Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes
This article presents microneedles analyses where the design parameters studied included length and inner and outer diameter ranges. A mathematical model was also used to generalize outer and inner diameter ratios in the obtained ranges. Following this, the range of inner and outer diameters was com...
- Autores:
-
Villota, Isabella
Calvo Echeverry, Paulo César
Campo Salazar, Oscar Iván
Fonthal Rico, Faruk
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/15900
- Acceso en línea:
- https://hdl.handle.net/10614/15900
https://doi.org/10.3390/molecules27196634
https://red.uao.edu.co/
- Palabra clave:
- Microneedles
Transdermal drug delivery
Finite element analysis
3D printing
- Rights
- openAccess
- License
- Derechos reservados - MDPI, 2022
id |
REPOUAO2_8d966f6637b02b50a08d31d95dc29277 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/15900 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes |
title |
Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes |
spellingShingle |
Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes Microneedles Transdermal drug delivery Finite element analysis 3D printing |
title_short |
Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes |
title_full |
Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes |
title_fullStr |
Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes |
title_full_unstemmed |
Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes |
title_sort |
Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes |
dc.creator.fl_str_mv |
Villota, Isabella Calvo Echeverry, Paulo César Campo Salazar, Oscar Iván Fonthal Rico, Faruk |
dc.contributor.author.none.fl_str_mv |
Villota, Isabella Calvo Echeverry, Paulo César Campo Salazar, Oscar Iván Fonthal Rico, Faruk |
dc.subject.proposal.eng.fl_str_mv |
Microneedles Transdermal drug delivery Finite element analysis 3D printing |
topic |
Microneedles Transdermal drug delivery Finite element analysis 3D printing |
description |
This article presents microneedles analyses where the design parameters studied included length and inner and outer diameter ranges. A mathematical model was also used to generalize outer and inner diameter ratios in the obtained ranges. Following this, the range of inner and outer diameters was completed by mechanical simulations, ranging from 30 μm to 134 μm as the inner diameter range and 208 μm to 250 μm as the outer diameter range. With these ranges, a mathematical model was made using fourth-order polynomial regressions with a correlation of 0.9993, ensuring a safety factor of four in which von Misses forces of the microneedle are around 17.931 MPa; the ANSYS software was used to analyze the mechanical behavior of the microneedles. In addition, the microneedle concept was made by 3D printing using a bio-compatible resin of class 1. The features presented by the microneedle designed in this study make it a promising option for implementation in a transdermal drug-delivery device |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2024-11-14T19:55:14Z |
dc.date.available.none.fl_str_mv |
2024-11-14T19:55:14Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Villota, I.; Calvo, P. C.; Campo, O. I. y Fonthal, F. (2022). Microneedles: One-Plane Bevel-Tipped Fabrication by 3D-Printing Processes. Molecules. 27(19). 11p. https://doi.org/10.3390/molecules27196634 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/15900 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.3390/molecules27196634 |
dc.identifier.eissn.spa.fl_str_mv |
14203049 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Respositorio Educativo Digital UAO |
dc.identifier.repourl.none.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
Villota, I.; Calvo, P. C.; Campo, O. I. y Fonthal, F. (2022). Microneedles: One-Plane Bevel-Tipped Fabrication by 3D-Printing Processes. Molecules. 27(19). 11p. https://doi.org/10.3390/molecules27196634 14203049 Universidad Autónoma de Occidente Respositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/15900 https://doi.org/10.3390/molecules27196634 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
11 |
dc.relation.citationissue.spa.fl_str_mv |
19 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
27 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Molecules |
dc.relation.references.none.fl_str_mv |
1. Xu, J.; Xu, D.; Xuan, X.; He, H. Advances of microneedles in biomedical applications. Molecules 2021, 26, 5912. [CrossRef] [PubMed] 2. Cheng, Y.-C.; Li, T.S.; Su, H.L.; Lee, P.C.;Wang, H.-M.D. Transdermal delivery systems of natural products applied to skin therapy and care. Molecules 2020, 25, 5051. [CrossRef] [PubMed] 3. Chaurasiya, P.; Ganju, E.; Upmanyu, N.; Ray, S.K.; Jain, P. Transfersomes: A novel technique for transdermal drug delivery. J. Drug Deliv. Ther. 2019, 9, 279–285. [CrossRef] 4. Lee, H.; Song, C.; Baik, S.; Kim, D.; Hyeon, T.; Kim, D.H. Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev. 2018, 127, 35–45. [CrossRef] 5. Shingade, G.M. Review on: Recent trend on transdermal drug delivery system. J. Drug Deliv. Ther. 2012, 2, 66–75. [CrossRef] 6. Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019, 109, 1249–1258. [CrossRef] 7. Economidou, S.N.; Uddin, M.J.; Marques, M.J.; Douroumis, D.; Sow, W.T.; Li, H.; Reid, A.; Windmill, J.F.C.; Podoleanu, A. A novel 3D printed hollow Microneedle microelectromechanical system for controlled, personalized transdermal drug delivery. Addit. Manuf. 2021, 38, 101815. [CrossRef] 8. Yan, L.; Alba, M.; Tabassum, N.; Voelcker, N.H. Micro- and nanosystems for advanced transdermal delivery. Adv. Ther. 2019, 2, 1900141. [CrossRef] 9. Dolžan, T.; Vrtacˇnik, D.; Resnik, D.; Aljancˇicˇ, U.; Moz˙ ek, M.; Pecˇar, B.; Amon, S. Design of transdermal drug delivery system with PZT actuated micropump. In Proceedings of the 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2014), Opatija, Croatia, 26–30 May 2014; pp. 96–99. [CrossRef] 10. Rogkas, N.; Vakouftsis, C.; Spitas, V.; Lagaros, N.D.; Georgantzinos, S.K. Design aspects of additive manufacturing at microscale: A review. Micromachines 2022, 13, 775. [CrossRef] 11. Bora, P.; Kumar, L.; Bansal, A.K. Microneedle technology for advanced drug delivery: Evolving vistas. Crips 2008, 9, 7–10. 12. Lutton, R.E.M.; Larrañeta, E.; Kearney, M.C.; Boyd, P.; Woolfson, A.D.; Donnelly, R.F. A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays. Int. J. Pharm. 2015, 494, 417–429. [CrossRef] 13. Pedde, R.D.; Mirani, B.; Navaei, A.; Styan, T.;Wong, S.; Mehrali, M.; Thakur, A.; Mohtaram, N.K.; Bayati, A.; Dolatshahi-Pirouz, A.; et al. Emerging biofabrication strategies for engineering complex tissue constructs. Adv. Mater. 2017, 29, 1606061. [CrossRef] 14. Wu, M.; Zhang, Y.; Huang, H.; Li, J.; Liu, H.; Guo, Z.; Xue, L.; Liu, S.; Lei, Y. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater. Sci. Eng. C 2020, 117, 111299. [CrossRef] 15. Johnson, A.R.; Procopio, A.T. Low cost additive manufacturing of microneedle masters. 3D Print. Med. 2019, 5, 1–10. [CrossRef] 16. Pere, C.P.P.; Economidou, S.N.; Lall, G.; Ziraud, C.; Boateng, J.S.; Alexander, B.D.; Lamprou, D.A.; Douroumis, D. 3D printed microneedles for insulin skin delivery. Int. J. Pharm. 2018, 544, 425–432. [CrossRef] 17. Xenikakis, I.; Tsongas, K.; Tzimtzimis, E.K.; Zacharis, C.K.; Theodoroula, N.; Kalogianni, E.P.; Demiri, E.; Vizirianakis, I.S. Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery. Int. J. Pharm. 2021, 597, 120303. [CrossRef] 18. Economidou, S.N.; Douroumis, D. 3D printing as a transformative tool for microneedle systems: Recent advances, manufacturing considerations and market potential. Adv. Drug Deliv. Rev. 2021, 173, 60–69. [CrossRef] 19. Vishnu, B.; Kumar, M.S. Improving productivity through design and development of re-capable needle cover for blood bag needle assembly. Acta Tech. Corviniensis-Bull. Eng. 2015, 8, 61–64. 20. Park, J.H.; Allen, M.G.; Prausnitz, M.R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control. Release 2005, 104, 51–66. [CrossRef] 21. Abolhassani, N.; Patel, R.; Moallem, M. Needle insertion into soft tissue: A survey. Med. Eng. Phys. 2007, 29, 413–431. [CrossRef] 22. Wang, Y.; Chen, R.K.; Tai, B.L.; McLaughlin, P.W.; Shih, A.J. Optimal needle design for minimal insertion force and bevel length. Med. Eng. Phys. 2014, 36, 1093–1100. [CrossRef] [PubMed] 23. Olatunji, O.; Das, D.B.; Nassehi, V. Modelling transdermal drug delivery using microneedles: Effect of geometry on drug transport behavior. J. Pharm. Sci. 2012, 101, 164–175. [CrossRef] [PubMed] 24. Garcia, J.; Rios, I.; Fonthal, F. Design and analyses of a transdermal drug delivery device (TD3). Sensors 2019, 19, 5090. [CrossRef] [PubMed] 25. Ahn, B. Optimal microneedle design for drug delivery based on insertion force experiments with variable geometry. Int. J. Control. Autom. Syst. 2020, 18, 143–149. [CrossRef] 26. Huntsman. Araldite FT LY 5052 Aradur 5052. Huntsman, Technical Data Sheet—Araldite®LY 5052/Aradur®5052. 2012. Available online: https://es.scribd.com/document/402041100/Araldite-FT-LY-5052-Aradur-5052-en-1 (accessed on 15 September 2021). 27. Saseendran, S.; Wysocki, M.; Varna, J. Cure-state dependent viscoelastic Poisson’s ratio of LY5052 epoxy resin. Adv. Manuf. Polym. Compos. Sci. 2017, 3, 92–100. [CrossRef] 28. Han, T. and Das, D.B. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: A review. Eur. J. Pharm. Biopharm. 2015, 89, 312–328. [CrossRef] [PubMed] 29. Surgical Guide Resin, Formlabs/Dental Resin data sheet; Formlabs: Somerville, MA, USA, 2021. 30. Choo, S.; Jin, S. and Jung, J. Fabricating high-resolution and high-dimensional microneedle mold through the resolution improvement of stereolithography 3D printing. Pharmaceutics 2022, 14, 766. [CrossRef] [PubMed] |
dc.rights.spa.fl_str_mv |
Derechos reservados - MDPI, 2022 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - MDPI, 2022 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
11 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
MDPI |
dc.publisher.place.eng.fl_str_mv |
Basel, Switzerland |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/8d85510b-291a-4c9a-bc9f-cc02f7fadb6f/download https://red.uao.edu.co/bitstreams/30271ddd-5514-4b33-afce-029fb50d4dc6/download https://red.uao.edu.co/bitstreams/0fdf031f-5cee-4f6f-9cd4-1c891640aaae/download https://red.uao.edu.co/bitstreams/dd560114-5ab8-4fe1-87ee-9a2f539645c3/download |
bitstream.checksum.fl_str_mv |
a41b8a89b712b8b80c3bb04df5621b4d 6987b791264a2b5525252450f99b10d1 40cd18b2214f5f7ba2df68ea6f81207c 859189fde83241362fe41f57a473a50d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1831928626248941568 |
spelling |
Villota, IsabellaCalvo Echeverry, Paulo Césarvirtual::5787-1Campo Salazar, Oscar Ivánvirtual::5788-1Fonthal Rico, Farukvirtual::5789-12024-11-14T19:55:14Z2024-11-14T19:55:14Z2022Villota, I.; Calvo, P. C.; Campo, O. I. y Fonthal, F. (2022). Microneedles: One-Plane Bevel-Tipped Fabrication by 3D-Printing Processes. Molecules. 27(19). 11p. https://doi.org/10.3390/molecules27196634https://hdl.handle.net/10614/15900https://doi.org/10.3390/molecules2719663414203049Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/This article presents microneedles analyses where the design parameters studied included length and inner and outer diameter ranges. A mathematical model was also used to generalize outer and inner diameter ratios in the obtained ranges. Following this, the range of inner and outer diameters was completed by mechanical simulations, ranging from 30 μm to 134 μm as the inner diameter range and 208 μm to 250 μm as the outer diameter range. With these ranges, a mathematical model was made using fourth-order polynomial regressions with a correlation of 0.9993, ensuring a safety factor of four in which von Misses forces of the microneedle are around 17.931 MPa; the ANSYS software was used to analyze the mechanical behavior of the microneedles. In addition, the microneedle concept was made by 3D printing using a bio-compatible resin of class 1. The features presented by the microneedle designed in this study make it a promising option for implementation in a transdermal drug-delivery device11 páginasapplication/pdfengMDPIBasel, SwitzerlandDerechos reservados - MDPI, 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Microneedles: One-plane bevel-tipped fabrication by 3d-printing processesArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a851119127Molecules1. Xu, J.; Xu, D.; Xuan, X.; He, H. Advances of microneedles in biomedical applications. Molecules 2021, 26, 5912. [CrossRef] [PubMed]2. Cheng, Y.-C.; Li, T.S.; Su, H.L.; Lee, P.C.;Wang, H.-M.D. Transdermal delivery systems of natural products applied to skin therapy and care. Molecules 2020, 25, 5051. [CrossRef] [PubMed]3. Chaurasiya, P.; Ganju, E.; Upmanyu, N.; Ray, S.K.; Jain, P. Transfersomes: A novel technique for transdermal drug delivery. J. Drug Deliv. Ther. 2019, 9, 279–285. [CrossRef]4. Lee, H.; Song, C.; Baik, S.; Kim, D.; Hyeon, T.; Kim, D.H. Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev. 2018, 127, 35–45. [CrossRef]5. Shingade, G.M. Review on: Recent trend on transdermal drug delivery system. J. Drug Deliv. Ther. 2012, 2, 66–75. [CrossRef]6. Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019, 109, 1249–1258. [CrossRef]7. Economidou, S.N.; Uddin, M.J.; Marques, M.J.; Douroumis, D.; Sow, W.T.; Li, H.; Reid, A.; Windmill, J.F.C.; Podoleanu, A. A novel 3D printed hollow Microneedle microelectromechanical system for controlled, personalized transdermal drug delivery. Addit. Manuf. 2021, 38, 101815. [CrossRef]8. Yan, L.; Alba, M.; Tabassum, N.; Voelcker, N.H. Micro- and nanosystems for advanced transdermal delivery. Adv. Ther. 2019, 2, 1900141. [CrossRef]9. Dolžan, T.; Vrtacˇnik, D.; Resnik, D.; Aljancˇicˇ, U.; Moz˙ ek, M.; Pecˇar, B.; Amon, S. Design of transdermal drug delivery system with PZT actuated micropump. In Proceedings of the 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2014), Opatija, Croatia, 26–30 May 2014; pp. 96–99. [CrossRef]10. Rogkas, N.; Vakouftsis, C.; Spitas, V.; Lagaros, N.D.; Georgantzinos, S.K. Design aspects of additive manufacturing at microscale: A review. Micromachines 2022, 13, 775. [CrossRef]11. Bora, P.; Kumar, L.; Bansal, A.K. Microneedle technology for advanced drug delivery: Evolving vistas. Crips 2008, 9, 7–10.12. Lutton, R.E.M.; Larrañeta, E.; Kearney, M.C.; Boyd, P.; Woolfson, A.D.; Donnelly, R.F. A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays. Int. J. Pharm. 2015, 494, 417–429. [CrossRef]13. Pedde, R.D.; Mirani, B.; Navaei, A.; Styan, T.;Wong, S.; Mehrali, M.; Thakur, A.; Mohtaram, N.K.; Bayati, A.; Dolatshahi-Pirouz, A.; et al. Emerging biofabrication strategies for engineering complex tissue constructs. Adv. Mater. 2017, 29, 1606061. [CrossRef]14. Wu, M.; Zhang, Y.; Huang, H.; Li, J.; Liu, H.; Guo, Z.; Xue, L.; Liu, S.; Lei, Y. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater. Sci. Eng. C 2020, 117, 111299. [CrossRef]15. Johnson, A.R.; Procopio, A.T. Low cost additive manufacturing of microneedle masters. 3D Print. Med. 2019, 5, 1–10. [CrossRef]16. Pere, C.P.P.; Economidou, S.N.; Lall, G.; Ziraud, C.; Boateng, J.S.; Alexander, B.D.; Lamprou, D.A.; Douroumis, D. 3D printed microneedles for insulin skin delivery. Int. J. Pharm. 2018, 544, 425–432. [CrossRef]17. Xenikakis, I.; Tsongas, K.; Tzimtzimis, E.K.; Zacharis, C.K.; Theodoroula, N.; Kalogianni, E.P.; Demiri, E.; Vizirianakis, I.S. Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery. Int. J. Pharm. 2021, 597, 120303. [CrossRef]18. Economidou, S.N.; Douroumis, D. 3D printing as a transformative tool for microneedle systems: Recent advances, manufacturing considerations and market potential. Adv. Drug Deliv. Rev. 2021, 173, 60–69. [CrossRef]19. Vishnu, B.; Kumar, M.S. Improving productivity through design and development of re-capable needle cover for blood bag needle assembly. Acta Tech. Corviniensis-Bull. Eng. 2015, 8, 61–64.20. Park, J.H.; Allen, M.G.; Prausnitz, M.R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control. Release 2005, 104, 51–66. [CrossRef]21. Abolhassani, N.; Patel, R.; Moallem, M. Needle insertion into soft tissue: A survey. Med. Eng. Phys. 2007, 29, 413–431. [CrossRef]22. Wang, Y.; Chen, R.K.; Tai, B.L.; McLaughlin, P.W.; Shih, A.J. Optimal needle design for minimal insertion force and bevel length. Med. Eng. Phys. 2014, 36, 1093–1100. [CrossRef] [PubMed]23. Olatunji, O.; Das, D.B.; Nassehi, V. Modelling transdermal drug delivery using microneedles: Effect of geometry on drug transport behavior. J. Pharm. Sci. 2012, 101, 164–175. [CrossRef] [PubMed]24. Garcia, J.; Rios, I.; Fonthal, F. Design and analyses of a transdermal drug delivery device (TD3). Sensors 2019, 19, 5090. [CrossRef] [PubMed]25. Ahn, B. Optimal microneedle design for drug delivery based on insertion force experiments with variable geometry. Int. J. Control. Autom. Syst. 2020, 18, 143–149. [CrossRef]26. Huntsman. Araldite FT LY 5052 Aradur 5052. Huntsman, Technical Data Sheet—Araldite®LY 5052/Aradur®5052. 2012. Available online: https://es.scribd.com/document/402041100/Araldite-FT-LY-5052-Aradur-5052-en-1 (accessed on 15 September 2021).27. Saseendran, S.; Wysocki, M.; Varna, J. Cure-state dependent viscoelastic Poisson’s ratio of LY5052 epoxy resin. Adv. Manuf. Polym. Compos. Sci. 2017, 3, 92–100. [CrossRef]28. Han, T. and Das, D.B. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: A review. Eur. J. Pharm. Biopharm. 2015, 89, 312–328. [CrossRef] [PubMed]29. Surgical Guide Resin, Formlabs/Dental Resin data sheet; Formlabs: Somerville, MA, USA, 2021.30. Choo, S.; Jin, S. and Jung, J. Fabricating high-resolution and high-dimensional microneedle mold through the resolution improvement of stereolithography 3D printing. Pharmaceutics 2022, 14, 766. [CrossRef] [PubMed]MicroneedlesTransdermal drug deliveryFinite element analysis3D printingComunidad generalPublication767bff32-1019-4cc1-a2d8-a8baf8b48240virtual::5787-1a358342d-0532-401b-97fa-4986de22c9cdvirtual::5788-12bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::5789-1767bff32-1019-4cc1-a2d8-a8baf8b48240virtual::5787-1a358342d-0532-401b-97fa-4986de22c9cdvirtual::5788-12bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::5789-1https://scholar.google.com.co/citations?user=selvUiIAAAAJ&hl=envirtual::5788-1https://scholar.google.com/citations?user=zxVYtU0AAAAJ&hl=envirtual::5789-10000-0001-5353-6368virtual::5787-1https://orcid.org/0000-0002-5007-9613virtual::5788-10000-0002-9331-0491virtual::5789-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000785075virtual::5787-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000142433virtual::5788-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000895857virtual::5789-1ORIGINALMicroneedles_One-Plane_Bevel-Tipped_Fabrication_by_3D-_Printing_Processes.pdfMicroneedles_One-Plane_Bevel-Tipped_Fabrication_by_3D-_Printing_Processes.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf4145450https://red.uao.edu.co/bitstreams/8d85510b-291a-4c9a-bc9f-cc02f7fadb6f/downloada41b8a89b712b8b80c3bb04df5621b4dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/30271ddd-5514-4b33-afce-029fb50d4dc6/download6987b791264a2b5525252450f99b10d1MD52TEXTMicroneedles_One-Plane_Bevel-Tipped_Fabrication_by_3D-_Printing_Processes.pdf.txtMicroneedles_One-Plane_Bevel-Tipped_Fabrication_by_3D-_Printing_Processes.pdf.txtExtracted texttext/plain44232https://red.uao.edu.co/bitstreams/0fdf031f-5cee-4f6f-9cd4-1c891640aaae/download40cd18b2214f5f7ba2df68ea6f81207cMD53THUMBNAILMicroneedles_One-Plane_Bevel-Tipped_Fabrication_by_3D-_Printing_Processes.pdf.jpgMicroneedles_One-Plane_Bevel-Tipped_Fabrication_by_3D-_Printing_Processes.pdf.jpgGenerated Thumbnailimage/jpeg15897https://red.uao.edu.co/bitstreams/dd560114-5ab8-4fe1-87ee-9a2f539645c3/download859189fde83241362fe41f57a473a50dMD5410614/15900oai:red.uao.edu.co:10614/159002024-11-16 03:00:51.867https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2022open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg== |