Mössbauer and X-ray study of the Fe 65 Ni 35 invar alloy obtained by mechanical alloying

Fe65Ni35 samples were prepared by mechanical alloying (MA) with milling times of 5, 6, 7, 10 and 11 h, using a ball mass to powder mass ratio of 20:1 and at 280 rpm. The samples were characterized by X-ray diffraction (XRD) and transmission 57Fe Mössbauer spectrometry. The X-ray diffraction pattern...

Full description

Autores:
Rodríguez Jacobo, Ruby Rocío
Valenzuela, J. L
Tabares Giraldo, Jesús Anselmo
Pérez Alcázar, German Antonio
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/11848
Acceso en línea:
http://hdl.handle.net/10614/11848
Palabra clave:
Aleación mecánica
FeNi
Mechanical alloying
Invar composition
Mössbauer spectrometry
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_87464584893eb7c19b8a6c756ac581e2
oai_identifier_str oai:red.uao.edu.co:10614/11848
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Mössbauer and X-ray study of the Fe 65 Ni 35 invar alloy obtained by mechanical alloying
title Mössbauer and X-ray study of the Fe 65 Ni 35 invar alloy obtained by mechanical alloying
spellingShingle Mössbauer and X-ray study of the Fe 65 Ni 35 invar alloy obtained by mechanical alloying
Aleación mecánica
FeNi
Mechanical alloying
Invar composition
Mössbauer spectrometry
title_short Mössbauer and X-ray study of the Fe 65 Ni 35 invar alloy obtained by mechanical alloying
title_full Mössbauer and X-ray study of the Fe 65 Ni 35 invar alloy obtained by mechanical alloying
title_fullStr Mössbauer and X-ray study of the Fe 65 Ni 35 invar alloy obtained by mechanical alloying
title_full_unstemmed Mössbauer and X-ray study of the Fe 65 Ni 35 invar alloy obtained by mechanical alloying
title_sort Mössbauer and X-ray study of the Fe 65 Ni 35 invar alloy obtained by mechanical alloying
dc.creator.fl_str_mv Rodríguez Jacobo, Ruby Rocío
Valenzuela, J. L
Tabares Giraldo, Jesús Anselmo
Pérez Alcázar, German Antonio
dc.contributor.author.none.fl_str_mv Rodríguez Jacobo, Ruby Rocío
Valenzuela, J. L
Tabares Giraldo, Jesús Anselmo
Pérez Alcázar, German Antonio
dc.subject.armarc.spa.fl_str_mv Aleación mecánica
topic Aleación mecánica
FeNi
Mechanical alloying
Invar composition
Mössbauer spectrometry
dc.subject.proposal.eng.fl_str_mv FeNi
Mechanical alloying
Invar composition
Mössbauer spectrometry
description Fe65Ni35 samples were prepared by mechanical alloying (MA) with milling times of 5, 6, 7, 10 and 11 h, using a ball mass to powder mass ratio of 20:1 and at 280 rpm. The samples were characterized by X-ray diffraction (XRD) and transmission 57Fe Mössbauer spectrometry. The X-ray diffraction pattern showed the coexistence of one body centered cubic (BCC) and two face centered cubic (FCC1 and FCC2) structural phases. The lattice parameters of these phases did not change significantly with the milling time (2.866 Å, 3.597 Å and 3.538 Å, respectively). After 10 h of milling, the X-ray diffraction pattern showed clearly the coexistence of these three phases. Hence, Mössbauer spectrometry measurements at low temperatures from 20 to 300 K of this sample were also carried out. The Mössbauer spectra were fitted using a model with three components: the first one is a hyperfine magnetic field distributions at high fields, related to the BCC phase; the second one is a hyperfine magnetic field distribution involving low hyperfine fields related to a FCC phase rich in Ni, and the third one is a singlet related to a FCC phase rich in Fe, with paramagnetic behavior. As proposed by some authors, the last phase is related with the antitaenite phase
publishDate 2013
dc.date.issued.none.fl_str_mv 2013-03-13
dc.date.accessioned.none.fl_str_mv 2020-02-10T14:46:47Z
dc.date.available.none.fl_str_mv 2020-02-10T14:46:47Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11848
dc.identifier.doi.none.fl_str_mv 10.1007/s10751-013-0834-5
url http://hdl.handle.net/10614/11848
identifier_str_mv 10.1007/s10751-013-0834-5
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.citationendpage.none.fl_str_mv 330
dc.relation.citationstartpage.none.fl_str_mv 323
dc.relation.citationvolume.none.fl_str_mv 224
dc.relation.ispartofjournal.eng.fl_str_mv Hyperfine Interactions
dc.relation.references.none.fl_str_mv Tcherdyntsev, V.V., Kaloshkin, S.D., Tomilin, I.A., Shelekhov, E.V., Baldokhin, Yu.V.: Nanostruct. Mater. 12, 139–142 (1999)
Hellstern, E., Schultz, L.: J. Appl. Phys. 63, 1408 (1988)
Suryanarayana, C.: Prog. Mater. Sci. 46, 1–184 (2001)
Hellstern, E., Fecht, H.J., Fu, Z., Johnson, W.L.: J. Appl. Phys. 65, 305 (1989)
Djekoun, A., Otmani, A., Bouzabata, B., Bechiri, L., Randrianantoandro, N., Greneche, J.M.: Catal. Today 113, 235–239 (2006)
Valderruten, J.F., Pérez Alcázar, G.A., Greneche, J.M.: J. Phys. Condens. Matter 20, 485204 (2008)
Scorzelli, R.B.: Hyperfine Interact. 110, 143–150 (1997)
Valderruten, J.F., Pérez Alcázar, G.A., Greneche, J.M.: Hyperfine Interact. 195, 219–226 (2010)
Rancourt, D.G., Scorzelli, R.B.: J. Magn. Magn. Mater. 150, 30 (1995)
Larson, A.C., Von Dreele, R.B.: General structure analysis system (GSAS). Los Alamos Natl. Lab. Rep. No. LAUR 86–748 (2004)
Teillet, J., Varret, F.: Mosfit Programm, University du Maine, France (unpublished)
Petrov, Yu.I., Shafranovsky, E.A., Baldokhin, Yu.V., Kochetov, G.A.: J. Appl. Phys. 86(12), 7001 (1999)
Rancourt, D.G., Lagarec, K., Densmore, A., Dunlap, R.A., Goldstein, J.I., Reisener, R.J., Scorzelli, R.B.: J. Magn. Magn. Mater. 191, L255–L260 (1999)
Restrepo, J., Pérez Alcázar, G.A., Bohórquez, A.: J. Appl. Phys. 81(8), 4101 (1997)
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 8 páginas
dc.publisher.spa.fl_str_mv Universidad Autónoma de Occidente
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/85c77b37-2a2b-4e52-96f5-814ddcdc0531/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260097015087104
spelling Rodríguez Jacobo, Ruby Rocíovirtual::4406-1Valenzuela, J. Lcd12360920ab2fc0a83929dd4b5ce971Tabares Giraldo, Jesús Anselmof917bc5616d20e0066691121d50ad500Pérez Alcázar, German Antoniod08eab27f2f02ab376dbdd6b752d23282020-02-10T14:46:47Z2020-02-10T14:46:47Z2013-03-13http://hdl.handle.net/10614/1184810.1007/s10751-013-0834-5Fe65Ni35 samples were prepared by mechanical alloying (MA) with milling times of 5, 6, 7, 10 and 11 h, using a ball mass to powder mass ratio of 20:1 and at 280 rpm. The samples were characterized by X-ray diffraction (XRD) and transmission 57Fe Mössbauer spectrometry. The X-ray diffraction pattern showed the coexistence of one body centered cubic (BCC) and two face centered cubic (FCC1 and FCC2) structural phases. The lattice parameters of these phases did not change significantly with the milling time (2.866 Å, 3.597 Å and 3.538 Å, respectively). After 10 h of milling, the X-ray diffraction pattern showed clearly the coexistence of these three phases. Hence, Mössbauer spectrometry measurements at low temperatures from 20 to 300 K of this sample were also carried out. The Mössbauer spectra were fitted using a model with three components: the first one is a hyperfine magnetic field distributions at high fields, related to the BCC phase; the second one is a hyperfine magnetic field distribution involving low hyperfine fields related to a FCC phase rich in Ni, and the third one is a singlet related to a FCC phase rich in Fe, with paramagnetic behavior. As proposed by some authors, the last phase is related with the antitaenite phaseapplication/pdf8 páginasspaUniversidad Autónoma de OccidenteDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Mössbauer and X-ray study of the Fe 65 Ni 35 invar alloy obtained by mechanical alloyingArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Aleación mecánicaFeNiMechanical alloyingInvar compositionMössbauer spectrometry330323224Hyperfine InteractionsTcherdyntsev, V.V., Kaloshkin, S.D., Tomilin, I.A., Shelekhov, E.V., Baldokhin, Yu.V.: Nanostruct. Mater. 12, 139–142 (1999)Hellstern, E., Schultz, L.: J. Appl. Phys. 63, 1408 (1988)Suryanarayana, C.: Prog. Mater. Sci. 46, 1–184 (2001)Hellstern, E., Fecht, H.J., Fu, Z., Johnson, W.L.: J. Appl. Phys. 65, 305 (1989)Djekoun, A., Otmani, A., Bouzabata, B., Bechiri, L., Randrianantoandro, N., Greneche, J.M.: Catal. Today 113, 235–239 (2006)Valderruten, J.F., Pérez Alcázar, G.A., Greneche, J.M.: J. Phys. Condens. Matter 20, 485204 (2008)Scorzelli, R.B.: Hyperfine Interact. 110, 143–150 (1997)Valderruten, J.F., Pérez Alcázar, G.A., Greneche, J.M.: Hyperfine Interact. 195, 219–226 (2010)Rancourt, D.G., Scorzelli, R.B.: J. Magn. Magn. Mater. 150, 30 (1995)Larson, A.C., Von Dreele, R.B.: General structure analysis system (GSAS). Los Alamos Natl. Lab. Rep. No. LAUR 86–748 (2004)Teillet, J., Varret, F.: Mosfit Programm, University du Maine, France (unpublished)Petrov, Yu.I., Shafranovsky, E.A., Baldokhin, Yu.V., Kochetov, G.A.: J. Appl. Phys. 86(12), 7001 (1999)Rancourt, D.G., Lagarec, K., Densmore, A., Dunlap, R.A., Goldstein, J.I., Reisener, R.J., Scorzelli, R.B.: J. Magn. Magn. Mater. 191, L255–L260 (1999)Restrepo, J., Pérez Alcázar, G.A., Bohórquez, A.: J. Appl. Phys. 81(8), 4101 (1997)Publicationd9acf1a6-b118-4f80-95fd-f8f897ba2e35virtual::4406-1d9acf1a6-b118-4f80-95fd-f8f897ba2e35virtual::4406-1https://scholar.google.com/citations?view_op=list_works&hl=es&user=VFcKgCkAAAAJvirtual::4406-10000-0002-7520-6703virtual::4406-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000253790virtual::4406-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/85c77b37-2a2b-4e52-96f5-814ddcdc0531/download20b5ba22b1117f71589c7318baa2c560MD5310614/11848oai:red.uao.edu.co:10614/118482024-03-14 08:47:17.763https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K