, Soto J, Satizábal JM, Sánchez A, García-Vallejo F. Genomic study of the critical region of chromosome 21 associated to Down syndrome. Colombia Médica. 2011; 42:26-38.
16. Cheadle C, Vawter MP, Freed WJ, Becker KG. Analysis of microarray data using Z score transformation. J Mol Diagn. 2003; 5:73-81.
17. Liang WS, Reiman EN, Valla J, Dunckley T, Beach TG, Grover A, et al. Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA. 2008;105:4441-46.
18. Amano K, Sago H, Uchikawa C, Suzuki T, Kotliarova SE, Nukina N, et al. Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome. Hum Mol Genet. 2004; 13:1333-40.
19. Shao M, Liu ZZ, Wang CD, Li HY, Carron C, Zhang HW, et al. Down syndrome critical region protein 5 regulates membrane localization of Wnt receptors, Dishevelled stability and convergent extension in vertebrate enbryos. Development. 2009; 136:2121-31.
20. Head E, Lott IT, Patterson D, Doran E, Haier RJ. Possible compensatory events in adult Down syndrome brain prior to the development of Alzheimer disease neuropathology: targets for nonpharmacological intervention. J Alzheimers Dis.2007;11:61-76.
21. Ryu YS, Park SY, Jung MS, Yoon SH, Kwen MY, Lee SY, et al. Dyrk1A-mediated phosphorylation of Presenilin 1: a functional link between Down syndrome and Alzheimer’s disease. J Neurochem. 2010;115:574-84.
22. Sun X, Wu Y, Chen B, Zhang Z, Zhou W, Tong Y, et al. Regu la tor of calcineurin 1 (RCAN1) facilitates neuronal apoptosis through caspase-3 activation. J Biol Chem. 2011; 286:9049-62.
23. Ferrando-Miguel R, Cheon MS, Lubec G. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain (Part V): overexpression of phosphatidyl-inositol-glycan class P protein (DSCR5). Amino Acids. 2004; 26:255-61.
24. Shibuya K, Kudoh J, Minoshima S, Kawasaki K, Asakawa S, Shimizu N. Isolation of two novel genes, DSCR5 and DSCR6, from Down syndrome critical region on human chromosome 21q22.2. Biochem Biophys Res Commun2000; 271:693-8.
25. Graybiel AM. The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol. 2005; 15:638-44.
26. Packard MG, Knowlton BJ. Learning and memory functions of the Basal Ganglia. Annu Rev Neurosci. 2002; 25:563-93.
27. Dierssen M, Herault Y, Estivill X. Aneuploidy: from a physiological mechanism of variance to Down syndrome. Physiol Rev. 2009;89(3):887-920.
28. Osada T, Adachi Y, Kimura HM, Miyashita Y. Towards understanding of the cortical network underlying associative memory. Philos Trans R Soc Lond B Biol Sci. 2008;363:2187-99.
29. Potier MC, Rivals I, Mercier G, Ettwiller L, Moldrich RX, Laffaire J, et al. Transcriptional disruptions in Down syndrome: a case study in the Ts1Cje mouse cerebellum during post-natal development. J Neurochen. 2006; 97 Suppl 1:104-9.
30. Lee S, Lee E, Lee KH, Lee D. Predicting disease phenotypes based on the molecular networks with condition-responsive correlation. Int J Data Min Bioinform.2011; 5:131-42.
31. Miller JA, Horvath S, Geschwind DH. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc Natl Acad Sci USA.2010; 107:12698-703.
32. O’Doherty A, Ruf S, Mulligan C, Hildreth V, Errington ML, Cooke S, et al. An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science. 2005;309:2033-7.
33. Morice E, Andreae LC, Cooke SF, Vanes L, Fisher EM, Tybulewicz VL, et al. Preservation of long-term memory and synaptic plasticity despite short-term impairments in the Tc1 mouse model of Down syndrome. Learn Mem.2008; 15(7): 492-500.
34. Belichenko PV, Kleschevnikov AM, Masliah E, Wu C, Takimoto-Kimura R, Salehi A, et al. Excitatory-inhibitory relationship in the fascia dentata in the Ts65Dn mouse model of Down syndrome. J Comp Neurol.2009; 512(4): 453-66.
35. Korbel JO, Tirosh-Wagner T, Urban AE, Chen XN, Kasowski M, Dai L, et al. The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc Natl Acad Sci USA.2009; 106: 12031-6.
36. Prandini P, Deutsch S, Lyle R, Gagnebin M, Delucinge Vivier C, Delorenzi M, Natural gene-expression variation in Down syndrome modulates the outcome of gene-dosage imbalance. Am J Hum Genet. 2007; 81:252-63.
37. Yahya-GraisonAït E, Aubert J, Dauphinot L, Rivals I, Prieur M, Golfier G, et al. Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. Am J Hum Genet. 2007; 81(3):475-91.
38. Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S. Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nat Rev Genet 2004; 5:725-38.
39. Wiseman FK, Alford KA, Tybulewicz VL, Fisher EM. Down syndrome--recent progress and future prospects. Hum Mol Genet. 2009;18(R1):R75-83.
40. Vilardell M, Rasche A, Thormann A, Maschke-Dutz E, Pérez-Jurado LA, Lehrach H, et al. Meta-analysis of heterogeneous Down Syndrome data reveals consistent genome-wide dosage effects related to neurological processes. BMC Genomics. 2011;12:229.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Militar Nueva Granada, 2012
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Universidad Militar Nueva Granada, 2012
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente, Cll 25 # 115-85 Km 2 Vía Cali - Jamundi
dc.publisher.spa.fl_str_mv Editorial Neogranadina
dc.publisher.place.spa.fl_str_mv Bogotá
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://dspace7-uao.metacatalogo.com/bitstreams/d83aa568-37c5-4bc0-9702-014233dc6f8b/download
https://dspace7-uao.metacatalogo.com/bitstreams/cb45d56a-4fa0-4843-89bd-21209643d169/download
https://dspace7-uao.metacatalogo.com/bitstreams/1e4330ad-f016-4e01-ab52-4ecb400a7edb/download
https://dspace7-uao.metacatalogo.com/bitstreams/b7d53108-2664-4639-b454-cbcca6fbfa3b/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
0cbda89072f71dbd170ca078b1042a93
bf3ef26dd153b33fb0700a1c659fe23d
0fcc9fa5800e7f782410b4468e673909
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UAO
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1808478832904110080
spelling Montoya Villegas, Julio Césare82b9cbd972b956b2c3a320793eff3fbPeña-Gonzalez, Angela5c99d2648b2f40d449c5eaffbf3c110eSatizábal Soto, José Maríaaf3af00699c79cd1089ce5b3c1bcebe0García Vallejo, Felipe4ec19dfd5067ff1a0ecbe8cd3c4bdfb2Universidad Autónoma de Occidente, Cll 25 # 115-85 Km 2 Vía Cali - Jamundi2022-08-02T14:11:51Z2022-08-02T14:11:51Z20121215256https://hdl.handle.net/10614/14095Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/Uno de los retos más importantes de este siglo en la neurología genómica es construir mapas de expresión espacial de genes a lo largo de las distintas estructuras cerebrales con el fin de correlacionarlos con ciertas neuropatologías. Se analizaron los perfiles de transcripción de ocho genes HAS21 localizados en la región crítica del síndrome de Down en diferentes estructuras del cerebro humano normal. Se tomaron como referencia los valores de expresión de ocho genes HAS21/DSCR provenientes de experimentos de micromatrices de ADN de cerebros humanos normales y cuyos valores están disponibles en la base de datos del proyecto cerebro humano del Atlas del Cerebro del Allen Institute for Brain Sciences en Seattle, Washington (http://www.brain-map.org). Se determinó una expresión diferencial de estos genes HAS21/DSCR a lo largo de las estructuras localizadas en el lóbulo frontal, el lóbulo límbico y en los núcleos centrales. En el putamen, el núcleo caudado, el giro parahipocampal y en las áreas centrales se registraron los mayores niveles de transcripción global; estas áreas del cerebro parecen estar asociadas con diversos procesos de aprendizaje y de memoria. Se correlacionó la transcripción diferencial de genes DSCR con la localización cerebral y su potencial papel funcional.One of the most important challenges of the 21st Century Neurology is to build gene expression profiles along the different structures of human brain trying to correlate them with some neuropathologies. The expression profiles of eight HAS21 genes located on the Down syndrome critical region in different structures of the normal human brain was analyzed. From DNA microarray experiments of normal human brains which are available in the free access human brain database of the Brain Atlas project of the Allen Institute for Brain Sciences in Seattle, Washington (http://www.brainmap.org) expression levels data of eight HSA21/DSCR genes along different structures of normal human brain were statistically analyzed. A differential expression of these genes HSA21/DSCR in some anatomic structures located in the frontal lobe, limbic lobe and cerebral central nuclei was registered. Putamen, caudate nucleus, parahipocampal gyro and central areas, showed high levels of transcription for those HSA21/DSCR genes included in the study; these areas of the brain appear to be associated with some processes of learning and memory. This study allowed us to correlate the differential transcription of DSCR genes, their structural localization and functional role in brain functionUm dos maiores desafio deste século na neurologia genômica é construir mapas de expressão espacial de genes ao longo das diferentes estruturas cerebrais com o fim de correlacioná-los com certas neuropatologias. Foram analisados os perfis de transcrição de oito genes HAS21 localizados na região crítica da síndrome de Down em diferentes estruturas do cérebro humano normal. Foram usados como referência os valores de expressão de oito genes HAS21/DSCR provenientes de experimentos de micromatrizes de ADN de cérebros humanos normais e cujos valores estão disponíveis no bando de dados do projeto cérebro humano do Atlas do Cérebro do Allen Institute for Brain Sciences em Seattle, Washington (http://www.brain-map.org). Determinou-se uma expressão diferencial destes genes HAS21/DSCR ao longo das estruturas localizadas no lóbulo frontal, o lóbulo límbico e nos núcleos centrais. No putâmen, o núcleo caudado, o giro parahipocampal e nas áreas centrais foram registrados os maiores níveis de transcrição global; estas áreas do cérebro parecem estar associadas com diversos processos de aprendizagem e de memória. Correlacionou-se a transcrição diferencial de genes DSCR com a localização cerebral e seu potencial papel funcional12 páginasapplication/pdfspaEditorial NeogranadinaBogotáDerechos reservados - Universidad Militar Nueva Granada, 2012https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Análisis sistémico in silico de la expresión diferencial de genes localizados en la región crítica del síndrome de down (DSCR) en el cerebro humanoin silico systemic analysis of the differential expression of genes localized in the down syndrome critical región (DSCR) in normal human brainAnálise sistêmica in silico da expressão diferencial de genes localizados na região crítica da síndrome de down (DSCR) no cérebro humanoArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85GenesBioinformáticaBioinformaticsSíndrome de DownCerebroAnálisis de micromatricesBiología computacionalPerfilación de la expresión génicaBrainComputational biologyDown syndromeGene expression profilingMicroarray analysis2611520Montoya Villegas, J.C; Peña González, A; Satizábal Soto, J. M. y García Vallejo, F. (enero – junio 2012). Análisis sistémico in silico de la expresión diferencial de genes localizados en la región crítica del síndrome de down (DSCR) en el cerebro humano. Revista Med. 20 (1) 15-26. Recuperado de: https://www.redalyc.org/articulo.oa?id=91025872002Revista Med1. Stevens CF. Neuronal diversity: too many cell types for comfort? Curr Biol. 1998; 8(20):R708-10.2. Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, et al. Functional organization of the transcriptome in human brain. Nat Neurosci. 2008; 11(11):1271-82.3. Loebrich S, Nedivi E. The function of activity-regulated genes in the nervous systen. Physiol Rev. 2009; 89:1079-103.4. Sutcliffe JG. mRNA in the mammalian central nervous system. Annu Rev Neurosci. 1988; 11:157-98.5. Sandberg R, Yasuda R, Pankratz DG, Carter TA, Del Rio JA, Wodicka L, et al. Regional and strain-specific gene expression mapping in the adult mouse brain. Proc Natl Acad Sci USA. 2000; 97:11038-43.6. Geschwind DH. Mice, microarrays, and the genetic diversity of the brain. Proc Natl Acad Sci USA. 2000; 97:10676-78.7. Zirlinger M, Kreiman G, Anderson DJ. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei. Proc Natl Acad Sci USA. 2001; 98:5270-75.8. Lein ES, Zhao X, Gage FH. Defining a molecular atlas of the hippocampus using ADN microarrays and high-throughput in situ hybridization. J Neurosci. 2004;24:3879-89.9. McClung CA, Nestler E. Regulation of gene expression and cocaine reward by CREB and Delta Fos B. Nat Neurosci. 2003; 6:1208-15.10. Lewis NE, Schramm G, Bordbar A, Schellenberger J, Andersen MP, Cheng JK, et al. Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nature Biotechnol. 2010; 28(12):1279-85.11. Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park HS, et al. Chromosome 21 mapping and sequencing consortium. The ADN sequence of human chromosome 21. Nature. 2000; 405:311-9.12. Gardiner K, Herault Y, Lott IT, Antonarakis SE, Reeves RH, Dierssen M. Down syndrome: from understanding the neurobiology to therapy. J Neurosci.2010; 30(45):14943-5.13. Toyoda A, Noguchi H, Taylor TD, Ito T, Pletcher MT, Sakaki S, et al. Comparative genomic sequence analysis of the human chromosome 21 Down Syndrome Critical Region. Genome Res. 2002; 12:1323-32.14. Eggermann T, Schönherr N, Spengler S, Jäger S, Denecke B, Binder G, et al. Identification of a 21q22 duplication in a Silver-Russell syndrome patient further narrows down the Down syndrome critical region.Am J Med Genet. 2010; 152A:356-59.15. Montoya JC, Soto J, Satizábal JM, Sánchez A, García-Vallejo F. Genomic study of the critical region of chromosome 21 associated to Down syndrome. Colombia Médica. 2011; 42:26-38.16. Cheadle C, Vawter MP, Freed WJ, Becker KG. Analysis of microarray data using Z score transformation. J Mol Diagn. 2003; 5:73-81.17. Liang WS, Reiman EN, Valla J, Dunckley T, Beach TG, Grover A, et al. Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA. 2008;105:4441-46.18. Amano K, Sago H, Uchikawa C, Suzuki T, Kotliarova SE, Nukina N, et al. Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome. Hum Mol Genet. 2004; 13:1333-40.19. Shao M, Liu ZZ, Wang CD, Li HY, Carron C, Zhang HW, et al. Down syndrome critical region protein 5 regulates membrane localization of Wnt receptors, Dishevelled stability and convergent extension in vertebrate enbryos. Development. 2009; 136:2121-31.20. Head E, Lott IT, Patterson D, Doran E, Haier RJ. Possible compensatory events in adult Down syndrome brain prior to the development of Alzheimer disease neuropathology: targets for nonpharmacological intervention. J Alzheimers Dis.2007;11:61-76.21. Ryu YS, Park SY, Jung MS, Yoon SH, Kwen MY, Lee SY, et al. Dyrk1A-mediated phosphorylation of Presenilin 1: a functional link between Down syndrome and Alzheimer’s disease. J Neurochem. 2010;115:574-84.22. Sun X, Wu Y, Chen B, Zhang Z, Zhou W, Tong Y, et al. Regu la tor of calcineurin 1 (RCAN1) facilitates neuronal apoptosis through caspase-3 activation. J Biol Chem. 2011; 286:9049-62.23. Ferrando-Miguel R, Cheon MS, Lubec G. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain (Part V): overexpression of phosphatidyl-inositol-glycan class P protein (DSCR5). Amino Acids. 2004; 26:255-61.24. Shibuya K, Kudoh J, Minoshima S, Kawasaki K, Asakawa S, Shimizu N. Isolation of two novel genes, DSCR5 and DSCR6, from Down syndrome critical region on human chromosome 21q22.2. Biochem Biophys Res Commun2000; 271:693-8.25. Graybiel AM. The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol. 2005; 15:638-44.26. Packard MG, Knowlton BJ. Learning and memory functions of the Basal Ganglia. Annu Rev Neurosci. 2002; 25:563-93.27. Dierssen M, Herault Y, Estivill X. Aneuploidy: from a physiological mechanism of variance to Down syndrome. Physiol Rev. 2009;89(3):887-920.28. Osada T, Adachi Y, Kimura HM, Miyashita Y. Towards understanding of the cortical network underlying associative memory. Philos Trans R Soc Lond B Biol Sci. 2008;363:2187-99.29. Potier MC, Rivals I, Mercier G, Ettwiller L, Moldrich RX, Laffaire J, et al. Transcriptional disruptions in Down syndrome: a case study in the Ts1Cje mouse cerebellum during post-natal development. J Neurochen. 2006; 97 Suppl 1:104-9.30. Lee S, Lee E, Lee KH, Lee D. Predicting disease phenotypes based on the molecular networks with condition-responsive correlation. Int J Data Min Bioinform.2011; 5:131-42.31. Miller JA, Horvath S, Geschwind DH. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc Natl Acad Sci USA.2010; 107:12698-703.32. O’Doherty A, Ruf S, Mulligan C, Hildreth V, Errington ML, Cooke S, et al. An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science. 2005;309:2033-7.33. Morice E, Andreae LC, Cooke SF, Vanes L, Fisher EM, Tybulewicz VL, et al. Preservation of long-term memory and synaptic plasticity despite short-term impairments in the Tc1 mouse model of Down syndrome. Learn Mem.2008; 15(7): 492-500.34. Belichenko PV, Kleschevnikov AM, Masliah E, Wu C, Takimoto-Kimura R, Salehi A, et al. Excitatory-inhibitory relationship in the fascia dentata in the Ts65Dn mouse model of Down syndrome. J Comp Neurol.2009; 512(4): 453-66.35. Korbel JO, Tirosh-Wagner T, Urban AE, Chen XN, Kasowski M, Dai L, et al. The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc Natl Acad Sci USA.2009; 106: 12031-6.36. Prandini P, Deutsch S, Lyle R, Gagnebin M, Delucinge Vivier C, Delorenzi M, Natural gene-expression variation in Down syndrome modulates the outcome of gene-dosage imbalance. Am J Hum Genet. 2007; 81:252-63.37. Yahya-GraisonAït E, Aubert J, Dauphinot L, Rivals I, Prieur M, Golfier G, et al. Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. Am J Hum Genet. 2007; 81(3):475-91.38. Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S. Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nat Rev Genet 2004; 5:725-38.39. Wiseman FK, Alford KA, Tybulewicz VL, Fisher EM. Down syndrome--recent progress and future prospects. Hum Mol Genet. 2009;18(R1):R75-83.40. Vilardell M, Rasche A, Thormann A, Maschke-Dutz E, Pérez-Jurado LA, Lehrach H, et al. Meta-analysis of heterogeneous Down Syndrome data reveals consistent genome-wide dosage effects related to neurological processes. BMC Genomics. 2011;12:229.Comunidad generalPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/d83aa568-37c5-4bc0-9702-014233dc6f8b/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALAnalisis_sistemico_in_silico_de_la_expresion_diferencial_de_genes_localizados_en_la_region_critica_del sindrome_de_down.pdfAnalisis_sistemico_in_silico_de_la_expresion_diferencial_de_genes_localizados_en_la_region_critica_del sindrome_de_down.pdfTexto completo del artículoapplication/pdf576509https://dspace7-uao.metacatalogo.com/bitstreams/cb45d56a-4fa0-4843-89bd-21209643d169/download0cbda89072f71dbd170ca078b1042a93MD53TEXTAnalisis_sistemico_in_silico_de_la_expresion_diferencial_de_genes_localizados_en_la_region_critica_del sindrome_de_down.pdf.txtAnalisis_sistemico_in_silico_de_la_expresion_diferencial_de_genes_localizados_en_la_region_critica_del sindrome_de_down.pdf.txtExtracted texttext/plain49044https://dspace7-uao.metacatalogo.com/bitstreams/1e4330ad-f016-4e01-ab52-4ecb400a7edb/downloadbf3ef26dd153b33fb0700a1c659fe23dMD54THUMBNAILAnalisis_sistemico_in_silico_de_la_expresion_diferencial_de_genes_localizados_en_la_region_critica_del sindrome_de_down.pdf.jpgAnalisis_sistemico_in_silico_de_la_expresion_diferencial_de_genes_localizados_en_la_region_critica_del sindrome_de_down.pdf.jpgGenerated Thumbnailimage/jpeg12819https://dspace7-uao.metacatalogo.com/bitstreams/b7d53108-2664-4639-b454-cbcca6fbfa3b/download0fcc9fa5800e7f782410b4468e673909MD5510614/14095oai:dspace7-uao.metacatalogo.com:10614/140952024-01-19 16:32:05.051https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Universidad Militar Nueva Granada, 2012open.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K