Desarrollo e implementación de un simulador de pulsioximetría para uso académico
Medical instrumentation devices are indispensable to determine health conditions in humans. The teaching of biomedical instrumentation requires a perfect combination of practice and theory. Therefore, the use of physiological signals simulators such as a %SpO2 becomes important as a teaching strateg...
- Autores:
-
Machado Gamboa, Kevin
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2018
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/10470
- Acceso en línea:
- http://hdl.handle.net/10614/10470
- Palabra clave:
- Ingeniería Biomédica
Aparatos e instrumentos en medicina
Bioinstrumentación
Oxígeno en el organismo
Fotopletismografía
Pulsioximetría
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_8b8c5816bd825375e5e5d38ea3b52926 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/10470 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desarrollo e implementación de un simulador de pulsioximetría para uso académico |
title |
Desarrollo e implementación de un simulador de pulsioximetría para uso académico |
spellingShingle |
Desarrollo e implementación de un simulador de pulsioximetría para uso académico Ingeniería Biomédica Aparatos e instrumentos en medicina Bioinstrumentación Oxígeno en el organismo Fotopletismografía Pulsioximetría |
title_short |
Desarrollo e implementación de un simulador de pulsioximetría para uso académico |
title_full |
Desarrollo e implementación de un simulador de pulsioximetría para uso académico |
title_fullStr |
Desarrollo e implementación de un simulador de pulsioximetría para uso académico |
title_full_unstemmed |
Desarrollo e implementación de un simulador de pulsioximetría para uso académico |
title_sort |
Desarrollo e implementación de un simulador de pulsioximetría para uso académico |
dc.creator.fl_str_mv |
Machado Gamboa, Kevin |
dc.contributor.advisor.none.fl_str_mv |
González Vargas, Andrés Mauricio |
dc.contributor.author.spa.fl_str_mv |
Machado Gamboa, Kevin |
dc.subject.spa.fl_str_mv |
Ingeniería Biomédica Aparatos e instrumentos en medicina Bioinstrumentación Oxígeno en el organismo Fotopletismografía Pulsioximetría |
topic |
Ingeniería Biomédica Aparatos e instrumentos en medicina Bioinstrumentación Oxígeno en el organismo Fotopletismografía Pulsioximetría |
description |
Medical instrumentation devices are indispensable to determine health conditions in humans. The teaching of biomedical instrumentation requires a perfect combination of practice and theory. Therefore, the use of physiological signals simulators such as a %SpO2 becomes important as a teaching strategy. The objective of this project is to develop and implement an oxygen saturation simulator, for use in the biomedical instrumentation courses. The development process began by establishing the requirements of the simulator and designing a graphical user interface to control the simulator parameters. Subsequently, a circuit capable of materializing the simulated signals from the interface was developed, together with a probe or artificial finger that was to be introduced inside the objective pulse oximeter. Finally, the systems were integrated into the simulator. |
publishDate |
2018 |
dc.date.accessioned.spa.fl_str_mv |
2018-11-29T20:14:42Z |
dc.date.available.spa.fl_str_mv |
2018-11-29T20:14:42Z |
dc.date.issued.spa.fl_str_mv |
2018-08-20 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.uri.spa.fl_str_mv |
http://hdl.handle.net/10614/10470 |
url |
http://hdl.handle.net/10614/10470 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.spa.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
138 páginas |
dc.coverage.spatial.spa.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Biomédica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Automática y Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.source.spa.fl_str_mv |
instname:Universidad Autónoma de Occidente reponame:Repositorio Institucional UAO |
instname_str |
Universidad Autónoma de Occidente |
institution |
Universidad Autónoma de Occidente |
reponame_str |
Repositorio Institucional UAO |
collection |
Repositorio Institucional UAO |
dc.source.bibliographiccitation.spa.fl_str_mv |
[1] F. Lateef, "Simulation-based learning: Just like the real thing." Journal of Emergencies, Trauma and Shock 3, no. 4 2010 p. 348. [2] Z. Krawiecki, A. Cysewska-Sobusiak, G. Wiczynski, A. Odon. "Modeling and measurements of light transmission through human tissues." Technical Sciences 56, no. 2 (2008). [3] S. J. Lorandi, G. LaMura y A. J. Kohen, “Simulador optoelectrónico para el ensayo de oxímetros de pulso,” Presentado en XVIII Congreso Argentino de Bioingeniería SABI 2011 - VII Jornadas de Ingeniería Clínica Mar del Plata, 28 al 30 de septiembre de 2011. [4] J. M. Schmitt, R. T. Wall, G. X. Zhou, and E. C. Walker, "Multilayer model of photon diffusion in skin," J. Opt. Soc. Am. A 7, 2141-2153 (1990) [5] K. A. Ruiter. “Light transmission simulator for pulse oximeter,” US7346378 B2. Cesionario original Pronk Technologies Inc. [en linea] Disponible en: https://www.google.ch/patents/US7346378 [6] K.T. Ulrich, S. D. Eppinger, Diseño y desarrollo de productos, ISBN 978-607-15-0944-4. Editorial McGraw Hill. 5ta Edición [7] E. D. Chan, M. M. Chan e, M. M. Chan, “Pulse oximetry: Understanding its basic principles facilitates appreciation of its limitations,” Respiratory medicine 107, no. 6 (2013): 789-799. [en linea], Disponible en: http://dx.doi.org/10.1016/j.rmed.2013.02.004 [8] Konica Minolta Sensing Americas, INC. How to Read SpO2, Basic understanding of the pulse oximeter 101 Williams Drive. Ramsey, NJ 07446 [9] Webster, John G., ed. Design of pulse oximeters, CRC Press, 1997. [10] P. Tilakaratna, “How pulse oximeters work explained simply,” [en linea], Disponible en: https://www.howequipmentworks.com/pulse_oximeter/ [11] S. Hu, V. Azorin-Peris, J. Zheng, “Opto-Physiological Modeling Applied to Photoplethysmographic Cardiovascular Assessment,” Journal of Healthcare Engineering · Vol. 4 · No. 4 · 2013 pp. 505–528 [12] N. Stuban, M. Niwayama, H. Santha. “Phantom with Pulsatile Arteries to Investigate the Influence of Blood Vessel Depth on Pulse Oximeter Signal Strength,” Sensors 2012, 12, 895-904, ISSN 1424-8220 [13] J. L. Reuss, “PULSE OXIMETER WITH CALIBRATION STABILIZATION,” United States patent No. US 6,711,425 B1. Mar. 23, 2004 [14] B. Parker, “REUSABLE PULSE OXIMETER PROBE AND DISPOSABLE BANDAGE APPARATUS,” United States patent No. US 6,519,487 B1. Feb. 11, 2003 [15] A. Aithal, “Wireless Sensor Platform for Pulse Oximetry”. M.S Thesis Microelectronic Engineering. Dep. of electrical and microelectronic engineering. Rochester Institute of Technology. November 2015 [16] L. Santiago, and R. T. A. C. Americas. "Pulse oximeter fundamentals and design." Free-scale Semiconductor Inc. application note document No AN4327 Rev 1 (2011): 4327. [17] V. Markandey “Pulse Oximeter Implementation on the TMS320C5515 DSP Medical Development Kit (MDK)” Texas Instrument, Application Report SPRAB37A–June 2010 [18] S. Kästle, F. Noller, S. Falk, A. Bukta, E. Mayer, D. Miller, “A New Family of Sensors for Pulse Oximetry,” Hewlett-Packard Journal, Article 7. February 1997 [19] D. He, S. Morgan, D. Trachanis, J. van Hese, D. Drogoudis, F. Fummi, F. Stefanni, V. Guarnieri, B. Hayes-Gill, “A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection,” Sensors 15, no. 7 (2015): 17076-17088. [20] D.J. McMahon, “There’s no such thing as an SPO2 simulator,” Everett, Wash: Fluke Biomedical; 2013. [en linea], Disponible en: http://www.flukebiomedical.com/Biomedical/usen/Events/Promos/sp02-whitepaper-SOC. Accessed January 15, 2015. [21] D. Laqua, C. Brieskorn, J. H. Koch, M. Rothmayer, S. Zeiske, M. Böttrich, P. Husar, “Improved FPGA controlled artificial vascular system for plethysmographic measurements,” Current Directions in Biomedical Engineering 2016 pp. 689-693. [22] D. Laqua, C. Brieskorn, J. H. Koch, M. Rothmayer, S. Zeiske, M. Böttrich, P. Husar, “FPGA controlled artificial vascular system,” Current Directions in Biomedical Engineering Eng. 2015;1 [23]. Z. Pu, B. Hong, J. Chen. "Design of Pulse Oximeter Simulator Calibration Equipment," In World Congress on Medical Physics and Biomedical Engineering May 26-31, 2012, Beijing, China, pp. 1533-1536. Springer, Berlin, Heidelberg, 2013. [24] S. Sepúlveda, P. Reyes, A. Weinstein. "Visualizing Physiological Signals in Real Time." In Proc. of the 14th Python in Science Conf, pp. 190-194. 2015. [25] Food and Drug Administration. LNOPv and LNOP x Oximetry Sensors. K033298 August 27 2004. [26] Robert F. Coughlin. Frederick F. Driscoll. Amplificadores operacionales y circuitos integrados lineales, 4/E. ISBN 968-880-284-0 |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/7a0f3bfd-47a5-4e0d-9876-0489a981aa66/download https://red.uao.edu.co/bitstreams/b65c4a33-2af0-4d22-8488-06eb56c9d632/download https://red.uao.edu.co/bitstreams/823932f5-e346-4970-8b1f-b4722e556c3a/download https://red.uao.edu.co/bitstreams/0dc88092-7ff9-429c-9232-90c0b172a06f/download https://red.uao.edu.co/bitstreams/ecb07b2c-ea57-4f4d-a309-73f4d494bd45/download https://red.uao.edu.co/bitstreams/5e89a2a5-058d-4741-b2bb-d80da786d41d/download https://red.uao.edu.co/bitstreams/3d621550-07d8-4728-bb61-2c6b3ca81d0e/download https://red.uao.edu.co/bitstreams/e44a2b12-d665-42be-b03a-c4e60f21ff29/download |
bitstream.checksum.fl_str_mv |
b8ed1a33228566480bc4dfd0691b890b 08d3ce43041881037e79467180fe1876 820820ea9646daf8d2ffe632b63463fc b0c894b9466592fd7fd1de906f0951cd 4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 243fe7a9836b3a9d53cf7ee1bebd366c 7405bc6a390257ac3112e6ed5e31e9fa |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260032096698368 |
spelling |
González Vargas, Andrés Mauriciovirtual::2148-1Machado Gamboa, Kevindb7307d2e8150f4e926ffcc89947fe6b-1Ingeniero BiomédicoUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2018-11-29T20:14:42Z2018-11-29T20:14:42Z2018-08-20http://hdl.handle.net/10614/10470Medical instrumentation devices are indispensable to determine health conditions in humans. The teaching of biomedical instrumentation requires a perfect combination of practice and theory. Therefore, the use of physiological signals simulators such as a %SpO2 becomes important as a teaching strategy. The objective of this project is to develop and implement an oxygen saturation simulator, for use in the biomedical instrumentation courses. The development process began by establishing the requirements of the simulator and designing a graphical user interface to control the simulator parameters. Subsequently, a circuit capable of materializing the simulated signals from the interface was developed, together with a probe or artificial finger that was to be introduced inside the objective pulse oximeter. Finally, the systems were integrated into the simulator.Los dispositivos de instrumentación médica son indispensables para determinar las condiciones de salud en los seres humanos. Solo mediante el uso de estos dispositivos es posible monitorear señales fisiológicas como el denominado porcentaje de saturación de oxígeno (SpO2) en la sangre. La enseñanza de la bioinstrumentación requiere de una perfecta combinación entre la práctica y la teoría. Por ende, el uso de simuladores de señales fisiológicas como la SpO2(%) cobra importancia como técnica de enseñanza, debido a que permite replicar y variar aspectos sustanciales en este tipo de señales, así como reforzar el entendimiento de la técnica de la pulsioximetría. El objetivo de este proyecto es desarrollar e implementar un simulador de saturación de oxígeno y guías para su utilización en los cursos de bioinstrumentación de la Universidad Autónoma de Occidente. El desarrollo comienza con el establecimiento de las necesidades del simulador, seguido del diseño de una interfaz de usuario para control de los parámetros simulador. Luego se desarrolla el circuito capaz de materializar las señales simuladas desde la interfaz, a la vez que se construye la pinza o dedo artificial que es introducido dentro del pulsioxímetro objetivo. Finalmente, los sistemas se integran para conformar el simulador, llamado posteriormente UAOSim SpO2. Posterior al desarrollo del simulador, su funcionamiento es validado con un equipo de pulsioximetría disponible en el laboratorio de bioinstrumentación, se elabora una guía de uso dirigida a estudiantes del curso de bioinstrumentación 2 y se prepara una encuesta junto con una práctica para el uso del simulador y la evaluación de su facilidad de usoProyecto de grado (Ingeniero Biomedico)-- Universidad Autónoma de Occidente, 2018PregradoIngeniero(a) Biomédico(a)application/pdf138 páginasspaUniversidad Autónoma de OccidenteIngeniería BiomédicaDepartamento de Automática y ElectrónicaFacultad de IngenieríaDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2instname:Universidad Autónoma de Occidentereponame:Repositorio Institucional UAO[1] F. Lateef, "Simulation-based learning: Just like the real thing." Journal of Emergencies, Trauma and Shock 3, no. 4 2010 p. 348. [2] Z. Krawiecki, A. Cysewska-Sobusiak, G. Wiczynski, A. Odon. "Modeling and measurements of light transmission through human tissues." Technical Sciences 56, no. 2 (2008). [3] S. J. Lorandi, G. LaMura y A. J. Kohen, “Simulador optoelectrónico para el ensayo de oxímetros de pulso,” Presentado en XVIII Congreso Argentino de Bioingeniería SABI 2011 - VII Jornadas de Ingeniería Clínica Mar del Plata, 28 al 30 de septiembre de 2011. [4] J. M. Schmitt, R. T. Wall, G. X. Zhou, and E. C. Walker, "Multilayer model of photon diffusion in skin," J. Opt. Soc. Am. A 7, 2141-2153 (1990) [5] K. A. Ruiter. “Light transmission simulator for pulse oximeter,” US7346378 B2. Cesionario original Pronk Technologies Inc. [en linea] Disponible en: https://www.google.ch/patents/US7346378 [6] K.T. Ulrich, S. D. Eppinger, Diseño y desarrollo de productos, ISBN 978-607-15-0944-4. Editorial McGraw Hill. 5ta Edición [7] E. D. Chan, M. M. Chan e, M. M. Chan, “Pulse oximetry: Understanding its basic principles facilitates appreciation of its limitations,” Respiratory medicine 107, no. 6 (2013): 789-799. [en linea], Disponible en: http://dx.doi.org/10.1016/j.rmed.2013.02.004 [8] Konica Minolta Sensing Americas, INC. How to Read SpO2, Basic understanding of the pulse oximeter 101 Williams Drive. Ramsey, NJ 07446 [9] Webster, John G., ed. Design of pulse oximeters, CRC Press, 1997. [10] P. Tilakaratna, “How pulse oximeters work explained simply,” [en linea], Disponible en: https://www.howequipmentworks.com/pulse_oximeter/ [11] S. Hu, V. Azorin-Peris, J. Zheng, “Opto-Physiological Modeling Applied to Photoplethysmographic Cardiovascular Assessment,” Journal of Healthcare Engineering · Vol. 4 · No. 4 · 2013 pp. 505–528 [12] N. Stuban, M. Niwayama, H. Santha. “Phantom with Pulsatile Arteries to Investigate the Influence of Blood Vessel Depth on Pulse Oximeter Signal Strength,” Sensors 2012, 12, 895-904, ISSN 1424-8220 [13] J. L. Reuss, “PULSE OXIMETER WITH CALIBRATION STABILIZATION,” United States patent No. US 6,711,425 B1. Mar. 23, 2004 [14] B. Parker, “REUSABLE PULSE OXIMETER PROBE AND DISPOSABLE BANDAGE APPARATUS,” United States patent No. US 6,519,487 B1. Feb. 11, 2003 [15] A. Aithal, “Wireless Sensor Platform for Pulse Oximetry”. M.S Thesis Microelectronic Engineering. Dep. of electrical and microelectronic engineering. Rochester Institute of Technology. November 2015 [16] L. Santiago, and R. T. A. C. Americas. "Pulse oximeter fundamentals and design." Free-scale Semiconductor Inc. application note document No AN4327 Rev 1 (2011): 4327. [17] V. Markandey “Pulse Oximeter Implementation on the TMS320C5515 DSP Medical Development Kit (MDK)” Texas Instrument, Application Report SPRAB37A–June 2010 [18] S. Kästle, F. Noller, S. Falk, A. Bukta, E. Mayer, D. Miller, “A New Family of Sensors for Pulse Oximetry,” Hewlett-Packard Journal, Article 7. February 1997 [19] D. He, S. Morgan, D. Trachanis, J. van Hese, D. Drogoudis, F. Fummi, F. Stefanni, V. Guarnieri, B. Hayes-Gill, “A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection,” Sensors 15, no. 7 (2015): 17076-17088. [20] D.J. McMahon, “There’s no such thing as an SPO2 simulator,” Everett, Wash: Fluke Biomedical; 2013. [en linea], Disponible en: http://www.flukebiomedical.com/Biomedical/usen/Events/Promos/sp02-whitepaper-SOC. Accessed January 15, 2015. [21] D. Laqua, C. Brieskorn, J. H. Koch, M. Rothmayer, S. Zeiske, M. Böttrich, P. Husar, “Improved FPGA controlled artificial vascular system for plethysmographic measurements,” Current Directions in Biomedical Engineering 2016 pp. 689-693. [22] D. Laqua, C. Brieskorn, J. H. Koch, M. Rothmayer, S. Zeiske, M. Böttrich, P. Husar, “FPGA controlled artificial vascular system,” Current Directions in Biomedical Engineering Eng. 2015;1 [23]. Z. Pu, B. Hong, J. Chen. "Design of Pulse Oximeter Simulator Calibration Equipment," In World Congress on Medical Physics and Biomedical Engineering May 26-31, 2012, Beijing, China, pp. 1533-1536. Springer, Berlin, Heidelberg, 2013. [24] S. Sepúlveda, P. Reyes, A. Weinstein. "Visualizing Physiological Signals in Real Time." In Proc. of the 14th Python in Science Conf, pp. 190-194. 2015. [25] Food and Drug Administration. LNOPv and LNOP x Oximetry Sensors. K033298 August 27 2004. [26] Robert F. Coughlin. Frederick F. Driscoll. Amplificadores operacionales y circuitos integrados lineales, 4/E. ISBN 968-880-284-0Ingeniería BiomédicaAparatos e instrumentos en medicinaBioinstrumentaciónOxígeno en el organismoFotopletismografíaPulsioximetríaDesarrollo e implementación de un simulador de pulsioximetría para uso académicoTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Publicationhttps://scholar.google.com.co/citations?user=oj5Tle8AAAAJ&hl=esvirtual::2148-10000-0001-6393-7130virtual::2148-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001345355virtual::2148-16053e64e-a34d-4652-8fa2-6c0440556f15virtual::2148-16053e64e-a34d-4652-8fa2-6c0440556f15virtual::2148-1TEXTT08142.pdf.txtT08142.pdf.txtExtracted texttext/plain164097https://red.uao.edu.co/bitstreams/7a0f3bfd-47a5-4e0d-9876-0489a981aa66/downloadb8ed1a33228566480bc4dfd0691b890bMD57TA8142.pdf.txtTA8142.pdf.txtExtracted texttext/plain44https://red.uao.edu.co/bitstreams/b65c4a33-2af0-4d22-8488-06eb56c9d632/download08d3ce43041881037e79467180fe1876MD59THUMBNAILT08142.pdf.jpgT08142.pdf.jpgGenerated Thumbnailimage/jpeg6801https://red.uao.edu.co/bitstreams/823932f5-e346-4970-8b1f-b4722e556c3a/download820820ea9646daf8d2ffe632b63463fcMD58TA8142.pdf.jpgTA8142.pdf.jpgGenerated Thumbnailimage/jpeg10984https://red.uao.edu.co/bitstreams/0dc88092-7ff9-429c-9232-90c0b172a06f/downloadb0c894b9466592fd7fd1de906f0951cdMD510CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/ecb07b2c-ea57-4f4d-a309-73f4d494bd45/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/5e89a2a5-058d-4741-b2bb-d80da786d41d/download20b5ba22b1117f71589c7318baa2c560MD54ORIGINALT08142.pdfT08142.pdfapplication/pdf4060375https://red.uao.edu.co/bitstreams/3d621550-07d8-4728-bb61-2c6b3ca81d0e/download243fe7a9836b3a9d53cf7ee1bebd366cMD55TA8142.pdfTA8142.pdfapplication/pdf551216https://red.uao.edu.co/bitstreams/e44a2b12-d665-42be-b03a-c4e60f21ff29/download7405bc6a390257ac3112e6ed5e31e9faMD5610614/10470oai:red.uao.edu.co:10614/104702024-03-06 14:17:09.492https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |