Ultrasonic measurement of viscosity: Signal processing methodologies

This work deals with two alternative methodologies for data post-processing resulting from the ultrasonic shear-wave reflectance method used for liquid viscosity measurement. In the shear-wave reflectance method, the measurement principle is the small transference of energy to the liquid when the wa...

Full description

Autores:
Franco Guzmán, Ediguer Enrique
Buiochi, Flávio
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11525
Acceso en línea:
http://hdl.handle.net/10614/11525
Palabra clave:
Dinámica de fluidos
Hidrodinámica
Fluid dynamics
Hydrodynamics
Viscosity
Ultrasound
Shear waves
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_8c2fd9985e67ed21ad57f325332d40cc
oai_identifier_str oai:red.uao.edu.co:10614/11525
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Ultrasonic measurement of viscosity: Signal processing methodologies
title Ultrasonic measurement of viscosity: Signal processing methodologies
spellingShingle Ultrasonic measurement of viscosity: Signal processing methodologies
Dinámica de fluidos
Hidrodinámica
Fluid dynamics
Hydrodynamics
Viscosity
Ultrasound
Shear waves
title_short Ultrasonic measurement of viscosity: Signal processing methodologies
title_full Ultrasonic measurement of viscosity: Signal processing methodologies
title_fullStr Ultrasonic measurement of viscosity: Signal processing methodologies
title_full_unstemmed Ultrasonic measurement of viscosity: Signal processing methodologies
title_sort Ultrasonic measurement of viscosity: Signal processing methodologies
dc.creator.fl_str_mv Franco Guzmán, Ediguer Enrique
Buiochi, Flávio
dc.contributor.author.none.fl_str_mv Franco Guzmán, Ediguer Enrique
Buiochi, Flávio
dc.subject.armarc.spa.fl_str_mv Dinámica de fluidos
Hidrodinámica
topic Dinámica de fluidos
Hidrodinámica
Fluid dynamics
Hydrodynamics
Viscosity
Ultrasound
Shear waves
dc.subject.armarc.eng.fl_str_mv Fluid dynamics
Hydrodynamics
dc.subject.proposal.eng.fl_str_mv Viscosity
Ultrasound
Shear waves
description This work deals with two alternative methodologies for data post-processing resulting from the ultrasonic shear-wave reflectance method used for liquid viscosity measurement. In the shear-wave reflectance method, the measurement principle is the small transference of energy to the liquid when the wave strikes a solid–liquid interface, causing a detectable change in the reflection coefficient. A measurement cell that uses mode conversion for the generation of the shear waves was employed and samples of five different substances were tested, covering a viscosity range of three orders of magnitude. Ultrasonic results were compared to the values obtained by conventional viscometry. Despite the wide range of viscosity and the different nature of the liquids, Newtonian behavior was observed with all samples at the working frequencies. This can be concluded from the coincidence between the values obtained by ultrasound and by the rotational viscometer. However, the viscosity values show an oscillating behavior when calculated for different frequencies along the band of the transducer. This oscillating behavior induces big errors when the viscosity is calculated at a single frequency, forcing the development of alternative methodologies. Two methodologies that calculate the reflection coefficient in a frequency band instead of a single frequency were analyzed, showing more accuracy and precision
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-18T20:20:04Z
dc.date.available.none.fl_str_mv 2019-11-18T20:20:04Z
dc.date.issued.none.fl_str_mv 2019-01
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Artículo de revista
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0041-624X
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11525
identifier_str_mv 0041-624X
url http://hdl.handle.net/10614/11525
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv R. Kažys, R. Rekuvienė. Viscosity and density measurement methods for polymer melts Ultragarsas (Ultrasound), 66 (4) (2011), pp. 20-25
W.P. Mason, W.O. Baker, J.M. McSkimin, J.H. Heiss Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies Phys. Rev., 75 (6) (1949), pp. 936-946
R. Saggin, J.N. Coupland. Oil viscosity measurement by ultrasonic reflectance J. Am. Oil. Chem. Soc., 78 (5) (2001), pp. 509-511
E.E. Franco, J.C. Adamowski, R.T. Higuti, F. Buiochi. Viscosity measurement of newtonian liquids using the complex reflection coefficient IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55 (10) (2008), pp. 2247-2253
F. Cohen-Tenoudji, W.J. Pardee, B.R. Tittmann, L. Ahlberg, R.K. Elsley A shear wave rheology sensor. IEEE Trans. Ultrason. Ferroelect. Freq. Control UFFC, 34 (2) (1987), pp. 263-269
E.E. Franco, J.C. Adamowski, F. Buiochi. Ultrasonic sensor for the presence of oily contaminants in water Dyna, 79 (176) (2012), pp. 4-9
M.M. Schirru, M. Sutton, R. Dwyer-Joyce, O. Smith, R. Mills, Development of a novel ultrasonic viscometer for real time and in-situ applications in engines, in: SAE Technical Paper, SAE International, 2015. https://doi.org/10.4271/2015-01-0679
V. Shah, K. Balasubramaniam Effect of viscosity on ultrasound wave reflection from a solid/liquid interface Ultrasonics, 34 (1996), pp. 817-824
E.E. Franco, J.C. Adamowski, F. Buiochi. Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique. IEEE Trans. Ultrason. Ferroelect. nd Freq. Control, 57 (5) (2010), pp. 1133-1139
F. Buiochi, E.E. Franco, R.T. Higuti, J.C. Adamowski Viscosity measuring cell using ultrasonic wave mode conversion Ferroelectrics, 333 (1) (2006), pp. 139-149
V.V. Shah, K. Balasubramaniam. Measuring newtonian viscosity from the phase of reflected ultrasonic shear wave Ultrasonics, 38 (9) (2000), pp. 921-927
R. Saggin, J.N. Coupland. Rheology of xanthan/sucrose mixtures at ultrasonic frequencies J. Food Eng., 65 (1) (2004), pp. 49-53
F. Buiochi, J.C. Adamowski, C.M. Furukawa, Measurement of viscosity using wave mode conversion, in: Transactions of the 1998 IEEE Ultrasonic Symposium, vol. 2, Sendai, Japan, 1998, pp. 1193–1196
I. Alig, D. Lellinger, J. Sulimma, S. Tadjbakhsch. Ultrasonic shear wave reflection method for measurements of the viscoelastic properties of polymer films Rev. Sci. Instrum., 68 (3) (1997), pp. 1536-1542
M.S. Greenwood, J.A. Bamberger. Measurement of viscosity and shear wave velocity of liquid or slurry for on-line process control Ultrasonics, 39 (9) (2002), pp. 623-630
A. Kulmyrzaev, D.J. McClements. High frequency dynamic shear rheology of honey J. Food Eng., 45 (4) (2000), pp. 219-224
X. Wang, K.V. Subramaniam, F. Lin. Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste Ultrasonics, 50 (2010), pp. 726-738
S.H. Sheen, H.T. Chien, A.C. Raptis An in-line ultrasonic viscometer Rev. Progress Quant. Nondestruct. Eval., 14 (1995), pp. 1151-1158
R.T. Higuti, J.C. Adamowski Ultrasonic densitometer using a multiple reflection technique IEEE Trans. Ultrason. Ferroelect. Freq. Control, 49 (9) (2002), pp. 1260-1268
J.A. Barlow, J. Lamb. The visco-elastic behaviour of lubricating oils under cyclic shearing stress Proc. Roy. Soc. London. Series A, Mathe. Phys. Sci., 253 (1272) (1959), pp. 52-69
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 7 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.spa.fl_str_mv Universidad Autónoma de Occidente
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0041624X17308016?via%3Dihub
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/84c36406-6617-498f-8c3b-19f89c73d402/download
https://red.uao.edu.co/bitstreams/2655bb37-3504-43f6-be6f-922d2fc21d99/download
https://red.uao.edu.co/bitstreams/68ddf80d-27ce-4053-b31e-02eb92988f19/download
https://red.uao.edu.co/bitstreams/24f693d2-a3d3-4508-b847-c7c8fa026274/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
8a06d274867f461944f8daa6914e8e7c
83f2e2ef51ab1b776c2d39bea6f0cbe3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259944318304256
spelling Franco Guzmán, Ediguer Enriquevirtual::1805-1Buiochi, Fláviob1bdb982d63e34285277106ac50141c5Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-18T20:20:04Z2019-11-18T20:20:04Z2019-010041-624Xhttp://hdl.handle.net/10614/11525This work deals with two alternative methodologies for data post-processing resulting from the ultrasonic shear-wave reflectance method used for liquid viscosity measurement. In the shear-wave reflectance method, the measurement principle is the small transference of energy to the liquid when the wave strikes a solid–liquid interface, causing a detectable change in the reflection coefficient. A measurement cell that uses mode conversion for the generation of the shear waves was employed and samples of five different substances were tested, covering a viscosity range of three orders of magnitude. Ultrasonic results were compared to the values obtained by conventional viscometry. Despite the wide range of viscosity and the different nature of the liquids, Newtonian behavior was observed with all samples at the working frequencies. This can be concluded from the coincidence between the values obtained by ultrasound and by the rotational viscometer. However, the viscosity values show an oscillating behavior when calculated for different frequencies along the band of the transducer. This oscillating behavior induces big errors when the viscosity is calculated at a single frequency, forcing the development of alternative methodologies. Two methodologies that calculate the reflection coefficient in a frequency band instead of a single frequency were analyzed, showing more accuracy and precisionapplication/pdf7 páginasengUniversidad Autónoma de OccidenteDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S0041624X17308016?via%3DihubUltrasonic measurement of viscosity: Signal processing methodologiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Artículo de revistainfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Dinámica de fluidosHidrodinámicaFluid dynamicsHydrodynamicsViscosityUltrasoundShear wavesR. Kažys, R. Rekuvienė. Viscosity and density measurement methods for polymer melts Ultragarsas (Ultrasound), 66 (4) (2011), pp. 20-25W.P. Mason, W.O. Baker, J.M. McSkimin, J.H. Heiss Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies Phys. Rev., 75 (6) (1949), pp. 936-946R. Saggin, J.N. Coupland. Oil viscosity measurement by ultrasonic reflectance J. Am. Oil. Chem. Soc., 78 (5) (2001), pp. 509-511E.E. Franco, J.C. Adamowski, R.T. Higuti, F. Buiochi. Viscosity measurement of newtonian liquids using the complex reflection coefficient IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55 (10) (2008), pp. 2247-2253F. Cohen-Tenoudji, W.J. Pardee, B.R. Tittmann, L. Ahlberg, R.K. Elsley A shear wave rheology sensor. IEEE Trans. Ultrason. Ferroelect. Freq. Control UFFC, 34 (2) (1987), pp. 263-269E.E. Franco, J.C. Adamowski, F. Buiochi. Ultrasonic sensor for the presence of oily contaminants in water Dyna, 79 (176) (2012), pp. 4-9M.M. Schirru, M. Sutton, R. Dwyer-Joyce, O. Smith, R. Mills, Development of a novel ultrasonic viscometer for real time and in-situ applications in engines, in: SAE Technical Paper, SAE International, 2015. https://doi.org/10.4271/2015-01-0679V. Shah, K. Balasubramaniam Effect of viscosity on ultrasound wave reflection from a solid/liquid interface Ultrasonics, 34 (1996), pp. 817-824E.E. Franco, J.C. Adamowski, F. Buiochi. Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique. IEEE Trans. Ultrason. Ferroelect. nd Freq. Control, 57 (5) (2010), pp. 1133-1139F. Buiochi, E.E. Franco, R.T. Higuti, J.C. Adamowski Viscosity measuring cell using ultrasonic wave mode conversion Ferroelectrics, 333 (1) (2006), pp. 139-149V.V. Shah, K. Balasubramaniam. Measuring newtonian viscosity from the phase of reflected ultrasonic shear wave Ultrasonics, 38 (9) (2000), pp. 921-927R. Saggin, J.N. Coupland. Rheology of xanthan/sucrose mixtures at ultrasonic frequencies J. Food Eng., 65 (1) (2004), pp. 49-53F. Buiochi, J.C. Adamowski, C.M. Furukawa, Measurement of viscosity using wave mode conversion, in: Transactions of the 1998 IEEE Ultrasonic Symposium, vol. 2, Sendai, Japan, 1998, pp. 1193–1196I. Alig, D. Lellinger, J. Sulimma, S. Tadjbakhsch. Ultrasonic shear wave reflection method for measurements of the viscoelastic properties of polymer films Rev. Sci. Instrum., 68 (3) (1997), pp. 1536-1542M.S. Greenwood, J.A. Bamberger. Measurement of viscosity and shear wave velocity of liquid or slurry for on-line process control Ultrasonics, 39 (9) (2002), pp. 623-630A. Kulmyrzaev, D.J. McClements. High frequency dynamic shear rheology of honey J. Food Eng., 45 (4) (2000), pp. 219-224X. Wang, K.V. Subramaniam, F. Lin. Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste Ultrasonics, 50 (2010), pp. 726-738S.H. Sheen, H.T. Chien, A.C. Raptis An in-line ultrasonic viscometer Rev. Progress Quant. Nondestruct. Eval., 14 (1995), pp. 1151-1158R.T. Higuti, J.C. Adamowski Ultrasonic densitometer using a multiple reflection technique IEEE Trans. Ultrason. Ferroelect. Freq. Control, 49 (9) (2002), pp. 1260-1268J.A. Barlow, J. Lamb. The visco-elastic behaviour of lubricating oils under cyclic shearing stress Proc. Roy. Soc. London. Series A, Mathe. Phys. Sci., 253 (1272) (1959), pp. 52-69Publicationff78380a-274b-4973-8760-dee857b38a0dvirtual::1805-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::1805-1https://scholar.google.com/citations?user=4paPIoAAAAAJ&hl=esvirtual::1805-10000-0001-7518-704Xvirtual::1805-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001243730virtual::1805-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/84c36406-6617-498f-8c3b-19f89c73d402/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/2655bb37-3504-43f6-be6f-922d2fc21d99/download20b5ba22b1117f71589c7318baa2c560MD53TEXTUltrasonic measurement of viscosity. Signal processing methodologies.pdf.txtUltrasonic measurement of viscosity. Signal processing methodologies.pdf.txtExtracted texttext/plain34027https://red.uao.edu.co/bitstreams/68ddf80d-27ce-4053-b31e-02eb92988f19/download8a06d274867f461944f8daa6914e8e7cMD55THUMBNAILUltrasonic measurement of viscosity. Signal processing methodologies.pdf.jpgUltrasonic measurement of viscosity. Signal processing methodologies.pdf.jpgGenerated Thumbnailimage/jpeg14106https://red.uao.edu.co/bitstreams/24f693d2-a3d3-4508-b847-c7c8fa026274/download83f2e2ef51ab1b776c2d39bea6f0cbe3MD5610614/11525oai:red.uao.edu.co:10614/115252024-03-05 10:51:44.83https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K