Construction of a true compaction curve: critical review of the closed die compaction test for powdered materials
This job came of an investigation about a new model called Energy Split Hypothesis (onwards ESH), which is proposed and experimentally tested for the closed die compaction test based on a statement of energy conservation. It was motivated by the observed data scattering in constructing the compactio...
- Autores:
-
Barrera Cárdenas, Helver Mauricio
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2017
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13934
- Acceso en línea:
- https://hdl.handle.net/10614/13934
https://red.uao.edu.co/
- Palabra clave:
- Metalurgia de polvos
Materiales - Propiedades mecánicas
Mecánica
Material - Mechanical properties
Powder metallurgy
Mechanics
- Rights
- openAccess
- License
- Derechos reservados - Universidad Autónoma de Occidente, 2017
id |
REPOUAO2_8997aeb03ecf61d992bc275d4c647399 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13934 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Construction of a true compaction curve: critical review of the closed die compaction test for powdered materials |
title |
Construction of a true compaction curve: critical review of the closed die compaction test for powdered materials |
spellingShingle |
Construction of a true compaction curve: critical review of the closed die compaction test for powdered materials Metalurgia de polvos Materiales - Propiedades mecánicas Mecánica Material - Mechanical properties Powder metallurgy Mechanics |
title_short |
Construction of a true compaction curve: critical review of the closed die compaction test for powdered materials |
title_full |
Construction of a true compaction curve: critical review of the closed die compaction test for powdered materials |
title_fullStr |
Construction of a true compaction curve: critical review of the closed die compaction test for powdered materials |
title_full_unstemmed |
Construction of a true compaction curve: critical review of the closed die compaction test for powdered materials |
title_sort |
Construction of a true compaction curve: critical review of the closed die compaction test for powdered materials |
dc.creator.fl_str_mv |
Barrera Cárdenas, Helver Mauricio |
dc.contributor.author.none.fl_str_mv |
Barrera Cárdenas, Helver Mauricio |
dc.subject.armarc.spa.fl_str_mv |
Metalurgia de polvos Materiales - Propiedades mecánicas Mecánica |
topic |
Metalurgia de polvos Materiales - Propiedades mecánicas Mecánica Material - Mechanical properties Powder metallurgy Mechanics |
dc.subject.armarc.eng.fl_str_mv |
Material - Mechanical properties Powder metallurgy Mechanics |
description |
This job came of an investigation about a new model called Energy Split Hypothesis (onwards ESH), which is proposed and experimentally tested for the closed die compaction test based on a statement of energy conservation. It was motivated by the observed data scattering in constructing the compaction curve, making use of the well-known Method of Differential Slices (onwards MDS). As part of this was addressed the problem of uniform fill-den-sity before compaction, when using specimens of different size. As with testing the validity of the ESH, the methodology is based on a statistical analysis of the observed data scattering upon experi-ment repetition. The friction between the die wall and the powder specimen is considered the cause of data scattering, and it is shown as a reduc-tion in the friction force, which makes the magnitude of this being equal for ESH and MDS approaches to the compaction curve. This is considered a proof of the physical validity of the ESH as a model of the Closed Die Compaction Test (at least to the extent the MDS is). The study of this test from the standpoint of data scattering analysis, provided a method for computing a so-called True Com-paction Curve, in a probabilistic sense and from a physically valid model of the process. The ESH, as an energy-based interpretation of the compaction test, allowed a proposal for the computation of die wall-powder friction coefficient, using optimisation principles. In addition, a re-formulation of the MDS by considering an empirically defined parameter is also put forward. These last two items were subject to experimental validation, and thus, set out as future work. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2022-05-31T20:37:34Z |
dc.date.available.none.fl_str_mv |
2022-05-31T20:37:34Z |
dc.type.spa.fl_str_mv |
Libro |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/book |
dc.type.redcol.eng.fl_str_mv |
https://purl.org/redcol/resource_type/LIB |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2f33 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13934 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
url |
https://hdl.handle.net/10614/13934 https://red.uao.edu.co/ |
identifier_str_mv |
Universidad Autónoma de Occidente Repositorio Educativo Digital |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.cites.spa.fl_str_mv |
Barrera, H. M. (2017). Construction of a True Compaction Curve: critical review of the closed die compaction test for powdered materials. Programa Editorial Universidad Autónoma de Occidente. |
dc.relation.references.none.fl_str_mv |
Alderborn, G., Nystrom, C. (1996). Pharmaceutical Powder Compaction Technology. Marcel Dekker, New York.Ashby, M. et al. (2000). Metal Foams: a Design Guide. Butterworht-Heinemann. Belytschko, T. et al. (2000). Nonlinear Finite Element Analysis of Continua and Structures. Wiley. Bolton, M., et al. (2008). Micro-and macro-mechanical beha- viour of DEM crushable materials. Geotechnique (58, 6), 471-480. Bridgeman, P. (1944). The stress distribution at the neck of a tension specimen. Trans. Am. Soc. Metals (32), 553. Cante, J., et al. (2005). On numerical simulation of powder compaction process: powder transfer modelling and characterizA- tion. Powder metallurgy (48), 85-92. Fanelli, M. (2005).Understanding Agglomerate Dispersion: Experiments and Simulations .Case Western Reserve University, USA, p. 47. García, J., Cortes, D. (2006). A nonlinear biphasic viscohyperelastic model for articular cartilage. Journal of Biomechanics (39), 2991-2998. Guo, Y., et al. (2005). An internal state variable plasticity- based approach to determine dynamic loading history effects on material property in manufacturing processes. International Jour- nal of Mechanical Sciences (47), 1423-1441. Henrich, B, et al. (2006). Particle Methods in Powder Techno- logy. Computational Science and High Performance Computing II, Springer, Berlin. Hu, C, et al. (2007). Micromechanical and macroscopic models of ductile fracture in particle reinforced metallic materials. Mode- lling and Simul. In Mat. Sci. Eng. (15), 377-392. Lewis, R., et al. (2005). A combined finite discrete element method for simulating pharmaceutical powder tableting. Int J. Numerical Methods in Engineering, (62). Martin, C.L. et al. (2002).Study of particle rearrangement du- ring powder compaction by the discrete element method. Journal of the mechanics and physics of solids (51), 667-693. Odeku, O.A. et al. (2005). Compression and mechanical proper- ties of tablet formulations. Pharmaceutical Technology (29, 4), 82-90. Samimi, A. et al. (2005). Single and bulk compressions of soft granules: experimental study and DEM evaluation. Chemical En- gineering Science (60, 14), 3993-4004. Schneider L. & Cocks, A. (2002). Experimental investigation of yield behavior of metal powder compacts. Powder Metallurgy (45, 3), 237-245. Zavaliangos, A., Cunningham, J., Sinka, I. (2004). Analysis of Tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction J. of Pharm. Sci., (93, 8). Walpole et al. (1978). Probability and Statistics for Engineers. Macmillan Publishers. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Autónoma de Occidente, 2017 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Universidad Autónoma de Occidente, 2017 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
163 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Programa Editorial Universidad Autónoma de Occidente |
dc.publisher.place.spa.fl_str_mv |
Cali |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/1652e0ed-e21f-459b-bcec-d7648ecfdf3a/download https://red.uao.edu.co/bitstreams/af1b3ef5-fce3-4408-af3f-0f4d8d0c39ce/download https://red.uao.edu.co/bitstreams/abf8259c-7265-49f4-90a6-c6e0cf143fe6/download https://red.uao.edu.co/bitstreams/c01d516c-ba33-42ed-ac0b-8efe2b70c2d8/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 f2e682460211f6e887d20fe96dbf584a 7b72ae5c9c7c33c9792f8d48d9b8615b d7d6714378d7ffc6783d08ccd2f969f9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259820572704768 |
spelling |
Barrera Cárdenas, Helver Mauriciovirtual::1050-12022-05-31T20:37:34Z2022-05-31T20:37:34Z2017https://hdl.handle.net/10614/13934Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/This job came of an investigation about a new model called Energy Split Hypothesis (onwards ESH), which is proposed and experimentally tested for the closed die compaction test based on a statement of energy conservation. It was motivated by the observed data scattering in constructing the compaction curve, making use of the well-known Method of Differential Slices (onwards MDS). As part of this was addressed the problem of uniform fill-den-sity before compaction, when using specimens of different size. As with testing the validity of the ESH, the methodology is based on a statistical analysis of the observed data scattering upon experi-ment repetition. The friction between the die wall and the powder specimen is considered the cause of data scattering, and it is shown as a reduc-tion in the friction force, which makes the magnitude of this being equal for ESH and MDS approaches to the compaction curve. This is considered a proof of the physical validity of the ESH as a model of the Closed Die Compaction Test (at least to the extent the MDS is). The study of this test from the standpoint of data scattering analysis, provided a method for computing a so-called True Com-paction Curve, in a probabilistic sense and from a physically valid model of the process. The ESH, as an energy-based interpretation of the compaction test, allowed a proposal for the computation of die wall-powder friction coefficient, using optimisation principles. In addition, a re-formulation of the MDS by considering an empirically defined parameter is also put forward. These last two items were subject to experimental validation, and thus, set out as future work.Summary. 1. Introduction. 2. Theoretical basis and literature review. 3. Problem definition, objectives and methodology. 4. Instrumented die design. 5. Data collection, analysis and conclusions. 6. Proposals for future work. 7. ReferencesPrimera edición163 páginasapplication/pdfengPrograma Editorial Universidad Autónoma de OccidenteCaliDerechos reservados - Universidad Autónoma de Occidente, 2017https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Construction of a true compaction curve: critical review of the closed die compaction test for powdered materialsLibrohttp://purl.org/coar/resource_type/c_2f33Textinfo:eu-repo/semantics/bookhttps://purl.org/redcol/resource_type/LIBinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Metalurgia de polvosMateriales - Propiedades mecánicasMecánicaMaterial - Mechanical propertiesPowder metallurgyMechanicsBarrera, H. M. (2017). Construction of a True Compaction Curve: critical review of the closed die compaction test for powdered materials. Programa Editorial Universidad Autónoma de Occidente.Alderborn, G., Nystrom, C. (1996). Pharmaceutical Powder Compaction Technology.Marcel Dekker, New York.Ashby, M. et al. (2000). Metal Foams: a Design Guide. Butterworht-Heinemann.Belytschko, T. et al. (2000). Nonlinear Finite Element Analysis of Continua and Structures. Wiley.Bolton, M., et al. (2008). Micro-and macro-mechanical beha- viour of DEM crushable materials. Geotechnique (58, 6), 471-480.Bridgeman, P. (1944). The stress distribution at the neck of a tension specimen. Trans. Am. Soc. Metals (32), 553.Cante, J., et al. (2005). On numerical simulation of powder compaction process: powder transfer modelling and characterizA- tion. Powder metallurgy (48), 85-92.Fanelli, M. (2005).Understanding Agglomerate Dispersion: Experiments and Simulations .Case Western Reserve University, USA, p. 47.García, J., Cortes, D. (2006). A nonlinear biphasic viscohyperelastic model for articular cartilage. Journal of Biomechanics (39), 2991-2998.Guo, Y., et al. (2005). An internal state variable plasticity- based approach to determine dynamic loading history effects on material property in manufacturing processes. International Jour- nal of Mechanical Sciences (47), 1423-1441.Henrich, B, et al. (2006). Particle Methods in Powder Techno- logy. Computational Science and High Performance Computing II, Springer, Berlin.Hu, C, et al. (2007). Micromechanical and macroscopic models of ductile fracture in particle reinforced metallic materials. Mode- lling and Simul. In Mat. Sci. Eng. (15), 377-392.Lewis, R., et al. (2005). A combined finite discrete element method for simulating pharmaceutical powder tableting. Int J. Numerical Methods in Engineering, (62).Martin, C.L. et al. (2002).Study of particle rearrangement du- ring powder compaction by the discrete element method. Journal of the mechanics and physics of solids (51), 667-693.Odeku, O.A. et al. (2005). Compression and mechanical proper- ties of tablet formulations. Pharmaceutical Technology (29, 4), 82-90.Samimi, A. et al. (2005). Single and bulk compressions of soft granules: experimental study and DEM evaluation. Chemical En- gineering Science (60, 14), 3993-4004.Schneider L. & Cocks, A. (2002). Experimental investigation of yield behavior of metal powder compacts. Powder Metallurgy (45, 3), 237-245.Zavaliangos, A., Cunningham, J., Sinka, I. (2004). Analysis of Tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction J. of Pharm. Sci., (93, 8).Walpole et al. (1978). Probability and Statistics for Engineers. Macmillan Publishers.Comunidad generalPublicationf608b27f-3b11-4041-b07e-40e9f8a7d0cdvirtual::1050-1f608b27f-3b11-4041-b07e-40e9f8a7d0cdvirtual::1050-1https://scholar.google.com/citations?hl=de&view_op=list_works&gmla=AP6z3OYgyKNV4SXIsrFCLfeZy4UIrIrbyXxywRNV-C1ZKnpTkio8g9aklz0hJAg7XS_UPdAknPgql5zu89xaKLcx9QI3sN69O6biQQvlg3a_jR_o01ufqXtkz9H6gA&user=u7z3_5IAAAAJvirtual::1050-10000-0002-6968-1508virtual::1050-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001391726virtual::1050-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/1652e0ed-e21f-459b-bcec-d7648ecfdf3a/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALConstruction of a true compaction curve critical review of the closed die compaction test for powdered materials.pdfConstruction of a true compaction curve critical review of the closed die compaction test for powdered materials.pdfTexto archivo completo del libro, PDFapplication/pdf13844429https://red.uao.edu.co/bitstreams/af1b3ef5-fce3-4408-af3f-0f4d8d0c39ce/downloadf2e682460211f6e887d20fe96dbf584aMD53TEXTConstruction of a true compaction curve critical review of the closed die compaction test for powdered materials.pdf.txtConstruction of a true compaction curve critical review of the closed die compaction test for powdered materials.pdf.txtExtracted texttext/plain176703https://red.uao.edu.co/bitstreams/abf8259c-7265-49f4-90a6-c6e0cf143fe6/download7b72ae5c9c7c33c9792f8d48d9b8615bMD54THUMBNAILConstruction of a true compaction curve critical review of the closed die compaction test for powdered materials.pdf.jpgConstruction of a true compaction curve critical review of the closed die compaction test for powdered materials.pdf.jpgGenerated Thumbnailimage/jpeg6523https://red.uao.edu.co/bitstreams/c01d516c-ba33-42ed-ac0b-8efe2b70c2d8/downloadd7d6714378d7ffc6783d08ccd2f969f9MD5510614/13934oai:red.uao.edu.co:10614/139342024-03-01 09:46:19.728https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Universidad Autónoma de Occidente, 2017open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |