Ultrasonic measurement of viscosity: Signal processing methodologies
This work deals with two alternative methodologies for data post-processing resulting from the ultrasonic shear-wave reflectance method used for liquid viscosity measurement. In the shear-wave reflectance method, the measurement principle is the small transference of energy to the liquid when the wa...
- Autores:
-
Franco Guzmán, Ediguer Enrique
Buiochi, Flávio
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11525
- Acceso en línea:
- http://hdl.handle.net/10614/11525
- Palabra clave:
- Dinámica de fluidos
Hidrodinámica
Fluid dynamics
Hydrodynamics
Viscosity
Ultrasound
Shear waves
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_8c2fd9985e67ed21ad57f325332d40cc |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11525 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Ultrasonic measurement of viscosity: Signal processing methodologies |
title |
Ultrasonic measurement of viscosity: Signal processing methodologies |
spellingShingle |
Ultrasonic measurement of viscosity: Signal processing methodologies Dinámica de fluidos Hidrodinámica Fluid dynamics Hydrodynamics Viscosity Ultrasound Shear waves |
title_short |
Ultrasonic measurement of viscosity: Signal processing methodologies |
title_full |
Ultrasonic measurement of viscosity: Signal processing methodologies |
title_fullStr |
Ultrasonic measurement of viscosity: Signal processing methodologies |
title_full_unstemmed |
Ultrasonic measurement of viscosity: Signal processing methodologies |
title_sort |
Ultrasonic measurement of viscosity: Signal processing methodologies |
dc.creator.fl_str_mv |
Franco Guzmán, Ediguer Enrique Buiochi, Flávio |
dc.contributor.author.none.fl_str_mv |
Franco Guzmán, Ediguer Enrique Buiochi, Flávio |
dc.subject.armarc.spa.fl_str_mv |
Dinámica de fluidos Hidrodinámica |
topic |
Dinámica de fluidos Hidrodinámica Fluid dynamics Hydrodynamics Viscosity Ultrasound Shear waves |
dc.subject.armarc.eng.fl_str_mv |
Fluid dynamics Hydrodynamics |
dc.subject.proposal.eng.fl_str_mv |
Viscosity Ultrasound Shear waves |
description |
This work deals with two alternative methodologies for data post-processing resulting from the ultrasonic shear-wave reflectance method used for liquid viscosity measurement. In the shear-wave reflectance method, the measurement principle is the small transference of energy to the liquid when the wave strikes a solid–liquid interface, causing a detectable change in the reflection coefficient. A measurement cell that uses mode conversion for the generation of the shear waves was employed and samples of five different substances were tested, covering a viscosity range of three orders of magnitude. Ultrasonic results were compared to the values obtained by conventional viscometry. Despite the wide range of viscosity and the different nature of the liquids, Newtonian behavior was observed with all samples at the working frequencies. This can be concluded from the coincidence between the values obtained by ultrasound and by the rotational viscometer. However, the viscosity values show an oscillating behavior when calculated for different frequencies along the band of the transducer. This oscillating behavior induces big errors when the viscosity is calculated at a single frequency, forcing the development of alternative methodologies. Two methodologies that calculate the reflection coefficient in a frequency band instead of a single frequency were analyzed, showing more accuracy and precision |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-18T20:20:04Z |
dc.date.available.none.fl_str_mv |
2019-11-18T20:20:04Z |
dc.date.issued.none.fl_str_mv |
2019-01 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Artículo de revista |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
0041-624X |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/11525 |
identifier_str_mv |
0041-624X |
url |
http://hdl.handle.net/10614/11525 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
R. Kažys, R. Rekuvienė. Viscosity and density measurement methods for polymer melts Ultragarsas (Ultrasound), 66 (4) (2011), pp. 20-25 W.P. Mason, W.O. Baker, J.M. McSkimin, J.H. Heiss Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies Phys. Rev., 75 (6) (1949), pp. 936-946 R. Saggin, J.N. Coupland. Oil viscosity measurement by ultrasonic reflectance J. Am. Oil. Chem. Soc., 78 (5) (2001), pp. 509-511 E.E. Franco, J.C. Adamowski, R.T. Higuti, F. Buiochi. Viscosity measurement of newtonian liquids using the complex reflection coefficient IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55 (10) (2008), pp. 2247-2253 F. Cohen-Tenoudji, W.J. Pardee, B.R. Tittmann, L. Ahlberg, R.K. Elsley A shear wave rheology sensor. IEEE Trans. Ultrason. Ferroelect. Freq. Control UFFC, 34 (2) (1987), pp. 263-269 E.E. Franco, J.C. Adamowski, F. Buiochi. Ultrasonic sensor for the presence of oily contaminants in water Dyna, 79 (176) (2012), pp. 4-9 M.M. Schirru, M. Sutton, R. Dwyer-Joyce, O. Smith, R. Mills, Development of a novel ultrasonic viscometer for real time and in-situ applications in engines, in: SAE Technical Paper, SAE International, 2015. https://doi.org/10.4271/2015-01-0679 V. Shah, K. Balasubramaniam Effect of viscosity on ultrasound wave reflection from a solid/liquid interface Ultrasonics, 34 (1996), pp. 817-824 E.E. Franco, J.C. Adamowski, F. Buiochi. Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique. IEEE Trans. Ultrason. Ferroelect. nd Freq. Control, 57 (5) (2010), pp. 1133-1139 F. Buiochi, E.E. Franco, R.T. Higuti, J.C. Adamowski Viscosity measuring cell using ultrasonic wave mode conversion Ferroelectrics, 333 (1) (2006), pp. 139-149 V.V. Shah, K. Balasubramaniam. Measuring newtonian viscosity from the phase of reflected ultrasonic shear wave Ultrasonics, 38 (9) (2000), pp. 921-927 R. Saggin, J.N. Coupland. Rheology of xanthan/sucrose mixtures at ultrasonic frequencies J. Food Eng., 65 (1) (2004), pp. 49-53 F. Buiochi, J.C. Adamowski, C.M. Furukawa, Measurement of viscosity using wave mode conversion, in: Transactions of the 1998 IEEE Ultrasonic Symposium, vol. 2, Sendai, Japan, 1998, pp. 1193–1196 I. Alig, D. Lellinger, J. Sulimma, S. Tadjbakhsch. Ultrasonic shear wave reflection method for measurements of the viscoelastic properties of polymer films Rev. Sci. Instrum., 68 (3) (1997), pp. 1536-1542 M.S. Greenwood, J.A. Bamberger. Measurement of viscosity and shear wave velocity of liquid or slurry for on-line process control Ultrasonics, 39 (9) (2002), pp. 623-630 A. Kulmyrzaev, D.J. McClements. High frequency dynamic shear rheology of honey J. Food Eng., 45 (4) (2000), pp. 219-224 X. Wang, K.V. Subramaniam, F. Lin. Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste Ultrasonics, 50 (2010), pp. 726-738 S.H. Sheen, H.T. Chien, A.C. Raptis An in-line ultrasonic viscometer Rev. Progress Quant. Nondestruct. Eval., 14 (1995), pp. 1151-1158 R.T. Higuti, J.C. Adamowski Ultrasonic densitometer using a multiple reflection technique IEEE Trans. Ultrason. Ferroelect. Freq. Control, 49 (9) (2002), pp. 1260-1268 J.A. Barlow, J. Lamb. The visco-elastic behaviour of lubricating oils under cyclic shearing stress Proc. Roy. Soc. London. Series A, Mathe. Phys. Sci., 253 (1272) (1959), pp. 52-69 |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
7 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0041624X17308016?via%3Dihub |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/84c36406-6617-498f-8c3b-19f89c73d402/download https://red.uao.edu.co/bitstreams/2655bb37-3504-43f6-be6f-922d2fc21d99/download https://red.uao.edu.co/bitstreams/68ddf80d-27ce-4053-b31e-02eb92988f19/download https://red.uao.edu.co/bitstreams/24f693d2-a3d3-4508-b847-c7c8fa026274/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 8a06d274867f461944f8daa6914e8e7c 83f2e2ef51ab1b776c2d39bea6f0cbe3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259944318304256 |
spelling |
Franco Guzmán, Ediguer Enriquevirtual::1805-1Buiochi, Fláviob1bdb982d63e34285277106ac50141c5Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-18T20:20:04Z2019-11-18T20:20:04Z2019-010041-624Xhttp://hdl.handle.net/10614/11525This work deals with two alternative methodologies for data post-processing resulting from the ultrasonic shear-wave reflectance method used for liquid viscosity measurement. In the shear-wave reflectance method, the measurement principle is the small transference of energy to the liquid when the wave strikes a solid–liquid interface, causing a detectable change in the reflection coefficient. A measurement cell that uses mode conversion for the generation of the shear waves was employed and samples of five different substances were tested, covering a viscosity range of three orders of magnitude. Ultrasonic results were compared to the values obtained by conventional viscometry. Despite the wide range of viscosity and the different nature of the liquids, Newtonian behavior was observed with all samples at the working frequencies. This can be concluded from the coincidence between the values obtained by ultrasound and by the rotational viscometer. However, the viscosity values show an oscillating behavior when calculated for different frequencies along the band of the transducer. This oscillating behavior induces big errors when the viscosity is calculated at a single frequency, forcing the development of alternative methodologies. Two methodologies that calculate the reflection coefficient in a frequency band instead of a single frequency were analyzed, showing more accuracy and precisionapplication/pdf7 páginasengUniversidad Autónoma de OccidenteDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S0041624X17308016?via%3DihubUltrasonic measurement of viscosity: Signal processing methodologiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Artículo de revistainfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Dinámica de fluidosHidrodinámicaFluid dynamicsHydrodynamicsViscosityUltrasoundShear wavesR. Kažys, R. Rekuvienė. Viscosity and density measurement methods for polymer melts Ultragarsas (Ultrasound), 66 (4) (2011), pp. 20-25W.P. Mason, W.O. Baker, J.M. McSkimin, J.H. Heiss Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies Phys. Rev., 75 (6) (1949), pp. 936-946R. Saggin, J.N. Coupland. Oil viscosity measurement by ultrasonic reflectance J. Am. Oil. Chem. Soc., 78 (5) (2001), pp. 509-511E.E. Franco, J.C. Adamowski, R.T. Higuti, F. Buiochi. Viscosity measurement of newtonian liquids using the complex reflection coefficient IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55 (10) (2008), pp. 2247-2253F. Cohen-Tenoudji, W.J. Pardee, B.R. Tittmann, L. Ahlberg, R.K. Elsley A shear wave rheology sensor. IEEE Trans. Ultrason. Ferroelect. Freq. Control UFFC, 34 (2) (1987), pp. 263-269E.E. Franco, J.C. Adamowski, F. Buiochi. Ultrasonic sensor for the presence of oily contaminants in water Dyna, 79 (176) (2012), pp. 4-9M.M. Schirru, M. Sutton, R. Dwyer-Joyce, O. Smith, R. Mills, Development of a novel ultrasonic viscometer for real time and in-situ applications in engines, in: SAE Technical Paper, SAE International, 2015. https://doi.org/10.4271/2015-01-0679V. Shah, K. Balasubramaniam Effect of viscosity on ultrasound wave reflection from a solid/liquid interface Ultrasonics, 34 (1996), pp. 817-824E.E. Franco, J.C. Adamowski, F. Buiochi. Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique. IEEE Trans. Ultrason. Ferroelect. nd Freq. Control, 57 (5) (2010), pp. 1133-1139F. Buiochi, E.E. Franco, R.T. Higuti, J.C. Adamowski Viscosity measuring cell using ultrasonic wave mode conversion Ferroelectrics, 333 (1) (2006), pp. 139-149V.V. Shah, K. Balasubramaniam. Measuring newtonian viscosity from the phase of reflected ultrasonic shear wave Ultrasonics, 38 (9) (2000), pp. 921-927R. Saggin, J.N. Coupland. Rheology of xanthan/sucrose mixtures at ultrasonic frequencies J. Food Eng., 65 (1) (2004), pp. 49-53F. Buiochi, J.C. Adamowski, C.M. Furukawa, Measurement of viscosity using wave mode conversion, in: Transactions of the 1998 IEEE Ultrasonic Symposium, vol. 2, Sendai, Japan, 1998, pp. 1193–1196I. Alig, D. Lellinger, J. Sulimma, S. Tadjbakhsch. Ultrasonic shear wave reflection method for measurements of the viscoelastic properties of polymer films Rev. Sci. Instrum., 68 (3) (1997), pp. 1536-1542M.S. Greenwood, J.A. Bamberger. Measurement of viscosity and shear wave velocity of liquid or slurry for on-line process control Ultrasonics, 39 (9) (2002), pp. 623-630A. Kulmyrzaev, D.J. McClements. High frequency dynamic shear rheology of honey J. Food Eng., 45 (4) (2000), pp. 219-224X. Wang, K.V. Subramaniam, F. Lin. Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste Ultrasonics, 50 (2010), pp. 726-738S.H. Sheen, H.T. Chien, A.C. Raptis An in-line ultrasonic viscometer Rev. Progress Quant. Nondestruct. Eval., 14 (1995), pp. 1151-1158R.T. Higuti, J.C. Adamowski Ultrasonic densitometer using a multiple reflection technique IEEE Trans. Ultrason. Ferroelect. Freq. Control, 49 (9) (2002), pp. 1260-1268J.A. Barlow, J. Lamb. The visco-elastic behaviour of lubricating oils under cyclic shearing stress Proc. Roy. Soc. London. Series A, Mathe. Phys. Sci., 253 (1272) (1959), pp. 52-69Publicationff78380a-274b-4973-8760-dee857b38a0dvirtual::1805-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::1805-1https://scholar.google.com/citations?user=4paPIoAAAAAJ&hl=esvirtual::1805-10000-0001-7518-704Xvirtual::1805-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001243730virtual::1805-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/84c36406-6617-498f-8c3b-19f89c73d402/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/2655bb37-3504-43f6-be6f-922d2fc21d99/download20b5ba22b1117f71589c7318baa2c560MD53TEXTUltrasonic measurement of viscosity. Signal processing methodologies.pdf.txtUltrasonic measurement of viscosity. Signal processing methodologies.pdf.txtExtracted texttext/plain34027https://red.uao.edu.co/bitstreams/68ddf80d-27ce-4053-b31e-02eb92988f19/download8a06d274867f461944f8daa6914e8e7cMD55THUMBNAILUltrasonic measurement of viscosity. Signal processing methodologies.pdf.jpgUltrasonic measurement of viscosity. Signal processing methodologies.pdf.jpgGenerated Thumbnailimage/jpeg14106https://red.uao.edu.co/bitstreams/24f693d2-a3d3-4508-b847-c7c8fa026274/download83f2e2ef51ab1b776c2d39bea6f0cbe3MD5610614/11525oai:red.uao.edu.co:10614/115252024-03-05 10:51:44.83https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |