Simulación Numérica Directa de la deposición de partículas no esféricas en grandes contenedores

La presente investigación se centra en el estudio numérico del movimiento de partículas no esféricas regulares que caen libremente en un fluido newtoniano inicialmente en reposo. La base del método numérico se centró en el uso de la técnica PR-DNS (Particle Resolved Direct Numerical Simulation) con...

Full description

Autores:
García González, Diego Fernando
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/15713
Acceso en línea:
https://hdl.handle.net/10614/15713
https://red.uao.edu.co/
Palabra clave:
Maestría en Sistemas Energéticos
Cuerpo en caída libre
Sedimentación
Simulación Numérica Directa con partícula resuelta
Partículas no esféricas regulares
Velocidad terminal
Particle Resolved Direct Numerical Simulation (PR-DNS)
Overset mesh Technique
Six Degrees of Freedom Solver
Rights
openAccess
License
Derechos reservados - Universidad Autónoma de Occidente, 2024
id REPOUAO2_8dbe2dbc041523e879a7dbb8ea04f0ed
oai_identifier_str oai:red.uao.edu.co:10614/15713
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.spa.fl_str_mv Simulación Numérica Directa de la deposición de partículas no esféricas en grandes contenedores
title Simulación Numérica Directa de la deposición de partículas no esféricas en grandes contenedores
spellingShingle Simulación Numérica Directa de la deposición de partículas no esféricas en grandes contenedores
Maestría en Sistemas Energéticos
Cuerpo en caída libre
Sedimentación
Simulación Numérica Directa con partícula resuelta
Partículas no esféricas regulares
Velocidad terminal
Particle Resolved Direct Numerical Simulation (PR-DNS)
Overset mesh Technique
Six Degrees of Freedom Solver
title_short Simulación Numérica Directa de la deposición de partículas no esféricas en grandes contenedores
title_full Simulación Numérica Directa de la deposición de partículas no esféricas en grandes contenedores
title_fullStr Simulación Numérica Directa de la deposición de partículas no esféricas en grandes contenedores
title_full_unstemmed Simulación Numérica Directa de la deposición de partículas no esféricas en grandes contenedores
title_sort Simulación Numérica Directa de la deposición de partículas no esféricas en grandes contenedores
dc.creator.fl_str_mv García González, Diego Fernando
dc.contributor.advisor.none.fl_str_mv Laín Beatove, Santiago
López Mejía, Omar Darío, codirector
dc.contributor.author.none.fl_str_mv García González, Diego Fernando
dc.contributor.corporatename.spa.fl_str_mv Universidad Autónoma de Occidente
dc.contributor.jury.none.fl_str_mv Franco Guzmán, Ediguer Enrique
Castang Montiel, Carlos Eduardo
dc.subject.proposal.spa.fl_str_mv Maestría en Sistemas Energéticos
Cuerpo en caída libre
Sedimentación
Simulación Numérica Directa con partícula resuelta
Partículas no esféricas regulares
Velocidad terminal
topic Maestría en Sistemas Energéticos
Cuerpo en caída libre
Sedimentación
Simulación Numérica Directa con partícula resuelta
Partículas no esféricas regulares
Velocidad terminal
Particle Resolved Direct Numerical Simulation (PR-DNS)
Overset mesh Technique
Six Degrees of Freedom Solver
dc.subject.proposal.eng.fl_str_mv Particle Resolved Direct Numerical Simulation (PR-DNS)
Overset mesh Technique
Six Degrees of Freedom Solver
description La presente investigación se centra en el estudio numérico del movimiento de partículas no esféricas regulares que caen libremente en un fluido newtoniano inicialmente en reposo. La base del método numérico se centró en el uso de la técnica PR-DNS (Particle Resolved Direct Numerical Simulation) con la combinación de técnicas de mallas superpuesta para la discretización del dominio fluido y el solucionador SixDOF como fundamento para el enfoque lagrangiano que permita determinar el movimiento y la trayectoria de la partícula a partir del cálculo de las fuerzas y momentos que actúan sobre la superficie de la partícula. El diseño de los modelos geométricos fue desarrollado en Solidworks y las simulaciones numéricas se llevaron a cabo empleando técnicas avanzadas de dinámica de fluidos computacional en el módulo ANSYS Fluent. Se desarrollaron las simulaciones transitorias bajo diferentes combinaciones tanto para partículas 2D como tridimensionales. Las primeras simulaciones se llevaron a cabo para un ejemplo popular de prueba numérica que describe el flujo 2D causado por la caída libre de una partícula circular dentro de un depósito líquido, así como mediciones experimentales 3D en la sedimentación de una esfera, las cuales fueron verificadas y validadas con estudios numéricos y experimentales previos, mostrando una alta fiabilidad en la descripción del movimiento de este tipo de formas. Se encontró que las partículas circulares y esféricas bajo las condiciones de estudio utilizadas, describen regímenes de movimiento considerados como verticalmente estables, al no presentar cambios repentinos en la trayectoria de caída ni desplazamientos laterales considerables. Se demostró que la dinámica de las inestabilidades de la trayectoria se caracterizarse por el triplete (Γ,Ga,χ ) correspondiente a la relación de la densidad sólido/líquido, el número de Galileo y la relación de aspecto. A partir de este punto se desarrolló una serie de simulaciones numéricas para analizar la sedimentación de elipses y elipsoides oblatos para complementar el análisis y conocer los alcances del método numérico. Los resultados demostraron la gran dependencia de la trayectoria a los parámetro relevantes y la incidencia de la relación de aspecto. Se encontró diferentes modos para el régimen oscilatorio de las elipses influenciado por la relación de aspecto que al aumentar no solo influye en la aparición de nuevos modos de movimiento oscilatorio si no que retrasa el tiempo de asentamiento de las partículas. Este estudio, en concordancia con los objetivos planteados, propone un nuevo método para analizar la dinámica de asentamiento de diferentes tipos de partículas. También ayuda a ampliar la gama de escenarios y combinaciones de parámetros para enriquecer el análisis de la dinámica de partículas no esféricas regulares e irregulares que aún no han sido desarrolladas.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-09T12:56:30Z
dc.date.available.none.fl_str_mv 2024-08-09T12:56:30Z
dc.date.issued.none.fl_str_mv 2024-07-12
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv García González, D. F. (2024). Simulación Numérica Directa de la deposición de partículas no esféricas en grandes contenedores. (Tesis). Universidad Autónoma de Occidente. Cali. Colombia. https://hdl.handle.net/10614/15713
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/15713
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv García González, D. F. (2024). Simulación Numérica Directa de la deposición de partículas no esféricas en grandes contenedores. (Tesis). Universidad Autónoma de Occidente. Cali. Colombia. https://hdl.handle.net/10614/15713
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/15713
https://red.uao.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Alger, G. R. (1964). Terminal fall velocity of particles of irregular shapes as affected by surface área. Colorado State University. https://hdl.handle.net/10217/194870 Allen, H. S. (1900). The motion of a sphere in a viscous fluid. Philosophical Magazine and Journal of Science. 50, 519–534. https://doi.org/10.1080/14786440009463941 Andersen, A., Pesavento, U., & Wang, Z. J. (2005). Unsteady aerodynamics of fluttering and tumbling plates. Journal of Fluid Mechanics, 541, 65–90. https://doi.org/10.1017/S002211200500594X ANSYS Inc (2017). ANSYS FLUENT 12.0 User's Guide - 11.3.7 Six DOF Solver Settings. Release 18.1, PA 15317: Ansys. from https://www.afs.enea.it/project/neptunius/docs/ fluent/html/ug/node401.html ANSYS Inc (2018). ANSYS Fluent Getting Started Guide - Chapter 1: Introduction to ANSYS Fluent. Release 19.1, PA 15317: Ansys. from http://www.ansys.com Ardekani, M. N., Costa, P., Breugem, W. P., & Brandt, L. (2016). Numerical study of the sedimentation of spheroidal particles. International Journal of Multiphase Flow, 87, 16–34. https://doi.org/10.1016/j.ijmultiphaseflow.2016.08.005 Auguste, F., & Magnaudet, J. (2018). Path oscillations and enhanced drag of light rising spheres. Journal of Fluid Mechanics, 841, 228–266. https://doi.org/10.1017/jfm.2018.100ï Auguste, F., Magnaudet, J., & Fabre, D. (2013). Falling styles of disks. Journal of Fluid Mechanics, 719, 388–405. https://doi.org/10.1017/jfm.2012.602 Bagheri, G., & Bonadonna, C. (2016). On the drag of freely falling non-spherical particles. Powder Technology, 301, 526–544. https://doi.org/10.1016/j.powtec.2016.06.015 Belmonte, A., Eisenberg, H., & Moses, E. (1998). From Flutter to Tumble: Inertial Drag and Froude Similarity in Falling Paper. Physical Review Letters, 81(2), 345. https://doi.org/10.1103/PhysRevLett.81.345 Castang, C., Laín, S., García, D., & Sommerfeld, M. (2022). Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers. Powder Technology, 402. https://doi.org/10.1016/j.powtec.2022.117341 Chrust, M., Bouchet, G., & Duek, J. (2010). Parametric study of the transition in the wake of oblate spheroids and flat cylinders. Journal of Fluid Mechanics, 665, 199–208. https://doi.org/10.1017/S0022112010004878 Chrust, M., Bouchet, G., & Dûek, J. (2013). Numerical simulation of the dynamics of freely falling discs. Physics of Fluids, 25(4). https://doi.org/10.1063/1.4799179 Chrust, M., Bouchet, G., & Dušek, J. (2014). Effect of solid body degrees of freedom on the path instabilities of freely falling or rising flat cylinders. Journal of Fluids and Structures, 47, 55–70. https://doi.org/10.1016/j.jfluidstructs.2013.09.016 Dabade, V., Marath, N. K., & Subramanian, G. (2015). Effects of inertia and viscoelasticity on sedimenting anisotropic particles. Journal of Fluid Mechanics, 778, 133–188. https://doi.org/10.1017/jfm.2015.360 Daitche, A. (2015). On the role of the history force for inertial particles in turbulence. Journal of Fluid Mechanics, 782, 567–593. https://doi.org/10.1017/jfm.2015.551 Ern, P., Risso, F., Fabre, D., & Magnaudet, J. (2011). Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annual Review of Fluid Mechanics, 44, 97–121. https://doi.org/10.1146/annurev-fluid-120710-101250 Ernst, M., Dietzel, M., & Sommerfeld, M. (2013). A lattice Boltzmann method for simulating transport and agglomeration of resolved particles. Acta Mechanica, 224(10), 2425–2449. https://doi.org/10.1007/s00707-013-0923-1 Fabre, D., Auguste, F., & Magnaudet, J. (2008). Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Physics of Fluids, 20(5). https://doi.org/10.1063/1.2909609 Feng, J., Hu, H, H., & Joseph, D, D. (1994). Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid Part 1. Sedimentation. Journal of Fluid Mechanics. Mech (Vol. 261), 95-134. Feng, Z. G., & Michaelides, E. E. (2009). Robust treatment of no-slip boundary condition and velocity updating for the lattice-Boltzmann simulation of particulate flows. Computers and Fluids, 38(2), 370–381. https://doi.org/10.1016/j.compfluid.2008.04.013 Fernandes, P. C., Risso, F. D., Ern, P., & Magnaudet, J. (2007). Oscillatory motion and wake instability of freely rising axisymmetric bodies. Journal of Fluid Mechanics, 573, 479–502. https://doi.org/10.1017/S0022112006003685 Field, S. B., Klaus, M., Moore, M. G., & Nori, F. (1997). Chaotic dynamics of falling disks. Nature, 388, 252-254. DOI:10.1038/40817 Fonseca, F., & Hermann, H. J. (2005). Simulation of the sedimentation of a falling oblate ellipsoid. Physica A: Statistical Mechanics and its Applications, 345(3–4), 341–355. https://doi.org/10.1016/j.physa.2004.03.095 Ganser, G, H. (1993). A rational approach to drag prediction of spherical and nonspherical particles. En Powder Technology,77(2), p, 143-152. https://doi.org/10.1016/0032-5910(93)80051-B García, D. F. (2019). Determinación de las fuerzas fluidodinámicas que actúan sobre una partícula no esférica de forma irregular mediante DNS [Tesis de pregrado, Universidad Autónoma de Occidente]. Repositorio Educativo Digital UAO. https://red.uao.edu.co/ Glowinski, R., Pan, T. W., Hesla, T. I., Joseph, D. D., & Périaux, J. (2001). A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow past Moving Rigid Bodies: Application to Particulate Flow. Journal of Computational Physics, 169(2), 363–426. https://doi.org/10.1006/jcph.2000.6542 Guo, J, K. (2011). Motion of spheres falling through fluids. Journal of Hydraulic Research, 49, 32–41. https://doi.org/10.1080/00221686.2010.538572 Haider, A., & Levenspiel, O. (1989). Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles. Powder Technology, 58(1). P, 63-70. https://doi.org/10.1016/0032-5910(89)80008-7 Hardy, G. H., Seshu Aiyar, P. V., & Wilson, B. M. (1927). Collected Papers of Srinivasa Ramanujan. American Mathematical Societ: AMS Chelsea Publishing, 159. Heisinger, L., Newton, P., & Kanso, E. (2014). Coins falling in water. Journal of Fluid Mechanics, 742, 243–253. https://doi.org/10.1017/jfm.2014.6 Hölzer, A., & Sommerfeld, M. (2008). New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technology, 184(3), 361–365. https://doi.org/10.1016/j.powtec.2007.08.021 Horowitz, M., & Williamson, C. H. K. (2008). Critical mass and a new periodic four-ring vortex wake mode for freely rising and falling spheres. Physics of Fluids, 20(10). https://doi.org/10.1063/1.2992126 Horowitz, M., & Williamson, C. H. K. (2010). The effect of Reynolds number on the dynamics and wakes of freely rising and falling spheres. Journal of Fluid Mechanics, 651, 251–294. https://doi.org/10.1017/S0022112009993934 Huang, H., Yang, X., & Lu, X. yun. (2014). Sedimentation of an ellipsoidal particle in narrow tubes. Physics of Fluids, 26(5). https://doi.org/10.1063/1.4874606 Jenny, M., Dušek, J., & Bouchet, G. (2004). Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. Journal of Fluid Mechanics, 508, 201–239. https://doi.org/10.1017/S0022112004009164 Lain, S., & Gandini, M.A. (2023). Ideal reactors as an illustration of solving transport phenomena problems in Engineering. Fluids, 8, 58. https://doi.org/10.3390/fluids8020058. Laín, S., García, D. F., & Gandini, M. A. (2023). Analytical Solutions of the Riccati Differential Equation: Particle Deposition in a Viscous Stagnant Fluid. Mathematics, 11(15). https://doi.org/10.3390/math11153262 Lain, S., & Sommerfeld, M. (2007). A study of the pneumatic conveying of non-spherical particles in a turbulent horizontal channel flow. Brazilian Journal of Chemical Engineering, 24, 535–546. DOI: 10.1590/S0104-66322007000400007. Lashgari, I., Ardekani, M. N., Banerjee, I., Russom, A., & Brandt, L. (2017). Inertial migration of spherical and oblate particles in straight ducts. Journal of Fluid Mechanics, 819, 540–561. https://doi.org/10.1017/jfm.2017.189 Lee, C., Su, Z., Zhong, H., Chen, S., Zhou, M., & Wu, J. (2013). Experimental investigation of freely falling thin disks. Part 2. Transition of three-dimensional motion from zigzag to spiral. Journal of Fluid Mechanics, 732, 77–104. https://doi.org/10.1017/jfm.2013.390 Magnaudet, J., & Mougin, G. (2007). Wake instability of a fixed spheroidal bubble. Journal of Fluid Mechanics, 572, 311–337. https://doi.org/10.1017/S0022112006003442 Marchildon, E. K., Clamen, A., & Gauvin, W. H. (1964). Drag and oscillatory motion of freely falling cylindrical particles. The Canadian Journal of Chemical Engineering, 42 (4), 178-182.https://doi.org/10.1002/cjce.5450420410 Mathai, V., Zhu, X., Sun, C., & Lohse, D. (2018). Flutter to tumble transition of buoyant spheres triggered by rotational inertia changes. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-04177-w Mittal, R., Seshadri, V., & Udaykumar, H. S. (2004). Flutter, tumble and vortex induced autorotation. Theoretical and Computational Fluid Dynamics, 17(3), 165–170. https://doi.org/10.1007/s00162-003-0101-5 Moriche, M., Uhlmann, M., & Dušek, J. (2021). A single oblate spheroid settling in unbounded ambient fluid: A benchmark for simulations in steady and unsteady wake regimes. International Journal of Multiphase Flow, 136. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103519 Namkoong, K., Yoo, J. Y., & Choi, H. G. (2008). Numerical analysis of two-dimensional motion of a freely falling circular cylinder in an infinite fluid. Journal of Fluid Mechanics, 604, 33–53. https://doi.org/10.1017/S0022112008001304 Ouchene, R., Khalij, M., Arcen, B., & Tanière, A. (2016). A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers. Powder Technology, 303, 33–43. https://doi.org/10.1016/j.powtec.2016.07.067 Pesavento, U., & Wang, Z. J. (2004). Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation. Physical Review Letters, 93(14). https://doi.org/10.1103/PhysRevLett.93.144501 Raaghav, S. K. R., Poelma, C., & Breugem, W. P. (2022). Path instabilities of a freely rising or falling sphere. International Journal of Multiphase Flow, 153. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104111 Reddy, R. K., Joshi, J. B., Nandakumar, K., & Minev, P. D. (2010). Direct numerical simulations of a freely falling sphere using fictitious domain method: Breaking of axisymmetric wake. Chemical Engineering Science, 65(6), 2159–2171. https://doi.org/10.1016/j.ces.2009.12.009 Rubey, W, W. (1933). Settling velocity of gravel, sand, and silt particles. American Journal of Science. 225, 325–338. DOI:10.2475/ajs.s5-25.148.325 Spirito, G. (2020). An appraisal of the application of the overset method to the CFD simulation of fluid machines. ING - Scuola Di Ingegneria Industriale E Dell’Informazione. https://www.politesi.polimi.it/handle/10589/165568 Suzuki, K., & Inamuro, T. (2011). Effect of internal mass in the simulation of a moving body by the immersed boundary method. Computers and Fluids, 49(1), 173–187. https://doi.org/10.1016/j.compfluid.2011.05.011 Ten Cate, A., Nieuwstad, C. H., Derksen, J. J., & Van den Akker, H. E. A. (2002). Particle imaging velocimetry experiments and lattice-Botlzmann simulations on a single sphere settling under gravity. Physics of Fluids, 14(11), 4012–4025. https://doi.org/10.1063/1.1512918 Toupoint, C., Ern, P., & Roig, V. (2019). Kinematics and wake of freely falling cylinders at moderate Reynolds numbers. Journal of Fluid Mechanics. https://doi.org/10.1017/jfm.2019.77ï Tran-Cong, S., Gay, M., & Michaelides, E. E. (2004). Drag coefficients of irregularly shaped particles. Powder Technology, 139(1), 21–32. https://doi.org/10.1016/j.powtec.2003.10.002 Veeramani, C., Minev, P. D., & Nandakumar, K. (2007). A fictitious domain formulation for flows with rigid particles: A non-Lagrange multiplier version. Journal of Computational Physics, 224(2), 867–879. https://doi.org/10.1016/j.jcp.2006.10.028 Veldhuis, C., Biesheuvel, A., Van Wijngaarden, L., & Lohse, D. (2005). Motion and wake structure of spherical particles. Nonlinearity, 18(1). https://doi.org/10.1088/0951-7715/18/1/000 Veldhuis, C. H. J., & Biesheuvel, A. (2007). An experimental study of the regimes of motion of spheres falling or ascending freely in a Newtonian fluid. International Journal of Multiphase Flow, 33(10), 1074–1087. https://doi.org/10.1016/j.ijmultiphaseflow.2007.05.002 Veldhuis, C. H. J., Biesheuvel, A., & Lohse, D. (2009). Freely rising light solid spheres. International Journal of Multiphase Flow, 35(4), 312–322. https://doi.org/10.1016/j.ijmultiphaseflow.2009.01.005 Wan, D., & Turek, S. (2006). Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method. International Journal for Numerical Methods in Fluids, 51(5), 531–566. https://doi.org/10.1002//d.1129 Wang, D., & Fan, L. S. (2013). Particle characterization and behavior relevant to fluidized bed combustion and gasification systems. En Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification (pp. 42–76). Elsevier Ltd. https://doi.org/10.1533/9780857098801.1.42 Will, J. B., & Krug, D. (2021). Dynamics of freely rising spheres: The effect of moment of inertia. Journal of Fluid Mechanics, 927. https://doi.org/10.1017/jfm.2021.749 Will, J. B., Mathai, V., Huisman, S. G., Lohse, D., Sun, C., & Krug, D. (2021). Kinematics and dynamics of freely rising spheroids at high Reynolds numbers. Journal of Fluid Mechanics, 912. https://doi.org/10.1017/jfm.2020.1104 Williamson, C. H. K. (1996). Vortex Dynamics In The Cylinder Wake. Annual Review of Fluid Mechanics, 28, 477-539. DOI:10.1146/ANNUREV.FL.28.010196.002401 Willmarth, W. W., Hawk, N. E., & Harvey, R. L. (1963). Steady and Unsteady Motions and Wakes of Freely Falling Disks. The Physics of Fluids, 7, 197-208. https://doi.org/10.1063/1.1711133 Xia, Z., Connington, K. W., Rapaka, S., Yue, P., Feng, J. J., & Chen, S. (2009). Flow patterns in the sedimentation of an elliptical particle. Journal Of Fluid Mechanics, 625, 249-272. https://doi.org/10.1017/s0022112008005521 Yaghoobi, H., & Torabi, M. (2012). Analytical solution for settling of non-spherical particles in incompressible Newtonian media. Powder Technology, 221, 453–463. https://doi.org/10.1016/j.powtec.2012.01.044 Yin, Z., Wang, Z., Liang, B., & Zhang, L. (2017). Initial Velocity Effect on Acceleration Fall of a Spherical Particle through Still Fluid. Mathematical Problems in Engineering, 5, 1-8. https://doi.org/10.1155/2017/9795286. You, C. S., Chern, M. J., Noor, D. Z., & Horng, T. L. (2020). Numerical investigation of freely falling objects using direct-forcing immersed boundary method. Mathematics, 8(9). https://doi.org/10.3390/math8091619 Zhang, B., Xu, D., Zhang, B., Ji, C., Munjiza, A., & Williams, J. (2020). Numerical investigation on the incipient motion of non-spherical sediment particles in bedload regime of open channel flows. Computational Particle Mechanics, 7(5), 987–1003. https://doi.org/10.1007/s40571-020-00323-8 Zhong, H., Chen, S., & Lee, C. (2011). Experimental study of freely falling thin disks: Transition from planar zigzag to spiral. Physics of Fluids, 23(1). https://doi.org/10.1063/1.3541844 Zhong, H., Lee, C., Su, Z., Chen, S., Zhou, M., & Wu, J. (2013). Experimental investigation of freely falling thin disks. Part 1. the flow structures and Reynolds number effects on the zigzag motion. Journal of Fluid Mechanics, 716, 228–250. https://doi.org/10.1017/jfm.2012.543 Zhou, W., Chrust, M., & Dušek, J. (2017). Path instabilities of oblate spheroids. Journal of Fluid Mechanics, 833, 445–468. https://doi.org/10.1017/jfm.2017.718 Zhou, W., & Dušek, J. (2015). Chaotic states and order in the chaos of the paths of freely falling and ascending spheres. International Journal of Multiphase Flow, 75, 205–223. https://doi.org/10.1016/j.ijmultiphaseflow.2015.05.010
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Autónoma de Occidente, 2024
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Universidad Autónoma de Occidente, 2024
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 94 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Autónoma de Occidente
dc.publisher.program.spa.fl_str_mv Maestría en Sistemas Energéticos
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Cali
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/3cca128b-f638-4bbc-bc8d-c8f9f8624501/download
https://red.uao.edu.co/bitstreams/d366814e-4e16-42ac-a33c-f2da9874a0db/download
https://red.uao.edu.co/bitstreams/a73a595a-713a-4fb1-ab1a-8bc9cba458a3/download
https://red.uao.edu.co/bitstreams/1fed31d1-f578-4c4c-b47f-339b2c0e5163/download
https://red.uao.edu.co/bitstreams/cd5a3542-e682-480a-b098-def46a58e013/download
https://red.uao.edu.co/bitstreams/868b0968-0767-4bbc-901d-132ca45a56f0/download
https://red.uao.edu.co/bitstreams/e4b10a62-9c2f-4127-9c4f-57ff195d2175/download
bitstream.checksum.fl_str_mv 7e4b5483d36e9b2ae9b9a5a17a736d96
dafb18128b51b173fd3967d418561e10
6987b791264a2b5525252450f99b10d1
555f8a2a359edfa93b73b2bbee3603f8
61173b0091cc99f51447804ec9f0b0dc
6088a5bf58afd4bfd7b6c62b49172209
e2024e62f48bc8b820f6925c05e3e598
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259894806642688
spelling Laín Beatove, Santiagovirtual::5561-1López Mejía, Omar Darío, codirectorGarcía González, Diego FernandoUniversidad Autónoma de OccidenteFranco Guzmán, Ediguer Enriquevirtual::5562-1Castang Montiel, Carlos Eduardovirtual::5563-12024-08-09T12:56:30Z2024-08-09T12:56:30Z2024-07-12García González, D. F. (2024). Simulación Numérica Directa de la deposición de partículas no esféricas en grandes contenedores. (Tesis). Universidad Autónoma de Occidente. Cali. Colombia. https://hdl.handle.net/10614/15713https://hdl.handle.net/10614/15713Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/La presente investigación se centra en el estudio numérico del movimiento de partículas no esféricas regulares que caen libremente en un fluido newtoniano inicialmente en reposo. La base del método numérico se centró en el uso de la técnica PR-DNS (Particle Resolved Direct Numerical Simulation) con la combinación de técnicas de mallas superpuesta para la discretización del dominio fluido y el solucionador SixDOF como fundamento para el enfoque lagrangiano que permita determinar el movimiento y la trayectoria de la partícula a partir del cálculo de las fuerzas y momentos que actúan sobre la superficie de la partícula. El diseño de los modelos geométricos fue desarrollado en Solidworks y las simulaciones numéricas se llevaron a cabo empleando técnicas avanzadas de dinámica de fluidos computacional en el módulo ANSYS Fluent. Se desarrollaron las simulaciones transitorias bajo diferentes combinaciones tanto para partículas 2D como tridimensionales. Las primeras simulaciones se llevaron a cabo para un ejemplo popular de prueba numérica que describe el flujo 2D causado por la caída libre de una partícula circular dentro de un depósito líquido, así como mediciones experimentales 3D en la sedimentación de una esfera, las cuales fueron verificadas y validadas con estudios numéricos y experimentales previos, mostrando una alta fiabilidad en la descripción del movimiento de este tipo de formas. Se encontró que las partículas circulares y esféricas bajo las condiciones de estudio utilizadas, describen regímenes de movimiento considerados como verticalmente estables, al no presentar cambios repentinos en la trayectoria de caída ni desplazamientos laterales considerables. Se demostró que la dinámica de las inestabilidades de la trayectoria se caracterizarse por el triplete (Γ,Ga,χ ) correspondiente a la relación de la densidad sólido/líquido, el número de Galileo y la relación de aspecto. A partir de este punto se desarrolló una serie de simulaciones numéricas para analizar la sedimentación de elipses y elipsoides oblatos para complementar el análisis y conocer los alcances del método numérico. Los resultados demostraron la gran dependencia de la trayectoria a los parámetro relevantes y la incidencia de la relación de aspecto. Se encontró diferentes modos para el régimen oscilatorio de las elipses influenciado por la relación de aspecto que al aumentar no solo influye en la aparición de nuevos modos de movimiento oscilatorio si no que retrasa el tiempo de asentamiento de las partículas. Este estudio, en concordancia con los objetivos planteados, propone un nuevo método para analizar la dinámica de asentamiento de diferentes tipos de partículas. También ayuda a ampliar la gama de escenarios y combinaciones de parámetros para enriquecer el análisis de la dinámica de partículas no esféricas regulares e irregulares que aún no han sido desarrolladas.This research focuses on the numerical study of the motion of regular non-spherical particles falling freely in a stagnant Newtonian fluid initially at rest. The basis of the numerical method focused on the use of the PR-DNS (Particle Resolved Direct Numerical Simulation) technique with the combination of overlapping mesh techniques for the discretization of the fluid domain and the SixDOF solver as the basis for the Lagrangian approach to determine the motion and trajectory of the particle from the calculation of the forces and moments acting on the surface of the particle. The design of the geometric models was developed in Solidworks and the numerical simulations were carried out using advanced computational fluid dynamics techniques in the ANSYS Fluent module. Transient simulations were developed under different combinations for both 2D and 3D particles. The first simulations were carried out for a popular numerical test example describing the 2D flow caused by the free fall of a circular particle inside a liquid tank, as well as 3D experimental measurements on the sedimentation of a sphere, which were verified and validated with previous numerical and experimental studies, showing a high reliability in the description of the motion of this type of shapes. It was found that the circular and spherical particles under the study conditions used, describe motion regimes considered as vertically stable, since they do not present sudden changes in the fall trajectory or considerable lateral displacements. It was shown that the dynamics of the trajectory instabilities are characterized by the triplet (Γ,Ga,χ ) corresponding to the solid/liquid density ratio, the Galileo number and the aspect ratio. From this point, a series of numerical simulations were developed to analyze the sedimentation of ellipses and oblate ellipsoids to complement the analysis and to know the scopes of the numerical method. The results demonstrated the strong dependence of the trajectory on the relevant parameters and the incidence of the aspect ratio. Different modes were found for the oscillatory regime of the ellipses influenced by the aspect ratio which, when increasing, not only influences the appearance of new modes of oscillatory motion but also delays the settling time of the particles. This study, in agreement with the stated objectives, proposes a new method to analyze the settling dynamics of different types of particles. It also helps to extend the range of scenarios and parameter combinations to enrich the analysis of the dynamics of regular and irregular non-spherical particles that have not yet been developed.Tesis (Magister en Sistemas Energéticos)-- Universidad Autónoma de Occidente, 2024MaestríaMagíster en Sistemas Energéticos94 páginasapplication/pdfspaUniversidad Autónoma de OccidenteMaestría en Sistemas EnergéticosFacultad de IngenieríaCaliDerechos reservados - Universidad Autónoma de Occidente, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Simulación Numérica Directa de la deposición de partículas no esféricas en grandes contenedoresTrabajo de grado - MaestríaTextinfo:eu-repo/semantics/masterThesishttp://purl.org/redcol/resource_type/TMinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Alger, G. R. (1964). Terminal fall velocity of particles of irregular shapes as affected by surface área. Colorado State University. https://hdl.handle.net/10217/194870 Allen, H. S. (1900). The motion of a sphere in a viscous fluid. Philosophical Magazine and Journal of Science. 50, 519–534. https://doi.org/10.1080/14786440009463941 Andersen, A., Pesavento, U., & Wang, Z. J. (2005). Unsteady aerodynamics of fluttering and tumbling plates. Journal of Fluid Mechanics, 541, 65–90. https://doi.org/10.1017/S002211200500594X ANSYS Inc (2017). ANSYS FLUENT 12.0 User's Guide - 11.3.7 Six DOF Solver Settings. Release 18.1, PA 15317: Ansys. from https://www.afs.enea.it/project/neptunius/docs/ fluent/html/ug/node401.html ANSYS Inc (2018). ANSYS Fluent Getting Started Guide - Chapter 1: Introduction to ANSYS Fluent. Release 19.1, PA 15317: Ansys. from http://www.ansys.com Ardekani, M. N., Costa, P., Breugem, W. P., & Brandt, L. (2016). Numerical study of the sedimentation of spheroidal particles. International Journal of Multiphase Flow, 87, 16–34. https://doi.org/10.1016/j.ijmultiphaseflow.2016.08.005 Auguste, F., & Magnaudet, J. (2018). Path oscillations and enhanced drag of light rising spheres. Journal of Fluid Mechanics, 841, 228–266. https://doi.org/10.1017/jfm.2018.100ï Auguste, F., Magnaudet, J., & Fabre, D. (2013). Falling styles of disks. Journal of Fluid Mechanics, 719, 388–405. https://doi.org/10.1017/jfm.2012.602 Bagheri, G., & Bonadonna, C. (2016). On the drag of freely falling non-spherical particles. Powder Technology, 301, 526–544. https://doi.org/10.1016/j.powtec.2016.06.015 Belmonte, A., Eisenberg, H., & Moses, E. (1998). From Flutter to Tumble: Inertial Drag and Froude Similarity in Falling Paper. Physical Review Letters, 81(2), 345. https://doi.org/10.1103/PhysRevLett.81.345 Castang, C., Laín, S., García, D., & Sommerfeld, M. (2022). Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers. Powder Technology, 402. https://doi.org/10.1016/j.powtec.2022.117341 Chrust, M., Bouchet, G., & Duek, J. (2010). Parametric study of the transition in the wake of oblate spheroids and flat cylinders. Journal of Fluid Mechanics, 665, 199–208. https://doi.org/10.1017/S0022112010004878 Chrust, M., Bouchet, G., & Dûek, J. (2013). Numerical simulation of the dynamics of freely falling discs. Physics of Fluids, 25(4). https://doi.org/10.1063/1.4799179 Chrust, M., Bouchet, G., & Dušek, J. (2014). Effect of solid body degrees of freedom on the path instabilities of freely falling or rising flat cylinders. Journal of Fluids and Structures, 47, 55–70. https://doi.org/10.1016/j.jfluidstructs.2013.09.016 Dabade, V., Marath, N. K., & Subramanian, G. (2015). Effects of inertia and viscoelasticity on sedimenting anisotropic particles. Journal of Fluid Mechanics, 778, 133–188. https://doi.org/10.1017/jfm.2015.360 Daitche, A. (2015). On the role of the history force for inertial particles in turbulence. Journal of Fluid Mechanics, 782, 567–593. https://doi.org/10.1017/jfm.2015.551 Ern, P., Risso, F., Fabre, D., & Magnaudet, J. (2011). Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annual Review of Fluid Mechanics, 44, 97–121. https://doi.org/10.1146/annurev-fluid-120710-101250 Ernst, M., Dietzel, M., & Sommerfeld, M. (2013). A lattice Boltzmann method for simulating transport and agglomeration of resolved particles. Acta Mechanica, 224(10), 2425–2449. https://doi.org/10.1007/s00707-013-0923-1 Fabre, D., Auguste, F., & Magnaudet, J. (2008). Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Physics of Fluids, 20(5). https://doi.org/10.1063/1.2909609 Feng, J., Hu, H, H., & Joseph, D, D. (1994). Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid Part 1. Sedimentation. Journal of Fluid Mechanics. Mech (Vol. 261), 95-134. Feng, Z. G., & Michaelides, E. E. (2009). Robust treatment of no-slip boundary condition and velocity updating for the lattice-Boltzmann simulation of particulate flows. Computers and Fluids, 38(2), 370–381. https://doi.org/10.1016/j.compfluid.2008.04.013 Fernandes, P. C., Risso, F. D., Ern, P., & Magnaudet, J. (2007). Oscillatory motion and wake instability of freely rising axisymmetric bodies. Journal of Fluid Mechanics, 573, 479–502. https://doi.org/10.1017/S0022112006003685 Field, S. B., Klaus, M., Moore, M. G., & Nori, F. (1997). Chaotic dynamics of falling disks. Nature, 388, 252-254. DOI:10.1038/40817 Fonseca, F., & Hermann, H. J. (2005). Simulation of the sedimentation of a falling oblate ellipsoid. Physica A: Statistical Mechanics and its Applications, 345(3–4), 341–355. https://doi.org/10.1016/j.physa.2004.03.095 Ganser, G, H. (1993). A rational approach to drag prediction of spherical and nonspherical particles. En Powder Technology,77(2), p, 143-152. https://doi.org/10.1016/0032-5910(93)80051-B García, D. F. (2019). Determinación de las fuerzas fluidodinámicas que actúan sobre una partícula no esférica de forma irregular mediante DNS [Tesis de pregrado, Universidad Autónoma de Occidente]. Repositorio Educativo Digital UAO. https://red.uao.edu.co/ Glowinski, R., Pan, T. W., Hesla, T. I., Joseph, D. D., & Périaux, J. (2001). A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow past Moving Rigid Bodies: Application to Particulate Flow. Journal of Computational Physics, 169(2), 363–426. https://doi.org/10.1006/jcph.2000.6542 Guo, J, K. (2011). Motion of spheres falling through fluids. Journal of Hydraulic Research, 49, 32–41. https://doi.org/10.1080/00221686.2010.538572 Haider, A., & Levenspiel, O. (1989). Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles. Powder Technology, 58(1). P, 63-70. https://doi.org/10.1016/0032-5910(89)80008-7 Hardy, G. H., Seshu Aiyar, P. V., & Wilson, B. M. (1927). Collected Papers of Srinivasa Ramanujan. American Mathematical Societ: AMS Chelsea Publishing, 159. Heisinger, L., Newton, P., & Kanso, E. (2014). Coins falling in water. Journal of Fluid Mechanics, 742, 243–253. https://doi.org/10.1017/jfm.2014.6 Hölzer, A., & Sommerfeld, M. (2008). New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technology, 184(3), 361–365. https://doi.org/10.1016/j.powtec.2007.08.021 Horowitz, M., & Williamson, C. H. K. (2008). Critical mass and a new periodic four-ring vortex wake mode for freely rising and falling spheres. Physics of Fluids, 20(10). https://doi.org/10.1063/1.2992126 Horowitz, M., & Williamson, C. H. K. (2010). The effect of Reynolds number on the dynamics and wakes of freely rising and falling spheres. Journal of Fluid Mechanics, 651, 251–294. https://doi.org/10.1017/S0022112009993934 Huang, H., Yang, X., & Lu, X. yun. (2014). Sedimentation of an ellipsoidal particle in narrow tubes. Physics of Fluids, 26(5). https://doi.org/10.1063/1.4874606 Jenny, M., Dušek, J., & Bouchet, G. (2004). Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. Journal of Fluid Mechanics, 508, 201–239. https://doi.org/10.1017/S0022112004009164 Lain, S., & Gandini, M.A. (2023). Ideal reactors as an illustration of solving transport phenomena problems in Engineering. Fluids, 8, 58. https://doi.org/10.3390/fluids8020058. Laín, S., García, D. F., & Gandini, M. A. (2023). Analytical Solutions of the Riccati Differential Equation: Particle Deposition in a Viscous Stagnant Fluid. Mathematics, 11(15). https://doi.org/10.3390/math11153262 Lain, S., & Sommerfeld, M. (2007). A study of the pneumatic conveying of non-spherical particles in a turbulent horizontal channel flow. Brazilian Journal of Chemical Engineering, 24, 535–546. DOI: 10.1590/S0104-66322007000400007. Lashgari, I., Ardekani, M. N., Banerjee, I., Russom, A., & Brandt, L. (2017). Inertial migration of spherical and oblate particles in straight ducts. Journal of Fluid Mechanics, 819, 540–561. https://doi.org/10.1017/jfm.2017.189 Lee, C., Su, Z., Zhong, H., Chen, S., Zhou, M., & Wu, J. (2013). Experimental investigation of freely falling thin disks. Part 2. Transition of three-dimensional motion from zigzag to spiral. Journal of Fluid Mechanics, 732, 77–104. https://doi.org/10.1017/jfm.2013.390 Magnaudet, J., & Mougin, G. (2007). Wake instability of a fixed spheroidal bubble. Journal of Fluid Mechanics, 572, 311–337. https://doi.org/10.1017/S0022112006003442 Marchildon, E. K., Clamen, A., & Gauvin, W. H. (1964). Drag and oscillatory motion of freely falling cylindrical particles. The Canadian Journal of Chemical Engineering, 42 (4), 178-182.https://doi.org/10.1002/cjce.5450420410 Mathai, V., Zhu, X., Sun, C., & Lohse, D. (2018). Flutter to tumble transition of buoyant spheres triggered by rotational inertia changes. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-04177-w Mittal, R., Seshadri, V., & Udaykumar, H. S. (2004). Flutter, tumble and vortex induced autorotation. Theoretical and Computational Fluid Dynamics, 17(3), 165–170. https://doi.org/10.1007/s00162-003-0101-5 Moriche, M., Uhlmann, M., & Dušek, J. (2021). A single oblate spheroid settling in unbounded ambient fluid: A benchmark for simulations in steady and unsteady wake regimes. International Journal of Multiphase Flow, 136. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103519 Namkoong, K., Yoo, J. Y., & Choi, H. G. (2008). Numerical analysis of two-dimensional motion of a freely falling circular cylinder in an infinite fluid. Journal of Fluid Mechanics, 604, 33–53. https://doi.org/10.1017/S0022112008001304 Ouchene, R., Khalij, M., Arcen, B., & Tanière, A. (2016). A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers. Powder Technology, 303, 33–43. https://doi.org/10.1016/j.powtec.2016.07.067 Pesavento, U., & Wang, Z. J. (2004). Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation. Physical Review Letters, 93(14). https://doi.org/10.1103/PhysRevLett.93.144501 Raaghav, S. K. R., Poelma, C., & Breugem, W. P. (2022). Path instabilities of a freely rising or falling sphere. International Journal of Multiphase Flow, 153. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104111 Reddy, R. K., Joshi, J. B., Nandakumar, K., & Minev, P. D. (2010). Direct numerical simulations of a freely falling sphere using fictitious domain method: Breaking of axisymmetric wake. Chemical Engineering Science, 65(6), 2159–2171. https://doi.org/10.1016/j.ces.2009.12.009 Rubey, W, W. (1933). Settling velocity of gravel, sand, and silt particles. American Journal of Science. 225, 325–338. DOI:10.2475/ajs.s5-25.148.325 Spirito, G. (2020). An appraisal of the application of the overset method to the CFD simulation of fluid machines. ING - Scuola Di Ingegneria Industriale E Dell’Informazione. https://www.politesi.polimi.it/handle/10589/165568 Suzuki, K., & Inamuro, T. (2011). Effect of internal mass in the simulation of a moving body by the immersed boundary method. Computers and Fluids, 49(1), 173–187. https://doi.org/10.1016/j.compfluid.2011.05.011 Ten Cate, A., Nieuwstad, C. H., Derksen, J. J., & Van den Akker, H. E. A. (2002). Particle imaging velocimetry experiments and lattice-Botlzmann simulations on a single sphere settling under gravity. Physics of Fluids, 14(11), 4012–4025. https://doi.org/10.1063/1.1512918 Toupoint, C., Ern, P., & Roig, V. (2019). Kinematics and wake of freely falling cylinders at moderate Reynolds numbers. Journal of Fluid Mechanics. https://doi.org/10.1017/jfm.2019.77ï Tran-Cong, S., Gay, M., & Michaelides, E. E. (2004). Drag coefficients of irregularly shaped particles. Powder Technology, 139(1), 21–32. https://doi.org/10.1016/j.powtec.2003.10.002 Veeramani, C., Minev, P. D., & Nandakumar, K. (2007). A fictitious domain formulation for flows with rigid particles: A non-Lagrange multiplier version. Journal of Computational Physics, 224(2), 867–879. https://doi.org/10.1016/j.jcp.2006.10.028 Veldhuis, C., Biesheuvel, A., Van Wijngaarden, L., & Lohse, D. (2005). Motion and wake structure of spherical particles. Nonlinearity, 18(1). https://doi.org/10.1088/0951-7715/18/1/000 Veldhuis, C. H. J., & Biesheuvel, A. (2007). An experimental study of the regimes of motion of spheres falling or ascending freely in a Newtonian fluid. International Journal of Multiphase Flow, 33(10), 1074–1087. https://doi.org/10.1016/j.ijmultiphaseflow.2007.05.002 Veldhuis, C. H. J., Biesheuvel, A., & Lohse, D. (2009). Freely rising light solid spheres. International Journal of Multiphase Flow, 35(4), 312–322. https://doi.org/10.1016/j.ijmultiphaseflow.2009.01.005 Wan, D., & Turek, S. (2006). Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method. International Journal for Numerical Methods in Fluids, 51(5), 531–566. https://doi.org/10.1002//d.1129 Wang, D., & Fan, L. S. (2013). Particle characterization and behavior relevant to fluidized bed combustion and gasification systems. En Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification (pp. 42–76). Elsevier Ltd. https://doi.org/10.1533/9780857098801.1.42 Will, J. B., & Krug, D. (2021). Dynamics of freely rising spheres: The effect of moment of inertia. Journal of Fluid Mechanics, 927. https://doi.org/10.1017/jfm.2021.749 Will, J. B., Mathai, V., Huisman, S. G., Lohse, D., Sun, C., & Krug, D. (2021). Kinematics and dynamics of freely rising spheroids at high Reynolds numbers. Journal of Fluid Mechanics, 912. https://doi.org/10.1017/jfm.2020.1104 Williamson, C. H. K. (1996). Vortex Dynamics In The Cylinder Wake. Annual Review of Fluid Mechanics, 28, 477-539. DOI:10.1146/ANNUREV.FL.28.010196.002401 Willmarth, W. W., Hawk, N. E., & Harvey, R. L. (1963). Steady and Unsteady Motions and Wakes of Freely Falling Disks. The Physics of Fluids, 7, 197-208. https://doi.org/10.1063/1.1711133 Xia, Z., Connington, K. W., Rapaka, S., Yue, P., Feng, J. J., & Chen, S. (2009). Flow patterns in the sedimentation of an elliptical particle. Journal Of Fluid Mechanics, 625, 249-272. https://doi.org/10.1017/s0022112008005521 Yaghoobi, H., & Torabi, M. (2012). Analytical solution for settling of non-spherical particles in incompressible Newtonian media. Powder Technology, 221, 453–463. https://doi.org/10.1016/j.powtec.2012.01.044 Yin, Z., Wang, Z., Liang, B., & Zhang, L. (2017). Initial Velocity Effect on Acceleration Fall of a Spherical Particle through Still Fluid. Mathematical Problems in Engineering, 5, 1-8. https://doi.org/10.1155/2017/9795286. You, C. S., Chern, M. J., Noor, D. Z., & Horng, T. L. (2020). Numerical investigation of freely falling objects using direct-forcing immersed boundary method. Mathematics, 8(9). https://doi.org/10.3390/math8091619 Zhang, B., Xu, D., Zhang, B., Ji, C., Munjiza, A., & Williams, J. (2020). Numerical investigation on the incipient motion of non-spherical sediment particles in bedload regime of open channel flows. Computational Particle Mechanics, 7(5), 987–1003. https://doi.org/10.1007/s40571-020-00323-8 Zhong, H., Chen, S., & Lee, C. (2011). Experimental study of freely falling thin disks: Transition from planar zigzag to spiral. Physics of Fluids, 23(1). https://doi.org/10.1063/1.3541844 Zhong, H., Lee, C., Su, Z., Chen, S., Zhou, M., & Wu, J. (2013). Experimental investigation of freely falling thin disks. Part 1. the flow structures and Reynolds number effects on the zigzag motion. Journal of Fluid Mechanics, 716, 228–250. https://doi.org/10.1017/jfm.2012.543 Zhou, W., Chrust, M., & Dušek, J. (2017). Path instabilities of oblate spheroids. Journal of Fluid Mechanics, 833, 445–468. https://doi.org/10.1017/jfm.2017.718 Zhou, W., & Dušek, J. (2015). Chaotic states and order in the chaos of the paths of freely falling and ascending spheres. International Journal of Multiphase Flow, 75, 205–223. https://doi.org/10.1016/j.ijmultiphaseflow.2015.05.010Maestría en Sistemas EnergéticosCuerpo en caída libreSedimentaciónSimulación Numérica Directa con partícula resueltaPartículas no esféricas regularesVelocidad terminalParticle Resolved Direct Numerical Simulation (PR-DNS)Overset mesh TechniqueSix Degrees of Freedom SolverComunidad generalPublicationhttps://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::5561-1https://scholar.google.com/citations?user=4paPIoAAAAAJ&hl=esvirtual::5562-1https://scholar.google.com/citations?view_op=list_works&hl=es&user=FM2T5T0AAAAJvirtual::5563-10000-0002-0269-2608virtual::5561-10000-0001-7518-704Xvirtual::5562-10009-0005-6686-7365virtual::5563-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::5561-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001243730virtual::5562-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000404217virtual::5563-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::5561-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::5561-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::5562-158942dc4-b266-442c-9c3b-75d8a3a3d570virtual::5563-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::5562-158942dc4-b266-442c-9c3b-75d8a3a3d570virtual::5563-1ORIGINALT11161_Simulación numérica directa de la deposición de partículas no esféricas en grandes contenedores.pdfT11161_Simulación numérica directa de la deposición de partículas no esféricas en grandes contenedores.pdfArchivo texto completo del trabajo de grado, PDFapplication/pdf2133607https://red.uao.edu.co/bitstreams/3cca128b-f638-4bbc-bc8d-c8f9f8624501/download7e4b5483d36e9b2ae9b9a5a17a736d96MD51TA11161_Autorización trabajo de grado.pdfTA11161_Autorización trabajo de grado.pdfAutorización para publicación del trabajo de gradoapplication/pdf303397https://red.uao.edu.co/bitstreams/d366814e-4e16-42ac-a33c-f2da9874a0db/downloaddafb18128b51b173fd3967d418561e10MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/a73a595a-713a-4fb1-ab1a-8bc9cba458a3/download6987b791264a2b5525252450f99b10d1MD53TEXTT11161_Simulación numérica directa de la deposición de partículas no esféricas en grandes contenedores.pdf.txtT11161_Simulación numérica directa de la deposición de partículas no esféricas en grandes contenedores.pdf.txtExtracted texttext/plain103407https://red.uao.edu.co/bitstreams/1fed31d1-f578-4c4c-b47f-339b2c0e5163/download555f8a2a359edfa93b73b2bbee3603f8MD54TA11161_Autorización trabajo de grado.pdf.txtTA11161_Autorización trabajo de grado.pdf.txtExtracted texttext/plain5232https://red.uao.edu.co/bitstreams/cd5a3542-e682-480a-b098-def46a58e013/download61173b0091cc99f51447804ec9f0b0dcMD56THUMBNAILT11161_Simulación numérica directa de la deposición de partículas no esféricas en grandes contenedores.pdf.jpgT11161_Simulación numérica directa de la deposición de partículas no esféricas en grandes contenedores.pdf.jpgGenerated Thumbnailimage/jpeg6911https://red.uao.edu.co/bitstreams/868b0968-0767-4bbc-901d-132ca45a56f0/download6088a5bf58afd4bfd7b6c62b49172209MD55TA11161_Autorización trabajo de grado.pdf.jpgTA11161_Autorización trabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg13047https://red.uao.edu.co/bitstreams/e4b10a62-9c2f-4127-9c4f-57ff195d2175/downloade2024e62f48bc8b820f6925c05e3e598MD5710614/15713oai:red.uao.edu.co:10614/157132024-08-12 03:01:02.65https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Universidad Autónoma de Occidente, 2024open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==