Pneumatic conveying of solids along a channel with different wall roughness
The present contribution describes three-dimensional Euler=Lagrange calculations of confined horizontal gas-particle flows emphasizing the importance of elementary processes, such as particle collisions with rough walls and interparticle collisions, on the predicted two-phase flow variables and pres...
- Autores:
-
Laín Beatove, Santiago
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2014
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11807
- Acceso en línea:
- http://red.uao.edu.co//handle/10614/11807
- Palabra clave:
- Transporte neumático
Turbulencia
Neumática
Pneumatic-tube transportation
Fluid dynamics
Euler-Lagrange approach
Interparticle collisions
Pneumatic conveying
Turbulence
Wall roughness
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_895d1e427c3eba7b621d021acc104913 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11807 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Pneumatic conveying of solids along a channel with different wall roughness |
title |
Pneumatic conveying of solids along a channel with different wall roughness |
spellingShingle |
Pneumatic conveying of solids along a channel with different wall roughness Transporte neumático Turbulencia Neumática Pneumatic-tube transportation Fluid dynamics Euler-Lagrange approach Interparticle collisions Pneumatic conveying Turbulence Wall roughness |
title_short |
Pneumatic conveying of solids along a channel with different wall roughness |
title_full |
Pneumatic conveying of solids along a channel with different wall roughness |
title_fullStr |
Pneumatic conveying of solids along a channel with different wall roughness |
title_full_unstemmed |
Pneumatic conveying of solids along a channel with different wall roughness |
title_sort |
Pneumatic conveying of solids along a channel with different wall roughness |
dc.creator.fl_str_mv |
Laín Beatove, Santiago |
dc.contributor.author.none.fl_str_mv |
Laín Beatove, Santiago |
dc.subject.armarc.spa.fl_str_mv |
Transporte neumático Turbulencia Neumática |
topic |
Transporte neumático Turbulencia Neumática Pneumatic-tube transportation Fluid dynamics Euler-Lagrange approach Interparticle collisions Pneumatic conveying Turbulence Wall roughness |
dc.subject.armarc.eng.fl_str_mv |
Pneumatic-tube transportation Fluid dynamics |
dc.subject.proposal.eng.fl_str_mv |
Euler-Lagrange approach Interparticle collisions Pneumatic conveying Turbulence Wall roughness |
description |
The present contribution describes three-dimensional Euler=Lagrange calculations of confined horizontal gas-particle flows emphasizing the importance of elementary processes, such as particle collisions with rough walls and interparticle collisions, on the predicted two-phase flow variables and pressure drop along the duct. In the chosen configuration the pneumatic conveying of spherical particles along a 6 m long horizontal channel with rectangular cross section is described from a numerical perspective. Calculations were carried out for spherical glass beads of different diameters (130 and 195 lm) with a mass loading of 1.0 (kg particles=kg gas). Additionally, different wall roughnesses were considered. In the experiments, the air volume flow rate was constant to maintain a fixed gas average velocity of 20 m=s. The numerical computations were performed by the Euler=Lagrange approach in connection with a Reynolds stress turbulence model accounting for two-way coupling and interparticle collisions. For the calculation of particle motion all relevant forces (i.e., drag, slip-shear and slip-rotational lift, and gravity), interparticle collisions and particle-rough wall collisions were considered. The agreement of the computations with the experiments of Sommerfeld and Kussin (2004) was found to be satisfactory for pressure drop and mean and fluctuating velocities of both phases as well as for the normalized particle mass flux |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2020-01-16T18:34:29Z |
dc.date.available.none.fl_str_mv |
2020-01-16T18:34:29Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
00986445 (impreso) 15635201 (en línea) |
dc.identifier.uri.spa.fl_str_mv |
http://red.uao.edu.co//handle/10614/11807 |
dc.identifier.doi.spa.fl_str_mv |
10.1080/00986445.2012.762626 |
identifier_str_mv |
00986445 (impreso) 15635201 (en línea) 10.1080/00986445.2012.762626 |
url |
http://red.uao.edu.co//handle/10614/11807 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.eng.fl_str_mv |
Chemical Engineering Communications. Volume 20, issue 4 , (2014); Pages 437-455 |
dc.relation.citationendpage.none.fl_str_mv |
455 |
dc.relation.citationissue.none.fl_str_mv |
4 |
dc.relation.citationstartpage.none.fl_str_mv |
437 |
dc.relation.citationvolume.none.fl_str_mv |
201 |
dc.relation.cites.eng.fl_str_mv |
Laín Beatove, S. (2014). Pneumatic conveying of solids along a channel with different wall roughness. Chemical Engineering Communications. 201(4) , 437-455. http://red.uao.edu.co//handle/10614/11807 |
dc.relation.ispartofjournal.none.fl_str_mv |
Chemical Engineering Communications |
dc.relation.references.none.fl_str_mv |
Adam, O. (1960). Untersuchungen über die Vorgänge in festoffbeladenen Gasströmungen, Westdeutscher Verlag, Köln. Dennis, S. C. R., Singh, S. N., and Ingham, D. B. (1980). The steady flow due to a rotating sphere at low and moderate Reynolds numbers, J. Fluid Mech., 101, 257–279. , , Fokeer, S., Kingman, S., Lowndes, I., and Reynolds, A. (2004). Characterisation of the cross sectional particle concentration distribution in horizontal dilute flow conveying—A review, Chem. Eng. Process., 43, 677 – 691. , , Göz, M. F., Laín, S., and Sommerfeld, M. (2004). Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow, Comput. Chem. Eng. , 28, 2727 – 2733. , , Göz, M. F., Sommerfeld, M., and Laín, S. (2006). Instabilities in Lagrangian tracking of bubbles and particles in two-phase flow, AIChE J., 52, 469 – 477. , , Jones, W. P. (1994). Turbulence modeling and numerical solution methods for variable density flows, in: Turbulent Reacting Flows, ed. P. Libby and F. Williams, 309 – 347, Academic Press, San Diego, Calif. Jones, W. P., and Musonge, P. (1988). Closure of the Reynolds stress and scalar flux equations, Phys. Fluids, 31, 3589 – 3604. , , Kannengieser, O., Konan, A., and Simonin, O. (2007). Influence of multiple particle-wall collision on rough wall bouncing model, in Proceedings of ICMF 2007, 6th International Conference on Multiphase Flow, Leipzig, Germany, July 9–13. CD-ROM. Kohnen, G., and Sommerfeld, M. (1997). The effect of turbulence modelling on turbulence modification in two-phase flows using the Euler–Lagrange approach, in Proceedings of the 11th Symposium on Turbulent Shear Flows, Grenoble (France), vol. 2, P3, 23–28. Kohnen, G., Rüger, M., and Sommerfeld, M. (1994). Convergence behaviour for numerical calculations by the Euler/Lagrange method for strongly coupled phases, in: Numerical Methods for Multiphase Flows, 191 – 202, American Society of Mechanical Engineers, New York. Kussin, J., and Sommerfeld, M. (2002). Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness, Exp. Fluids, 33, 143 – 159. , , Laín, S. (2010). On Modeling and Numerical Computation of Industrial Disperse Two-Phase Flow with the Euler-Lagrange Approach, 11 – 25, Shaker Verlag, Aachen, Germany. Laín, S., and Aliod, R. (2000). Study of the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments, Int. J. Heat Fluid Flow, 21, 374 – 380. , , Laín, S., and Aliod, R. (2003). Discussion of second order dispersed phase Eulerian equations applied to turbulent particle-laden jet flows, Chem. Eng. Sci., 58, 4527 – 4535. , , Laín, S., and García, J. A. (2006). Study of four-way coupling on turbulent particle-laden jet flows, Chem. Eng. Sci. , 61, 6775 – 6785. , , Laín, S., Sommerfeld, M., and Kussin, J. (2002). Experimental studies and modelling of four-way coupling in particle-laden horizontal channel flow, Int. J. Heat Fluid Flow, 23, 647 – 656. , , Laín, S., García, M., Avellan, F., Quintero, B., and Orrego, S. (2011). Numerical Simulation of Francis Turbines, 35 – 46, EAFIT, Universidad Autónoma de Occidente, Medellín, Cali, Colombia. (in Spanish). Loth, E. (2008). Lift of a solid spherical particle subject of vorticity and/or spin, AIAA J., 46, 801 – 809. , Mei, R. (1992). An approximate expression for the shear lift force on a spherical particle at finite Reynolds number, Int. J. Multiphase Flow, 18, 145 – 147. , , Oesterlé, B., and Bui Dinh, T. (1998). Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers, Exp. Fluids, 25, 16 – 22. , , Rubinow, S. I., and Keller, J. B. (1961). The transverse force on a spinning sphere moving in a viscous liquid, J. Fluid Mech., 11, 447 – 459. , , Saffman, P. G. (1965). The lift on a small sphere in a shear flow, J. Fluid Mech., 22, 385 – 400. , , Schiller, L., and Naumann, A. (1933). Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung, Z. Ver. Deut. Ing., 77, 318 – 320. Shima, N. (1998). Low-Reynolds-number second-moment closure without wall-reflection redistribution terms, Int. J. Heat Fluid Flow, 19, 549–555. , Sommerfeld, M. (2001). Validation of a stochastic Lagrangian modeling approach for inter-particle collisions in homogeneous isotropic turbulence, Int. J. Multiphase Flow, 27, 1829 – 1858. , , Sommerfeld, M. (2003). Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: Part I. Particle transport, Int. J. Multiphase Flow, 29, 675 – 699. , , Sommerfeld, M., and Huber, N. (1999). Experimental analysis and modelling of particle-wall collision, Int. J. Multiphase Flow, 25, 1457 – 1489. , , Sommerfeld, M., and Kussin, J. (2004). Wall roughness effects on pneumatic conveying of spherical particles in a narrow horizontal channel, Powder Technol., 142, 180 – 192. , , Tsuji, Y., Morikawa, Y., Tanaka, T., Nakatsukasa, N., and Nadatani, M. (1987). Numerical simulation of gas-solid two-phase flow in a two-dimensional horizontal channel, Int. J. Multiphase Flow, 13, 671 – 684. , , Yilmaz, A., and Levy, E. K. (2001). Formation and dispersion of ropes in pneumatic conveying, Powder Technol. , 114, 168 – 185. , , |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
19 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/c91734e2-e918-4c6d-b909-e4509add721e/download https://red.uao.edu.co/bitstreams/d8542080-4dec-440f-87fb-eae107ccc27b/download https://red.uao.edu.co/bitstreams/68ba2da6-3fd3-4d4c-8def-d2c4872267a9/download https://red.uao.edu.co/bitstreams/c11f0476-1ce9-4068-a120-4d732e47f3b1/download https://red.uao.edu.co/bitstreams/e9819179-f06b-45f7-af2a-3dcfec6231c1/download https://red.uao.edu.co/bitstreams/17e0479f-f50e-415a-bc35-7785a1e8fea9/download https://red.uao.edu.co/bitstreams/6a860e28-23fc-42e4-b46a-07c0e007ef1a/download |
bitstream.checksum.fl_str_mv |
adfaf8bda62069258acfea9bfe12cf92 adfaf8bda62069258acfea9bfe12cf92 1bf5c776733cada74b2f66dec8b98817 1bf5c776733cada74b2f66dec8b98817 0781f05248deaf1e863d2de667e85f42 4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259934938791936 |
spelling |
Laín Beatove, Santiagovirtual::2673-1Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2020-01-16T18:34:29Z2020-01-16T18:34:29Z201400986445 (impreso)15635201 (en línea)http://red.uao.edu.co//handle/10614/1180710.1080/00986445.2012.762626The present contribution describes three-dimensional Euler=Lagrange calculations of confined horizontal gas-particle flows emphasizing the importance of elementary processes, such as particle collisions with rough walls and interparticle collisions, on the predicted two-phase flow variables and pressure drop along the duct. In the chosen configuration the pneumatic conveying of spherical particles along a 6 m long horizontal channel with rectangular cross section is described from a numerical perspective. Calculations were carried out for spherical glass beads of different diameters (130 and 195 lm) with a mass loading of 1.0 (kg particles=kg gas). Additionally, different wall roughnesses were considered. In the experiments, the air volume flow rate was constant to maintain a fixed gas average velocity of 20 m=s. The numerical computations were performed by the Euler=Lagrange approach in connection with a Reynolds stress turbulence model accounting for two-way coupling and interparticle collisions. For the calculation of particle motion all relevant forces (i.e., drag, slip-shear and slip-rotational lift, and gravity), interparticle collisions and particle-rough wall collisions were considered. The agreement of the computations with the experiments of Sommerfeld and Kussin (2004) was found to be satisfactory for pressure drop and mean and fluctuating velocities of both phases as well as for the normalized particle mass fluxapplication/pdf19 páginasengChemical Engineering Communications. Volume 20, issue 4 , (2014); Pages 437-4554554437201Laín Beatove, S. (2014). Pneumatic conveying of solids along a channel with different wall roughness. Chemical Engineering Communications. 201(4) , 437-455. http://red.uao.edu.co//handle/10614/11807Chemical Engineering CommunicationsAdam, O. (1960). Untersuchungen über die Vorgänge in festoffbeladenen Gasströmungen, Westdeutscher Verlag, Köln. Dennis, S. C. R., Singh, S. N., and Ingham, D. B. (1980). The steady flow due to a rotating sphere at low and moderate Reynolds numbers, J. Fluid Mech., 101, 257–279. , , Fokeer, S., Kingman, S., Lowndes, I., and Reynolds, A. (2004). Characterisation of the cross sectional particle concentration distribution in horizontal dilute flow conveying—A review, Chem. Eng. Process., 43, 677 – 691. , , Göz, M. F., Laín, S., and Sommerfeld, M. (2004). Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow, Comput. Chem. Eng. , 28, 2727 – 2733. , , Göz, M. F., Sommerfeld, M., and Laín, S. (2006). Instabilities in Lagrangian tracking of bubbles and particles in two-phase flow, AIChE J., 52, 469 – 477. , , Jones, W. P. (1994). Turbulence modeling and numerical solution methods for variable density flows, in: Turbulent Reacting Flows, ed. P. Libby and F. Williams, 309 – 347, Academic Press, San Diego, Calif. Jones, W. P., and Musonge, P. (1988). Closure of the Reynolds stress and scalar flux equations, Phys. Fluids, 31, 3589 – 3604. , , Kannengieser, O., Konan, A., and Simonin, O. (2007). Influence of multiple particle-wall collision on rough wall bouncing model, in Proceedings of ICMF 2007, 6th International Conference on Multiphase Flow, Leipzig, Germany, July 9–13. CD-ROM. Kohnen, G., and Sommerfeld, M. (1997). The effect of turbulence modelling on turbulence modification in two-phase flows using the Euler–Lagrange approach, in Proceedings of the 11th Symposium on Turbulent Shear Flows, Grenoble (France), vol. 2, P3, 23–28. Kohnen, G., Rüger, M., and Sommerfeld, M. (1994). Convergence behaviour for numerical calculations by the Euler/Lagrange method for strongly coupled phases, in: Numerical Methods for Multiphase Flows, 191 – 202, American Society of Mechanical Engineers, New York. Kussin, J., and Sommerfeld, M. (2002). Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness, Exp. Fluids, 33, 143 – 159. , , Laín, S. (2010). On Modeling and Numerical Computation of Industrial Disperse Two-Phase Flow with the Euler-Lagrange Approach, 11 – 25, Shaker Verlag, Aachen, Germany. Laín, S., and Aliod, R. (2000). Study of the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments, Int. J. Heat Fluid Flow, 21, 374 – 380. , , Laín, S., and Aliod, R. (2003). Discussion of second order dispersed phase Eulerian equations applied to turbulent particle-laden jet flows, Chem. Eng. Sci., 58, 4527 – 4535. , , Laín, S., and García, J. A. (2006). Study of four-way coupling on turbulent particle-laden jet flows, Chem. Eng. Sci. , 61, 6775 – 6785. , , Laín, S., Sommerfeld, M., and Kussin, J. (2002). Experimental studies and modelling of four-way coupling in particle-laden horizontal channel flow, Int. J. Heat Fluid Flow, 23, 647 – 656. , , Laín, S., García, M., Avellan, F., Quintero, B., and Orrego, S. (2011). Numerical Simulation of Francis Turbines, 35 – 46, EAFIT, Universidad Autónoma de Occidente, Medellín, Cali, Colombia. (in Spanish). Loth, E. (2008). Lift of a solid spherical particle subject of vorticity and/or spin, AIAA J., 46, 801 – 809. , Mei, R. (1992). An approximate expression for the shear lift force on a spherical particle at finite Reynolds number, Int. J. Multiphase Flow, 18, 145 – 147. , , Oesterlé, B., and Bui Dinh, T. (1998). Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers, Exp. Fluids, 25, 16 – 22. , , Rubinow, S. I., and Keller, J. B. (1961). The transverse force on a spinning sphere moving in a viscous liquid, J. Fluid Mech., 11, 447 – 459. , , Saffman, P. G. (1965). The lift on a small sphere in a shear flow, J. Fluid Mech., 22, 385 – 400. , , Schiller, L., and Naumann, A. (1933). Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung, Z. Ver. Deut. Ing., 77, 318 – 320.Shima, N. (1998). Low-Reynolds-number second-moment closure without wall-reflection redistribution terms, Int. J. Heat Fluid Flow, 19, 549–555. , Sommerfeld, M. (2001). Validation of a stochastic Lagrangian modeling approach for inter-particle collisions in homogeneous isotropic turbulence, Int. J. Multiphase Flow, 27, 1829 – 1858. , , Sommerfeld, M. (2003). Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: Part I. Particle transport, Int. J. Multiphase Flow, 29, 675 – 699. , , Sommerfeld, M., and Huber, N. (1999). Experimental analysis and modelling of particle-wall collision, Int. J. Multiphase Flow, 25, 1457 – 1489. , , Sommerfeld, M., and Kussin, J. (2004). Wall roughness effects on pneumatic conveying of spherical particles in a narrow horizontal channel, Powder Technol., 142, 180 – 192. , , Tsuji, Y., Morikawa, Y., Tanaka, T., Nakatsukasa, N., and Nadatani, M. (1987). Numerical simulation of gas-solid two-phase flow in a two-dimensional horizontal channel, Int. J. Multiphase Flow, 13, 671 – 684. , , Yilmaz, A., and Levy, E. K. (2001). Formation and dispersion of ropes in pneumatic conveying, Powder Technol. , 114, 168 – 185. , , Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Pneumatic conveying of solids along a channel with different wall roughnessArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Transporte neumáticoTurbulenciaNeumáticaPneumatic-tube transportationFluid dynamicsEuler-Lagrange approachInterparticle collisionsPneumatic conveyingTurbulenceWall roughnessPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2673-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2673-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2673-10000-0002-0269-2608virtual::2673-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2673-1TEXTA0226.pdf.txtA0226.pdf.txtExtracted texttext/plain55108https://red.uao.edu.co/bitstreams/c91734e2-e918-4c6d-b909-e4509add721e/downloadadfaf8bda62069258acfea9bfe12cf92MD54A0226_Pneumatic conveying of solids along a channel with different wall roughness.pdf.txtA0226_Pneumatic conveying of solids along a channel with different wall roughness.pdf.txtExtracted texttext/plain55108https://red.uao.edu.co/bitstreams/d8542080-4dec-440f-87fb-eae107ccc27b/downloadadfaf8bda62069258acfea9bfe12cf92MD56THUMBNAILA0226.pdf.jpgA0226.pdf.jpgGenerated Thumbnailimage/jpeg11809https://red.uao.edu.co/bitstreams/68ba2da6-3fd3-4d4c-8def-d2c4872267a9/download1bf5c776733cada74b2f66dec8b98817MD55A0226_Pneumatic conveying of solids along a channel with different wall roughness.pdf.jpgA0226_Pneumatic conveying of solids along a channel with different wall roughness.pdf.jpgGenerated Thumbnailimage/jpeg11809https://red.uao.edu.co/bitstreams/c11f0476-1ce9-4068-a120-4d732e47f3b1/download1bf5c776733cada74b2f66dec8b98817MD57ORIGINALA0226_Pneumatic conveying of solids along a channel with different wall roughness.pdfA0226_Pneumatic conveying of solids along a channel with different wall roughness.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf768150https://red.uao.edu.co/bitstreams/e9819179-f06b-45f7-af2a-3dcfec6231c1/download0781f05248deaf1e863d2de667e85f42MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/17e0479f-f50e-415a-bc35-7785a1e8fea9/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/6a860e28-23fc-42e4-b46a-07c0e007ef1a/download20b5ba22b1117f71589c7318baa2c560MD5310614/11807oai:red.uao.edu.co:10614/118072024-03-07 08:12:45.574https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |