Pneumatic conveying of solids along a channel with different wall roughness

The present contribution describes three-dimensional Euler=Lagrange calculations of confined horizontal gas-particle flows emphasizing the importance of elementary processes, such as particle collisions with rough walls and interparticle collisions, on the predicted two-phase flow variables and pres...

Full description

Autores:
Laín Beatove, Santiago
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11807
Acceso en línea:
http://red.uao.edu.co//handle/10614/11807
Palabra clave:
Transporte neumático
Turbulencia
Neumática
Pneumatic-tube transportation
Fluid dynamics
Euler-Lagrange approach
Interparticle collisions
Pneumatic conveying
Turbulence
Wall roughness
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_895d1e427c3eba7b621d021acc104913
oai_identifier_str oai:red.uao.edu.co:10614/11807
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Pneumatic conveying of solids along a channel with different wall roughness
title Pneumatic conveying of solids along a channel with different wall roughness
spellingShingle Pneumatic conveying of solids along a channel with different wall roughness
Transporte neumático
Turbulencia
Neumática
Pneumatic-tube transportation
Fluid dynamics
Euler-Lagrange approach
Interparticle collisions
Pneumatic conveying
Turbulence
Wall roughness
title_short Pneumatic conveying of solids along a channel with different wall roughness
title_full Pneumatic conveying of solids along a channel with different wall roughness
title_fullStr Pneumatic conveying of solids along a channel with different wall roughness
title_full_unstemmed Pneumatic conveying of solids along a channel with different wall roughness
title_sort Pneumatic conveying of solids along a channel with different wall roughness
dc.creator.fl_str_mv Laín Beatove, Santiago
dc.contributor.author.none.fl_str_mv Laín Beatove, Santiago
dc.subject.armarc.spa.fl_str_mv Transporte neumático
Turbulencia
Neumática
topic Transporte neumático
Turbulencia
Neumática
Pneumatic-tube transportation
Fluid dynamics
Euler-Lagrange approach
Interparticle collisions
Pneumatic conveying
Turbulence
Wall roughness
dc.subject.armarc.eng.fl_str_mv Pneumatic-tube transportation
Fluid dynamics
dc.subject.proposal.eng.fl_str_mv Euler-Lagrange approach
Interparticle collisions
Pneumatic conveying
Turbulence
Wall roughness
description The present contribution describes three-dimensional Euler=Lagrange calculations of confined horizontal gas-particle flows emphasizing the importance of elementary processes, such as particle collisions with rough walls and interparticle collisions, on the predicted two-phase flow variables and pressure drop along the duct. In the chosen configuration the pneumatic conveying of spherical particles along a 6 m long horizontal channel with rectangular cross section is described from a numerical perspective. Calculations were carried out for spherical glass beads of different diameters (130 and 195 lm) with a mass loading of 1.0 (kg particles=kg gas). Additionally, different wall roughnesses were considered. In the experiments, the air volume flow rate was constant to maintain a fixed gas average velocity of 20 m=s. The numerical computations were performed by the Euler=Lagrange approach in connection with a Reynolds stress turbulence model accounting for two-way coupling and interparticle collisions. For the calculation of particle motion all relevant forces (i.e., drag, slip-shear and slip-rotational lift, and gravity), interparticle collisions and particle-rough wall collisions were considered. The agreement of the computations with the experiments of Sommerfeld and Kussin (2004) was found to be satisfactory for pressure drop and mean and fluctuating velocities of both phases as well as for the normalized particle mass flux
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2020-01-16T18:34:29Z
dc.date.available.none.fl_str_mv 2020-01-16T18:34:29Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 00986445 (impreso)
15635201 (en línea)
dc.identifier.uri.spa.fl_str_mv http://red.uao.edu.co//handle/10614/11807
dc.identifier.doi.spa.fl_str_mv 10.1080/00986445.2012.762626
identifier_str_mv 00986445 (impreso)
15635201 (en línea)
10.1080/00986445.2012.762626
url http://red.uao.edu.co//handle/10614/11807
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.eng.fl_str_mv Chemical Engineering Communications. Volume 20, issue 4 , (2014); Pages 437-455
dc.relation.citationendpage.none.fl_str_mv 455
dc.relation.citationissue.none.fl_str_mv 4
dc.relation.citationstartpage.none.fl_str_mv 437
dc.relation.citationvolume.none.fl_str_mv 201
dc.relation.cites.eng.fl_str_mv Laín Beatove, S. (2014). Pneumatic conveying of solids along a channel with different wall roughness. Chemical Engineering Communications. 201(4) , 437-455. http://red.uao.edu.co//handle/10614/11807
dc.relation.ispartofjournal.none.fl_str_mv Chemical Engineering Communications
dc.relation.references.none.fl_str_mv Adam, O. (1960). Untersuchungen über die Vorgänge in festoffbeladenen Gasströmungen, Westdeutscher Verlag, Köln. 
Dennis, S. C. R., Singh, S. N., and Ingham, D. B. (1980). The steady flow due to a rotating sphere at low and moderate Reynolds numbers, J. Fluid Mech., 101, 257–279. , , 
Fokeer, S., Kingman, S., Lowndes, I., and Reynolds, A. (2004). Characterisation of the cross sectional particle concentration distribution in horizontal dilute flow conveying—A review, Chem. Eng. Process., 43, 677 – 691. , , 
Göz, M. F., Laín, S., and Sommerfeld, M. (2004). Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow, Comput. Chem. Eng. , 28, 2727 – 2733. , , 
Göz, M. F., Sommerfeld, M., and Laín, S. (2006). Instabilities in Lagrangian tracking of bubbles and particles in two-phase flow, AIChE J., 52, 469 – 477. , , 
Jones, W. P. (1994). Turbulence modeling and numerical solution methods for variable density flows, in: Turbulent Reacting Flows, ed. P. Libby and F. Williams, 309 – 347, Academic Press, San Diego, Calif. 
Jones, W. P., and Musonge, P. (1988). Closure of the Reynolds stress and scalar flux equations, Phys. Fluids, 31, 3589 – 3604. , , 
Kannengieser, O., Konan, A., and Simonin, O. (2007). Influence of multiple particle-wall collision on rough wall bouncing model, in Proceedings of ICMF 2007, 6th International Conference on Multiphase Flow, Leipzig, Germany, July 9–13. CD-ROM.  
Kohnen, G., and Sommerfeld, M. (1997). The effect of turbulence modelling on turbulence modification in two-phase flows using the Euler–Lagrange approach, in Proceedings of the 11th Symposium on Turbulent Shear Flows, Grenoble (France), vol. 2, P3, 23–28.  
Kohnen, G., Rüger, M., and Sommerfeld, M. (1994). Convergence behaviour for numerical calculations by the Euler/Lagrange method for strongly coupled phases, in: Numerical Methods for Multiphase Flows, 191 – 202, American Society of Mechanical Engineers, New York. 
Kussin, J., and Sommerfeld, M. (2002). Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness, Exp. Fluids, 33, 143 – 159. , , 
Laín, S. (2010). On Modeling and Numerical Computation of Industrial Disperse Two-Phase Flow with the Euler-Lagrange Approach, 11 – 25, Shaker Verlag, Aachen, Germany. 
Laín, S., and Aliod, R. (2000). Study of the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments, Int. J. Heat Fluid Flow, 21, 374 – 380. , , 
Laín, S., and Aliod, R. (2003). Discussion of second order dispersed phase Eulerian equations applied to turbulent particle-laden jet flows, Chem. Eng. Sci., 58, 4527 – 4535. , , 
Laín, S., and García, J. A. (2006). Study of four-way coupling on turbulent particle-laden jet flows, Chem. Eng. Sci. , 61, 6775 – 6785. , , 
Laín, S., Sommerfeld, M., and Kussin, J. (2002). Experimental studies and modelling of four-way coupling in particle-laden horizontal channel flow, Int. J. Heat Fluid Flow, 23, 647 – 656. , , 
Laín, S., García, M., Avellan, F., Quintero, B., and Orrego, S. (2011). Numerical Simulation of Francis Turbines, 35 – 46, EAFIT, Universidad Autónoma de Occidente, Medellín, Cali, Colombia. (in Spanish). 
Loth, E. (2008). Lift of a solid spherical particle subject of vorticity and/or spin, AIAA J., 46, 801 – 809. , 
Mei, R. (1992). An approximate expression for the shear lift force on a spherical particle at finite Reynolds number, Int. J. Multiphase Flow, 18, 145 – 147. , , 
Oesterlé, B., and Bui Dinh, T. (1998). Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers, Exp. Fluids, 25, 16 – 22. , , 
Rubinow, S. I., and Keller, J. B. (1961). The transverse force on a spinning sphere moving in a viscous liquid, J. Fluid Mech., 11, 447 – 459. , , 
Saffman, P. G. (1965). The lift on a small sphere in a shear flow, J. Fluid Mech., 22, 385 – 400. , , 
Schiller, L., and Naumann, A. (1933). Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung, Z. Ver. Deut. Ing., 77, 318 – 320.
Shima, N. (1998). Low-Reynolds-number second-moment closure without wall-reflection redistribution terms, Int. J. Heat Fluid Flow, 19, 549–555. ,  
Sommerfeld, M. (2001). Validation of a stochastic Lagrangian modeling approach for inter-particle collisions in homogeneous isotropic turbulence, Int. J. Multiphase Flow, 27, 1829 – 1858. , , 
Sommerfeld, M. (2003). Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: Part I. Particle transport, Int. J. Multiphase Flow, 29, 675 – 699. , , 
Sommerfeld, M., and Huber, N. (1999). Experimental analysis and modelling of particle-wall collision, Int. J. Multiphase Flow, 25, 1457 – 1489. , , 
Sommerfeld, M., and Kussin, J. (2004). Wall roughness effects on pneumatic conveying of spherical particles in a narrow horizontal channel, Powder Technol., 142, 180 – 192. , , 
Tsuji, Y., Morikawa, Y., Tanaka, T., Nakatsukasa, N., and Nadatani, M. (1987). Numerical simulation of gas-solid two-phase flow in a two-dimensional horizontal channel, Int. J. Multiphase Flow, 13, 671 – 684. , , 
Yilmaz, A., and Levy, E. K. (2001). Formation and dispersion of ropes in pneumatic conveying, Powder Technol. , 114, 168 – 185. , , 
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 19 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/c91734e2-e918-4c6d-b909-e4509add721e/download
https://red.uao.edu.co/bitstreams/d8542080-4dec-440f-87fb-eae107ccc27b/download
https://red.uao.edu.co/bitstreams/68ba2da6-3fd3-4d4c-8def-d2c4872267a9/download
https://red.uao.edu.co/bitstreams/c11f0476-1ce9-4068-a120-4d732e47f3b1/download
https://red.uao.edu.co/bitstreams/e9819179-f06b-45f7-af2a-3dcfec6231c1/download
https://red.uao.edu.co/bitstreams/17e0479f-f50e-415a-bc35-7785a1e8fea9/download
https://red.uao.edu.co/bitstreams/6a860e28-23fc-42e4-b46a-07c0e007ef1a/download
bitstream.checksum.fl_str_mv adfaf8bda62069258acfea9bfe12cf92
adfaf8bda62069258acfea9bfe12cf92
1bf5c776733cada74b2f66dec8b98817
1bf5c776733cada74b2f66dec8b98817
0781f05248deaf1e863d2de667e85f42
4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259934938791936
spelling Laín Beatove, Santiagovirtual::2673-1Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2020-01-16T18:34:29Z2020-01-16T18:34:29Z201400986445 (impreso)15635201 (en línea)http://red.uao.edu.co//handle/10614/1180710.1080/00986445.2012.762626The present contribution describes three-dimensional Euler=Lagrange calculations of confined horizontal gas-particle flows emphasizing the importance of elementary processes, such as particle collisions with rough walls and interparticle collisions, on the predicted two-phase flow variables and pressure drop along the duct. In the chosen configuration the pneumatic conveying of spherical particles along a 6 m long horizontal channel with rectangular cross section is described from a numerical perspective. Calculations were carried out for spherical glass beads of different diameters (130 and 195 lm) with a mass loading of 1.0 (kg particles=kg gas). Additionally, different wall roughnesses were considered. In the experiments, the air volume flow rate was constant to maintain a fixed gas average velocity of 20 m=s. The numerical computations were performed by the Euler=Lagrange approach in connection with a Reynolds stress turbulence model accounting for two-way coupling and interparticle collisions. For the calculation of particle motion all relevant forces (i.e., drag, slip-shear and slip-rotational lift, and gravity), interparticle collisions and particle-rough wall collisions were considered. The agreement of the computations with the experiments of Sommerfeld and Kussin (2004) was found to be satisfactory for pressure drop and mean and fluctuating velocities of both phases as well as for the normalized particle mass fluxapplication/pdf19 páginasengChemical Engineering Communications. Volume 20, issue 4 , (2014); Pages 437-4554554437201Laín Beatove, S. (2014). Pneumatic conveying of solids along a channel with different wall roughness. Chemical Engineering Communications. 201(4) , 437-455. http://red.uao.edu.co//handle/10614/11807Chemical Engineering CommunicationsAdam, O. (1960). Untersuchungen über die Vorgänge in festoffbeladenen Gasströmungen, Westdeutscher Verlag, Köln. Dennis, S. C. R., Singh, S. N., and Ingham, D. B. (1980). The steady flow due to a rotating sphere at low and moderate Reynolds numbers, J. Fluid Mech., 101, 257–279. , , Fokeer, S., Kingman, S., Lowndes, I., and Reynolds, A. (2004). Characterisation of the cross sectional particle concentration distribution in horizontal dilute flow conveying—A review, Chem. Eng. Process., 43, 677 – 691. , , Göz, M. F., Laín, S., and Sommerfeld, M. (2004). Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow, Comput. Chem. Eng. , 28, 2727 – 2733. , , Göz, M. F., Sommerfeld, M., and Laín, S. (2006). Instabilities in Lagrangian tracking of bubbles and particles in two-phase flow, AIChE J., 52, 469 – 477. , , Jones, W. P. (1994). Turbulence modeling and numerical solution methods for variable density flows, in: Turbulent Reacting Flows, ed. P. Libby and F. Williams, 309 – 347, Academic Press, San Diego, Calif. Jones, W. P., and Musonge, P. (1988). Closure of the Reynolds stress and scalar flux equations, Phys. Fluids, 31, 3589 – 3604. , , Kannengieser, O., Konan, A., and Simonin, O. (2007). Influence of multiple particle-wall collision on rough wall bouncing model, in Proceedings of ICMF 2007, 6th International Conference on Multiphase Flow, Leipzig, Germany, July 9–13. CD-ROM.  Kohnen, G., and Sommerfeld, M. (1997). The effect of turbulence modelling on turbulence modification in two-phase flows using the Euler–Lagrange approach, in Proceedings of the 11th Symposium on Turbulent Shear Flows, Grenoble (France), vol. 2, P3, 23–28.  Kohnen, G., Rüger, M., and Sommerfeld, M. (1994). Convergence behaviour for numerical calculations by the Euler/Lagrange method for strongly coupled phases, in: Numerical Methods for Multiphase Flows, 191 – 202, American Society of Mechanical Engineers, New York. Kussin, J., and Sommerfeld, M. (2002). Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness, Exp. Fluids, 33, 143 – 159. , , Laín, S. (2010). On Modeling and Numerical Computation of Industrial Disperse Two-Phase Flow with the Euler-Lagrange Approach, 11 – 25, Shaker Verlag, Aachen, Germany. Laín, S., and Aliod, R. (2000). Study of the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments, Int. J. Heat Fluid Flow, 21, 374 – 380. , , Laín, S., and Aliod, R. (2003). Discussion of second order dispersed phase Eulerian equations applied to turbulent particle-laden jet flows, Chem. Eng. Sci., 58, 4527 – 4535. , , Laín, S., and García, J. A. (2006). Study of four-way coupling on turbulent particle-laden jet flows, Chem. Eng. Sci. , 61, 6775 – 6785. , , Laín, S., Sommerfeld, M., and Kussin, J. (2002). Experimental studies and modelling of four-way coupling in particle-laden horizontal channel flow, Int. J. Heat Fluid Flow, 23, 647 – 656. , , Laín, S., García, M., Avellan, F., Quintero, B., and Orrego, S. (2011). Numerical Simulation of Francis Turbines, 35 – 46, EAFIT, Universidad Autónoma de Occidente, Medellín, Cali, Colombia. (in Spanish). Loth, E. (2008). Lift of a solid spherical particle subject of vorticity and/or spin, AIAA J., 46, 801 – 809. , Mei, R. (1992). An approximate expression for the shear lift force on a spherical particle at finite Reynolds number, Int. J. Multiphase Flow, 18, 145 – 147. , , Oesterlé, B., and Bui Dinh, T. (1998). Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers, Exp. Fluids, 25, 16 – 22. , , Rubinow, S. I., and Keller, J. B. (1961). The transverse force on a spinning sphere moving in a viscous liquid, J. Fluid Mech., 11, 447 – 459. , , Saffman, P. G. (1965). The lift on a small sphere in a shear flow, J. Fluid Mech., 22, 385 – 400. , , Schiller, L., and Naumann, A. (1933). Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung, Z. Ver. Deut. Ing., 77, 318 – 320.Shima, N. (1998). Low-Reynolds-number second-moment closure without wall-reflection redistribution terms, Int. J. Heat Fluid Flow, 19, 549–555. ,  Sommerfeld, M. (2001). Validation of a stochastic Lagrangian modeling approach for inter-particle collisions in homogeneous isotropic turbulence, Int. J. Multiphase Flow, 27, 1829 – 1858. , , Sommerfeld, M. (2003). Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: Part I. Particle transport, Int. J. Multiphase Flow, 29, 675 – 699. , , Sommerfeld, M., and Huber, N. (1999). Experimental analysis and modelling of particle-wall collision, Int. J. Multiphase Flow, 25, 1457 – 1489. , , Sommerfeld, M., and Kussin, J. (2004). Wall roughness effects on pneumatic conveying of spherical particles in a narrow horizontal channel, Powder Technol., 142, 180 – 192. , , Tsuji, Y., Morikawa, Y., Tanaka, T., Nakatsukasa, N., and Nadatani, M. (1987). Numerical simulation of gas-solid two-phase flow in a two-dimensional horizontal channel, Int. J. Multiphase Flow, 13, 671 – 684. , , Yilmaz, A., and Levy, E. K. (2001). Formation and dispersion of ropes in pneumatic conveying, Powder Technol. , 114, 168 – 185. , , Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Pneumatic conveying of solids along a channel with different wall roughnessArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Transporte neumáticoTurbulenciaNeumáticaPneumatic-tube transportationFluid dynamicsEuler-Lagrange approachInterparticle collisionsPneumatic conveyingTurbulenceWall roughnessPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2673-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2673-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2673-10000-0002-0269-2608virtual::2673-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2673-1TEXTA0226.pdf.txtA0226.pdf.txtExtracted texttext/plain55108https://red.uao.edu.co/bitstreams/c91734e2-e918-4c6d-b909-e4509add721e/downloadadfaf8bda62069258acfea9bfe12cf92MD54A0226_Pneumatic conveying of solids along a channel with different wall roughness.pdf.txtA0226_Pneumatic conveying of solids along a channel with different wall roughness.pdf.txtExtracted texttext/plain55108https://red.uao.edu.co/bitstreams/d8542080-4dec-440f-87fb-eae107ccc27b/downloadadfaf8bda62069258acfea9bfe12cf92MD56THUMBNAILA0226.pdf.jpgA0226.pdf.jpgGenerated Thumbnailimage/jpeg11809https://red.uao.edu.co/bitstreams/68ba2da6-3fd3-4d4c-8def-d2c4872267a9/download1bf5c776733cada74b2f66dec8b98817MD55A0226_Pneumatic conveying of solids along a channel with different wall roughness.pdf.jpgA0226_Pneumatic conveying of solids along a channel with different wall roughness.pdf.jpgGenerated Thumbnailimage/jpeg11809https://red.uao.edu.co/bitstreams/c11f0476-1ce9-4068-a120-4d732e47f3b1/download1bf5c776733cada74b2f66dec8b98817MD57ORIGINALA0226_Pneumatic conveying of solids along a channel with different wall roughness.pdfA0226_Pneumatic conveying of solids along a channel with different wall roughness.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf768150https://red.uao.edu.co/bitstreams/e9819179-f06b-45f7-af2a-3dcfec6231c1/download0781f05248deaf1e863d2de667e85f42MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/17e0479f-f50e-415a-bc35-7785a1e8fea9/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/6a860e28-23fc-42e4-b46a-07c0e007ef1a/download20b5ba22b1117f71589c7318baa2c560MD5310614/11807oai:red.uao.edu.co:10614/118072024-03-07 08:12:45.574https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K