Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes

This article presents microneedles analyses where the design parameters studied included length and inner and outer diameter ranges. A mathematical model was also used to generalize outer and inner diameter ratios in the obtained ranges. Following this, the range of inner and outer diameters was com...

Full description

Autores:
Villota, Isabella
Calvo Echeverry, Paulo César
Campo Salazar, Oscar Iván
Fonthal Rico, Faruk
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/15900
Acceso en línea:
https://hdl.handle.net/10614/15900
https://doi.org/10.3390/molecules27196634
https://red.uao.edu.co/
Palabra clave:
Microneedles
Transdermal drug delivery
Finite element analysis
3D printing
Rights
openAccess
License
Derechos reservados - MDPI, 2022
id REPOUAO2_8d966f6637b02b50a08d31d95dc29277
oai_identifier_str oai:red.uao.edu.co:10614/15900
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes
title Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes
spellingShingle Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes
Microneedles
Transdermal drug delivery
Finite element analysis
3D printing
title_short Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes
title_full Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes
title_fullStr Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes
title_full_unstemmed Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes
title_sort Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes
dc.creator.fl_str_mv Villota, Isabella
Calvo Echeverry, Paulo César
Campo Salazar, Oscar Iván
Fonthal Rico, Faruk
dc.contributor.author.none.fl_str_mv Villota, Isabella
Calvo Echeverry, Paulo César
Campo Salazar, Oscar Iván
Fonthal Rico, Faruk
dc.subject.proposal.eng.fl_str_mv Microneedles
Transdermal drug delivery
Finite element analysis
3D printing
topic Microneedles
Transdermal drug delivery
Finite element analysis
3D printing
description This article presents microneedles analyses where the design parameters studied included length and inner and outer diameter ranges. A mathematical model was also used to generalize outer and inner diameter ratios in the obtained ranges. Following this, the range of inner and outer diameters was completed by mechanical simulations, ranging from 30 μm to 134 μm as the inner diameter range and 208 μm to 250 μm as the outer diameter range. With these ranges, a mathematical model was made using fourth-order polynomial regressions with a correlation of 0.9993, ensuring a safety factor of four in which von Misses forces of the microneedle are around 17.931 MPa; the ANSYS software was used to analyze the mechanical behavior of the microneedles. In addition, the microneedle concept was made by 3D printing using a bio-compatible resin of class 1. The features presented by the microneedle designed in this study make it a promising option for implementation in a transdermal drug-delivery device
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2024-11-14T19:55:14Z
dc.date.available.none.fl_str_mv 2024-11-14T19:55:14Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Villota, I.; Calvo, P. C.; Campo, O. I. y Fonthal, F. (2022). Microneedles: One-Plane Bevel-Tipped Fabrication by 3D-Printing Processes. Molecules. 27(19). 11p. https://doi.org/10.3390/molecules27196634
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/15900
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.3390/molecules27196634
dc.identifier.eissn.spa.fl_str_mv 14203049
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Villota, I.; Calvo, P. C.; Campo, O. I. y Fonthal, F. (2022). Microneedles: One-Plane Bevel-Tipped Fabrication by 3D-Printing Processes. Molecules. 27(19). 11p. https://doi.org/10.3390/molecules27196634
14203049
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/15900
https://doi.org/10.3390/molecules27196634
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 11
dc.relation.citationissue.spa.fl_str_mv 19
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 27
dc.relation.ispartofjournal.eng.fl_str_mv Molecules
dc.relation.references.none.fl_str_mv 1. Xu, J.; Xu, D.; Xuan, X.; He, H. Advances of microneedles in biomedical applications. Molecules 2021, 26, 5912. [CrossRef] [PubMed]
2. Cheng, Y.-C.; Li, T.S.; Su, H.L.; Lee, P.C.;Wang, H.-M.D. Transdermal delivery systems of natural products applied to skin therapy and care. Molecules 2020, 25, 5051. [CrossRef] [PubMed]
3. Chaurasiya, P.; Ganju, E.; Upmanyu, N.; Ray, S.K.; Jain, P. Transfersomes: A novel technique for transdermal drug delivery. J. Drug Deliv. Ther. 2019, 9, 279–285. [CrossRef]
4. Lee, H.; Song, C.; Baik, S.; Kim, D.; Hyeon, T.; Kim, D.H. Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev. 2018, 127, 35–45. [CrossRef]
5. Shingade, G.M. Review on: Recent trend on transdermal drug delivery system. J. Drug Deliv. Ther. 2012, 2, 66–75. [CrossRef]
6. Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019, 109, 1249–1258. [CrossRef]
7. Economidou, S.N.; Uddin, M.J.; Marques, M.J.; Douroumis, D.; Sow, W.T.; Li, H.; Reid, A.; Windmill, J.F.C.; Podoleanu, A. A novel 3D printed hollow Microneedle microelectromechanical system for controlled, personalized transdermal drug delivery. Addit. Manuf. 2021, 38, 101815. [CrossRef]
8. Yan, L.; Alba, M.; Tabassum, N.; Voelcker, N.H. Micro- and nanosystems for advanced transdermal delivery. Adv. Ther. 2019, 2, 1900141. [CrossRef]
9. Dolžan, T.; Vrtacˇnik, D.; Resnik, D.; Aljancˇicˇ, U.; Moz˙ ek, M.; Pecˇar, B.; Amon, S. Design of transdermal drug delivery system with PZT actuated micropump. In Proceedings of the 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2014), Opatija, Croatia, 26–30 May 2014; pp. 96–99. [CrossRef]
10. Rogkas, N.; Vakouftsis, C.; Spitas, V.; Lagaros, N.D.; Georgantzinos, S.K. Design aspects of additive manufacturing at microscale: A review. Micromachines 2022, 13, 775. [CrossRef]
11. Bora, P.; Kumar, L.; Bansal, A.K. Microneedle technology for advanced drug delivery: Evolving vistas. Crips 2008, 9, 7–10.
12. Lutton, R.E.M.; Larrañeta, E.; Kearney, M.C.; Boyd, P.; Woolfson, A.D.; Donnelly, R.F. A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays. Int. J. Pharm. 2015, 494, 417–429. [CrossRef]
13. Pedde, R.D.; Mirani, B.; Navaei, A.; Styan, T.;Wong, S.; Mehrali, M.; Thakur, A.; Mohtaram, N.K.; Bayati, A.; Dolatshahi-Pirouz, A.; et al. Emerging biofabrication strategies for engineering complex tissue constructs. Adv. Mater. 2017, 29, 1606061. [CrossRef]
14. Wu, M.; Zhang, Y.; Huang, H.; Li, J.; Liu, H.; Guo, Z.; Xue, L.; Liu, S.; Lei, Y. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater. Sci. Eng. C 2020, 117, 111299. [CrossRef]
15. Johnson, A.R.; Procopio, A.T. Low cost additive manufacturing of microneedle masters. 3D Print. Med. 2019, 5, 1–10. [CrossRef]
16. Pere, C.P.P.; Economidou, S.N.; Lall, G.; Ziraud, C.; Boateng, J.S.; Alexander, B.D.; Lamprou, D.A.; Douroumis, D. 3D printed microneedles for insulin skin delivery. Int. J. Pharm. 2018, 544, 425–432. [CrossRef]
17. Xenikakis, I.; Tsongas, K.; Tzimtzimis, E.K.; Zacharis, C.K.; Theodoroula, N.; Kalogianni, E.P.; Demiri, E.; Vizirianakis, I.S. Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery. Int. J. Pharm. 2021, 597, 120303. [CrossRef]
18. Economidou, S.N.; Douroumis, D. 3D printing as a transformative tool for microneedle systems: Recent advances, manufacturing considerations and market potential. Adv. Drug Deliv. Rev. 2021, 173, 60–69. [CrossRef]
19. Vishnu, B.; Kumar, M.S. Improving productivity through design and development of re-capable needle cover for blood bag needle assembly. Acta Tech. Corviniensis-Bull. Eng. 2015, 8, 61–64.
20. Park, J.H.; Allen, M.G.; Prausnitz, M.R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control. Release 2005, 104, 51–66. [CrossRef]
21. Abolhassani, N.; Patel, R.; Moallem, M. Needle insertion into soft tissue: A survey. Med. Eng. Phys. 2007, 29, 413–431. [CrossRef]
22. Wang, Y.; Chen, R.K.; Tai, B.L.; McLaughlin, P.W.; Shih, A.J. Optimal needle design for minimal insertion force and bevel length. Med. Eng. Phys. 2014, 36, 1093–1100. [CrossRef] [PubMed]
23. Olatunji, O.; Das, D.B.; Nassehi, V. Modelling transdermal drug delivery using microneedles: Effect of geometry on drug transport behavior. J. Pharm. Sci. 2012, 101, 164–175. [CrossRef] [PubMed]
24. Garcia, J.; Rios, I.; Fonthal, F. Design and analyses of a transdermal drug delivery device (TD3). Sensors 2019, 19, 5090. [CrossRef] [PubMed]
25. Ahn, B. Optimal microneedle design for drug delivery based on insertion force experiments with variable geometry. Int. J. Control. Autom. Syst. 2020, 18, 143–149. [CrossRef]
26. Huntsman. Araldite FT LY 5052 Aradur 5052. Huntsman, Technical Data Sheet—Araldite®LY 5052/Aradur®5052. 2012. Available online: https://es.scribd.com/document/402041100/Araldite-FT-LY-5052-Aradur-5052-en-1 (accessed on 15 September 2021).
27. Saseendran, S.; Wysocki, M.; Varna, J. Cure-state dependent viscoelastic Poisson’s ratio of LY5052 epoxy resin. Adv. Manuf. Polym. Compos. Sci. 2017, 3, 92–100. [CrossRef]
28. Han, T. and Das, D.B. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: A review. Eur. J. Pharm. Biopharm. 2015, 89, 312–328. [CrossRef] [PubMed]
29. Surgical Guide Resin, Formlabs/Dental Resin data sheet; Formlabs: Somerville, MA, USA, 2021.
30. Choo, S.; Jin, S. and Jung, J. Fabricating high-resolution and high-dimensional microneedle mold through the resolution improvement of stereolithography 3D printing. Pharmaceutics 2022, 14, 766. [CrossRef] [PubMed]
dc.rights.spa.fl_str_mv Derechos reservados - MDPI, 2022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - MDPI, 2022
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv MDPI
dc.publisher.place.eng.fl_str_mv Basel, Switzerland
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/8d85510b-291a-4c9a-bc9f-cc02f7fadb6f/download
https://red.uao.edu.co/bitstreams/30271ddd-5514-4b33-afce-029fb50d4dc6/download
https://red.uao.edu.co/bitstreams/0fdf031f-5cee-4f6f-9cd4-1c891640aaae/download
https://red.uao.edu.co/bitstreams/dd560114-5ab8-4fe1-87ee-9a2f539645c3/download
bitstream.checksum.fl_str_mv a41b8a89b712b8b80c3bb04df5621b4d
6987b791264a2b5525252450f99b10d1
40cd18b2214f5f7ba2df68ea6f81207c
859189fde83241362fe41f57a473a50d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1831928626248941568
spelling Villota, IsabellaCalvo Echeverry, Paulo Césarvirtual::5787-1Campo Salazar, Oscar Ivánvirtual::5788-1Fonthal Rico, Farukvirtual::5789-12024-11-14T19:55:14Z2024-11-14T19:55:14Z2022Villota, I.; Calvo, P. C.; Campo, O. I. y Fonthal, F. (2022). Microneedles: One-Plane Bevel-Tipped Fabrication by 3D-Printing Processes. Molecules. 27(19). 11p. https://doi.org/10.3390/molecules27196634https://hdl.handle.net/10614/15900https://doi.org/10.3390/molecules2719663414203049Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/This article presents microneedles analyses where the design parameters studied included length and inner and outer diameter ranges. A mathematical model was also used to generalize outer and inner diameter ratios in the obtained ranges. Following this, the range of inner and outer diameters was completed by mechanical simulations, ranging from 30 μm to 134 μm as the inner diameter range and 208 μm to 250 μm as the outer diameter range. With these ranges, a mathematical model was made using fourth-order polynomial regressions with a correlation of 0.9993, ensuring a safety factor of four in which von Misses forces of the microneedle are around 17.931 MPa; the ANSYS software was used to analyze the mechanical behavior of the microneedles. In addition, the microneedle concept was made by 3D printing using a bio-compatible resin of class 1. The features presented by the microneedle designed in this study make it a promising option for implementation in a transdermal drug-delivery device11 páginasapplication/pdfengMDPIBasel, SwitzerlandDerechos reservados - MDPI, 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Microneedles: One-plane bevel-tipped fabrication by 3d-printing processesArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a851119127Molecules1. Xu, J.; Xu, D.; Xuan, X.; He, H. Advances of microneedles in biomedical applications. Molecules 2021, 26, 5912. [CrossRef] [PubMed]2. Cheng, Y.-C.; Li, T.S.; Su, H.L.; Lee, P.C.;Wang, H.-M.D. Transdermal delivery systems of natural products applied to skin therapy and care. Molecules 2020, 25, 5051. [CrossRef] [PubMed]3. Chaurasiya, P.; Ganju, E.; Upmanyu, N.; Ray, S.K.; Jain, P. Transfersomes: A novel technique for transdermal drug delivery. J. Drug Deliv. Ther. 2019, 9, 279–285. [CrossRef]4. Lee, H.; Song, C.; Baik, S.; Kim, D.; Hyeon, T.; Kim, D.H. Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev. 2018, 127, 35–45. [CrossRef]5. Shingade, G.M. Review on: Recent trend on transdermal drug delivery system. J. Drug Deliv. Ther. 2012, 2, 66–75. [CrossRef]6. Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019, 109, 1249–1258. [CrossRef]7. Economidou, S.N.; Uddin, M.J.; Marques, M.J.; Douroumis, D.; Sow, W.T.; Li, H.; Reid, A.; Windmill, J.F.C.; Podoleanu, A. A novel 3D printed hollow Microneedle microelectromechanical system for controlled, personalized transdermal drug delivery. Addit. Manuf. 2021, 38, 101815. [CrossRef]8. Yan, L.; Alba, M.; Tabassum, N.; Voelcker, N.H. Micro- and nanosystems for advanced transdermal delivery. Adv. Ther. 2019, 2, 1900141. [CrossRef]9. Dolžan, T.; Vrtacˇnik, D.; Resnik, D.; Aljancˇicˇ, U.; Moz˙ ek, M.; Pecˇar, B.; Amon, S. Design of transdermal drug delivery system with PZT actuated micropump. In Proceedings of the 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2014), Opatija, Croatia, 26–30 May 2014; pp. 96–99. [CrossRef]10. Rogkas, N.; Vakouftsis, C.; Spitas, V.; Lagaros, N.D.; Georgantzinos, S.K. Design aspects of additive manufacturing at microscale: A review. Micromachines 2022, 13, 775. [CrossRef]11. Bora, P.; Kumar, L.; Bansal, A.K. Microneedle technology for advanced drug delivery: Evolving vistas. Crips 2008, 9, 7–10.12. Lutton, R.E.M.; Larrañeta, E.; Kearney, M.C.; Boyd, P.; Woolfson, A.D.; Donnelly, R.F. A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays. Int. J. Pharm. 2015, 494, 417–429. [CrossRef]13. Pedde, R.D.; Mirani, B.; Navaei, A.; Styan, T.;Wong, S.; Mehrali, M.; Thakur, A.; Mohtaram, N.K.; Bayati, A.; Dolatshahi-Pirouz, A.; et al. Emerging biofabrication strategies for engineering complex tissue constructs. Adv. Mater. 2017, 29, 1606061. [CrossRef]14. Wu, M.; Zhang, Y.; Huang, H.; Li, J.; Liu, H.; Guo, Z.; Xue, L.; Liu, S.; Lei, Y. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater. Sci. Eng. C 2020, 117, 111299. [CrossRef]15. Johnson, A.R.; Procopio, A.T. Low cost additive manufacturing of microneedle masters. 3D Print. Med. 2019, 5, 1–10. [CrossRef]16. Pere, C.P.P.; Economidou, S.N.; Lall, G.; Ziraud, C.; Boateng, J.S.; Alexander, B.D.; Lamprou, D.A.; Douroumis, D. 3D printed microneedles for insulin skin delivery. Int. J. Pharm. 2018, 544, 425–432. [CrossRef]17. Xenikakis, I.; Tsongas, K.; Tzimtzimis, E.K.; Zacharis, C.K.; Theodoroula, N.; Kalogianni, E.P.; Demiri, E.; Vizirianakis, I.S. Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery. Int. J. Pharm. 2021, 597, 120303. [CrossRef]18. Economidou, S.N.; Douroumis, D. 3D printing as a transformative tool for microneedle systems: Recent advances, manufacturing considerations and market potential. Adv. Drug Deliv. Rev. 2021, 173, 60–69. [CrossRef]19. Vishnu, B.; Kumar, M.S. Improving productivity through design and development of re-capable needle cover for blood bag needle assembly. Acta Tech. Corviniensis-Bull. Eng. 2015, 8, 61–64.20. Park, J.H.; Allen, M.G.; Prausnitz, M.R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control. Release 2005, 104, 51–66. [CrossRef]21. Abolhassani, N.; Patel, R.; Moallem, M. Needle insertion into soft tissue: A survey. Med. Eng. Phys. 2007, 29, 413–431. [CrossRef]22. Wang, Y.; Chen, R.K.; Tai, B.L.; McLaughlin, P.W.; Shih, A.J. Optimal needle design for minimal insertion force and bevel length. Med. Eng. Phys. 2014, 36, 1093–1100. [CrossRef] [PubMed]23. Olatunji, O.; Das, D.B.; Nassehi, V. Modelling transdermal drug delivery using microneedles: Effect of geometry on drug transport behavior. J. Pharm. Sci. 2012, 101, 164–175. [CrossRef] [PubMed]24. Garcia, J.; Rios, I.; Fonthal, F. Design and analyses of a transdermal drug delivery device (TD3). Sensors 2019, 19, 5090. [CrossRef] [PubMed]25. Ahn, B. Optimal microneedle design for drug delivery based on insertion force experiments with variable geometry. Int. J. Control. Autom. Syst. 2020, 18, 143–149. [CrossRef]26. Huntsman. Araldite FT LY 5052 Aradur 5052. Huntsman, Technical Data Sheet—Araldite®LY 5052/Aradur®5052. 2012. Available online: https://es.scribd.com/document/402041100/Araldite-FT-LY-5052-Aradur-5052-en-1 (accessed on 15 September 2021).27. Saseendran, S.; Wysocki, M.; Varna, J. Cure-state dependent viscoelastic Poisson’s ratio of LY5052 epoxy resin. Adv. Manuf. Polym. Compos. Sci. 2017, 3, 92–100. [CrossRef]28. Han, T. and Das, D.B. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: A review. Eur. J. Pharm. Biopharm. 2015, 89, 312–328. [CrossRef] [PubMed]29. Surgical Guide Resin, Formlabs/Dental Resin data sheet; Formlabs: Somerville, MA, USA, 2021.30. Choo, S.; Jin, S. and Jung, J. Fabricating high-resolution and high-dimensional microneedle mold through the resolution improvement of stereolithography 3D printing. Pharmaceutics 2022, 14, 766. [CrossRef] [PubMed]MicroneedlesTransdermal drug deliveryFinite element analysis3D printingComunidad generalPublication767bff32-1019-4cc1-a2d8-a8baf8b48240virtual::5787-1a358342d-0532-401b-97fa-4986de22c9cdvirtual::5788-12bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::5789-1767bff32-1019-4cc1-a2d8-a8baf8b48240virtual::5787-1a358342d-0532-401b-97fa-4986de22c9cdvirtual::5788-12bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::5789-1https://scholar.google.com.co/citations?user=selvUiIAAAAJ&hl=envirtual::5788-1https://scholar.google.com/citations?user=zxVYtU0AAAAJ&hl=envirtual::5789-10000-0001-5353-6368virtual::5787-1https://orcid.org/0000-0002-5007-9613virtual::5788-10000-0002-9331-0491virtual::5789-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000785075virtual::5787-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000142433virtual::5788-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000895857virtual::5789-1ORIGINALMicroneedles_One-Plane_Bevel-Tipped_Fabrication_by_3D-_Printing_Processes.pdfMicroneedles_One-Plane_Bevel-Tipped_Fabrication_by_3D-_Printing_Processes.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf4145450https://red.uao.edu.co/bitstreams/8d85510b-291a-4c9a-bc9f-cc02f7fadb6f/downloada41b8a89b712b8b80c3bb04df5621b4dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/30271ddd-5514-4b33-afce-029fb50d4dc6/download6987b791264a2b5525252450f99b10d1MD52TEXTMicroneedles_One-Plane_Bevel-Tipped_Fabrication_by_3D-_Printing_Processes.pdf.txtMicroneedles_One-Plane_Bevel-Tipped_Fabrication_by_3D-_Printing_Processes.pdf.txtExtracted texttext/plain44232https://red.uao.edu.co/bitstreams/0fdf031f-5cee-4f6f-9cd4-1c891640aaae/download40cd18b2214f5f7ba2df68ea6f81207cMD53THUMBNAILMicroneedles_One-Plane_Bevel-Tipped_Fabrication_by_3D-_Printing_Processes.pdf.jpgMicroneedles_One-Plane_Bevel-Tipped_Fabrication_by_3D-_Printing_Processes.pdf.jpgGenerated Thumbnailimage/jpeg15897https://red.uao.edu.co/bitstreams/dd560114-5ab8-4fe1-87ee-9a2f539645c3/download859189fde83241362fe41f57a473a50dMD5410614/15900oai:red.uao.edu.co:10614/159002024-11-16 03:00:51.867https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2022open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==