Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab
We present numerical predictions for the photonic TE-like band gap ratio and the quality factors of symmetric localized defect as a function of the thickness slab and temperature by the use of plane wave expansion and the finite-difference time-domain methods. The photonic-crystal hole slab is compo...
- Autores:
-
Sánchez Cano, Robert
Porras Montenegro, Nelson
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11077
- Acceso en línea:
- http://hdl.handle.net/10614/11077
https://link.springer.com/article/10.1007/s00339-016-9906-0
https://link.springer.com/content/pdf/10.1007%2Fs00339-016-9906-0.pdf
- Palabra clave:
- Campos electromagnéticos
Electromagnetic fields
Electromagnetismo
Optoelectrónica
Aleaciones magnéticas
Optoelectronics
Electromagnetism
Magnetic alloys
- Rights
- openAccess
- License
- Derechos Reservados - Springer-Verlag Berlin Heidelberg 2016
id |
REPOUAO2_859545c3acb37e7eeb1087f011b6e650 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11077 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab |
title |
Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab |
spellingShingle |
Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab Campos electromagnéticos Electromagnetic fields Electromagnetismo Optoelectrónica Aleaciones magnéticas Optoelectronics Electromagnetism Magnetic alloys |
title_short |
Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab |
title_full |
Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab |
title_fullStr |
Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab |
title_full_unstemmed |
Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab |
title_sort |
Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab |
dc.creator.fl_str_mv |
Sánchez Cano, Robert Porras Montenegro, Nelson |
dc.contributor.author.none.fl_str_mv |
Sánchez Cano, Robert Porras Montenegro, Nelson |
dc.subject.lemb.spa.fl_str_mv |
Campos electromagnéticos |
topic |
Campos electromagnéticos Electromagnetic fields Electromagnetismo Optoelectrónica Aleaciones magnéticas Optoelectronics Electromagnetism Magnetic alloys |
dc.subject.lemb.eng.fl_str_mv |
Electromagnetic fields |
dc.subject.armarc.spa.fl_str_mv |
Electromagnetismo Optoelectrónica Aleaciones magnéticas Optoelectronics |
dc.subject.armarc.eng.fl_str_mv |
Electromagnetism Magnetic alloys |
description |
We present numerical predictions for the photonic TE-like band gap ratio and the quality factors of symmetric localized defect as a function of the thickness slab and temperature by the use of plane wave expansion and the finite-difference time-domain methods. The photonic-crystal hole slab is composed of a 2D hexagonal array with identical air holes and a circular cross section, embedded in a non-dispersive III–V semiconductor quaternary alloy slab, which has a high value of dielectric function in the near-infrared region, and the symmetric defect is formed by increasing the radius of a single hole in the 2D hexagonal lattice. We show that the band gap ratio depends linearly on the temperature in the range 150–400 K. Our results show a strong temperature dependence of the quality factor Q, the maximum ( Q=7000 ) is reached at T=350K, but if the temperature continues to increase, the efficiency drops sharply. Furthermore, we present numerical predictions for the electromagnetic field distribution at T=350K |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016-03-10 |
dc.date.accessioned.none.fl_str_mv |
2019-09-09T22:16:32Z |
dc.date.available.none.fl_str_mv |
2019-09-09T22:16:32Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1432-0630 (en línea) 0947-8396 (impresa) |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/11077 https://link.springer.com/article/10.1007/s00339-016-9906-0 https://link.springer.com/content/pdf/10.1007%2Fs00339-016-9906-0.pdf |
dc.identifier.doi.spa.fl_str_mv |
doi: 10.1007/s00339-016-9906-0 |
identifier_str_mv |
1432-0630 (en línea) 0947-8396 (impresa) doi: 10.1007/s00339-016-9906-0 |
url |
http://hdl.handle.net/10614/11077 https://link.springer.com/article/10.1007/s00339-016-9906-0 https://link.springer.com/content/pdf/10.1007%2Fs00339-016-9906-0.pdf |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Volumen 122, número 4, (abril, 2016) |
dc.relation.citationissue.none.fl_str_mv |
4 |
dc.relation.citationvolume.none.fl_str_mv |
122 |
dc.relation.cites.eng.fl_str_mv |
Sánchez-Cano, R., & Porras-Montenegro, N. (2016). Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab. Applied Physics A, 122(4), 6 pp. https://doi.org/10.1007/s00339-016-9906-0 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Applied physics A: saterials science & processing |
dc.relation.references.spa.fl_str_mv |
A. Joullié, P. Christol, AN Baranov, A. Vicet, Fuentes de láser de infrarrojo medio de estado sólido, en IT Sorokina, KL Vodopyanov, (eds.), Topics in Applied Physics , vol. 89 (Springer, Alemania, 2003), págs. 1–59 G. Ru, Y. Zheng, A. Li, El cambio de longitud de onda en las estructuras de fotodiodos GaInAsSb. J. Appl. Phys.77, 6721 (1995) O. Levi, W. Suh, MM Lee, J. Zhang, SRJ Brueck, S. Fan, JS Harris, nanosensor biomédico integrado utilizando resonancia guiada en estructuras de cristal fotónico. Proc. Spie 6095, 60950N (2006) CH Bui, J. Zheng, SW Hoch, LYT Lee, JGE Harris, CW Wong, Membranas micromecánicas de alta reflectividad y alta Q mediante resonancias guiadas para un acoplamiento optomecánico mejorado. Appl. Phys. Letón. 100 , 021110 (2012) Y. Nazirizadeh, J. Reverey, U. Geyer, U. Lemmer, C. Selhuber-Unkel, M. Gerken, Imágenes tridimensionales basadas en materiales con superficies nanoestructuradas. Appl. Phys. Letón. 102 , 011116 (2013) E. De Tommasi, AC De Luca, S. Cabrini, I. Rendina, S. Romano, V. Mocella, Estados superficiales similares al plasma en cristales fotónicos de índice de refracción negativo. Appl. Phys. Letón. 102 , 081113 (2013) H. Kurt, E. Colak, O. Cakmak, H. Caglayan, E. Ozbay, El efecto de enfoque de los cristales fotónicos de índice graduado. Appl. Phys. Letón. 93 , 171108 (2008) S. Fan, PR Villenueve, JD Joannopoulos, EF Schubert, diodos emisores de luz de cristal fotónico. Proc. SPIE 3002 , 67 (1997) DH Long, I.-K. Hwang, S.-W. Ryu, J. Phys. Coreana. Soc. 51 , 1400 (2007) JJ Wierer, MR Krames, JE Epler, NF Gardner, MG Graford, diodos emisores de luz de heteroestructura de pozos cuánticos InGaN / GaN que emplean estructuras de cristal fotónico. Appl. Phys. Letón. 84 , 3885 (2004) LC Andreani, M. Agio, Bandas fotónicas y mapas de huecos en una losa de cristal fotónico. IEEE J. Quantum Electron. 38 , 891 (2002) AL Bingham, D. Grischkowsky, Terahertz cavidades de guía de onda de cristal fotónico de alta Q bidimensional. Optar. Letón. 33 , 348 (2008) R. Meisels, O. Glushko, F. Kuchar, Photonics Nanostruct. 10 , 60 (2012) L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, KJ Boller, transmisión de IR medio de una losa de cristal fotónico de silicio 2D de gran área. J. Phys. D Appl. Phys. 41 , 135105 (2008) M. Skorobogatiy, J. Yang, Fundamentos de la guía de cristales fotónicos (Cambridge University Press, Cambridge, 2009) AF Oskooi, D. Roundy, M. Ibanescu, P. Bermel, JD Joannopoulos, SG Johnson, Comput. Phys. Commun. 181 (3), 687 (2010) SG Jhonson, JD Joannopoulos, Opt. Express 8 , 173 (2001) SG Jhonson, PR Villenueve, S. Fan, JD Joannopoulos, Phys. Rev. B 62 , 8212 (2000) A. Taflove, SC Hagness, Electrodinámica computacional: El método de dominio de tiempo de diferencia finita (Artech House, Norwood, MA, 2005) DM Sulivan, Simulación electromagnética utilizando el método FDTD. Serie sobre tecnología de RF y microondas (IEEE Press, Nueva York, 2000) GA Samara, Dependencias de temperatura y presión de las constantes dieléctricas de semiconductores. Phys. Rev. B 27 , 3494 (1983) S. Adachi, Propiedades de los semiconductores del grupo IV, IIIV y IIVI. in Wiley Series in Materials for Electronic and Optoelectronic Applications (Wiley, England 2005), págs. 195–198 MP MikhaiIova, en la serie de manuales sobre parámetros de semiconductores , vol. 2, ed. por M. Levinshtein, S. Rumyantsev, M. Shur (Singapur, World Scietific, 1999), págs. 180–191 R. Sánchez-Cano, N. Porras-Montenegro, Phys. E Dimensiones bajas. Syst. Nanoestructura 43 , 76 (2010) J. Barvestani, S. Dehghan, AS Vala, Ajuste de temperatura del acoplamiento de guía de onda semiconductora de cavidad en un cristal fotónico bidimensional. Fotón nanoestructura. Fundam. Appl. (2014) doi: 10.1016 / j.photonics2014.07.002 |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Springer-Verlag Berlin Heidelberg 2016 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Springer-Verlag Berlin Heidelberg 2016 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
6 páginas |
dc.publisher.eng.fl_str_mv |
Springer Verlag |
dc.source.spa.fl_str_mv |
instname:Universidad Autónoma de Occidente reponame:Repositorio Institucional UAO |
instname_str |
Universidad Autónoma de Occidente |
institution |
Universidad Autónoma de Occidente |
reponame_str |
Repositorio Institucional UAO |
collection |
Repositorio Institucional UAO |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/9c5a9013-7c47-4184-8b50-b880dcb719eb/download https://red.uao.edu.co/bitstreams/714194e2-4e46-41f8-b402-9345b4136466/download https://red.uao.edu.co/bitstreams/644c42cb-2e1c-44de-83de-51dc763b9151/download https://red.uao.edu.co/bitstreams/0bc76196-68ef-4d83-8d05-212b057f778e/download https://red.uao.edu.co/bitstreams/69b78e58-6a0c-4244-8b9f-abb369bb6ab3/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 cc9d4ab57e1322a6812d9437b071e036 74ab027fcfa6064f9c4dc22609622158 8d147b0e7947362da0fb3e37853dcc32 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260103514161152 |
spelling |
Sánchez Cano, Robertvirtual::4602-1Porras Montenegro, Nelson3306619e6cb5c07b69120fbf5bd6292e2019-09-09T22:16:32Z2019-09-09T22:16:32Z2016-03-101432-0630 (en línea)0947-8396 (impresa)http://hdl.handle.net/10614/11077https://link.springer.com/article/10.1007/s00339-016-9906-0https://link.springer.com/content/pdf/10.1007%2Fs00339-016-9906-0.pdfdoi: 10.1007/s00339-016-9906-0We present numerical predictions for the photonic TE-like band gap ratio and the quality factors of symmetric localized defect as a function of the thickness slab and temperature by the use of plane wave expansion and the finite-difference time-domain methods. The photonic-crystal hole slab is composed of a 2D hexagonal array with identical air holes and a circular cross section, embedded in a non-dispersive III–V semiconductor quaternary alloy slab, which has a high value of dielectric function in the near-infrared region, and the symmetric defect is formed by increasing the radius of a single hole in the 2D hexagonal lattice. We show that the band gap ratio depends linearly on the temperature in the range 150–400 K. Our results show a strong temperature dependence of the quality factor Q, the maximum ( Q=7000 ) is reached at T=350K, but if the temperature continues to increase, the efficiency drops sharply. Furthermore, we present numerical predictions for the electromagnetic field distribution at T=350Kapplication/pdf6 páginasengSpringer VerlagDerechos Reservados - Springer-Verlag Berlin Heidelberg 2016https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2instname:Universidad Autónoma de Occidentereponame:Repositorio Institucional UAOTemperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slabArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Campos electromagnéticosElectromagnetic fieldsElectromagnetismoOptoelectrónicaAleaciones magnéticasOptoelectronicsElectromagnetismMagnetic alloysVolumen 122, número 4, (abril, 2016)4122Sánchez-Cano, R., & Porras-Montenegro, N. (2016). Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab. Applied Physics A, 122(4), 6 pp. https://doi.org/10.1007/s00339-016-9906-0Applied physics A: saterials science & processingA. Joullié, P. Christol, AN Baranov, A. Vicet, Fuentes de láser de infrarrojo medio de estado sólido, en IT Sorokina, KL Vodopyanov, (eds.), Topics in Applied Physics , vol. 89 (Springer, Alemania, 2003), págs. 1–59G. Ru, Y. Zheng, A. Li, El cambio de longitud de onda en las estructuras de fotodiodos GaInAsSb. J. Appl. Phys.77, 6721 (1995)O. Levi, W. Suh, MM Lee, J. Zhang, SRJ Brueck, S. Fan, JS Harris, nanosensor biomédico integrado utilizando resonancia guiada en estructuras de cristal fotónico. Proc. Spie 6095, 60950N (2006)CH Bui, J. Zheng, SW Hoch, LYT Lee, JGE Harris, CW Wong, Membranas micromecánicas de alta reflectividad y alta Q mediante resonancias guiadas para un acoplamiento optomecánico mejorado. Appl. Phys. Letón. 100 , 021110 (2012)Y. Nazirizadeh, J. Reverey, U. Geyer, U. Lemmer, C. Selhuber-Unkel, M. Gerken, Imágenes tridimensionales basadas en materiales con superficies nanoestructuradas. Appl. Phys. Letón. 102 , 011116 (2013)E. De Tommasi, AC De Luca, S. Cabrini, I. Rendina, S. Romano, V. Mocella, Estados superficiales similares al plasma en cristales fotónicos de índice de refracción negativo. Appl. Phys. Letón. 102 , 081113 (2013)H. Kurt, E. Colak, O. Cakmak, H. Caglayan, E. Ozbay, El efecto de enfoque de los cristales fotónicos de índice graduado. Appl. Phys. Letón. 93 , 171108 (2008)S. Fan, PR Villenueve, JD Joannopoulos, EF Schubert, diodos emisores de luz de cristal fotónico. Proc. SPIE 3002 , 67 (1997)DH Long, I.-K. Hwang, S.-W. Ryu, J. Phys. Coreana. Soc. 51 , 1400 (2007)JJ Wierer, MR Krames, JE Epler, NF Gardner, MG Graford, diodos emisores de luz de heteroestructura de pozos cuánticos InGaN / GaN que emplean estructuras de cristal fotónico. Appl. Phys. Letón. 84 , 3885 (2004)LC Andreani, M. Agio, Bandas fotónicas y mapas de huecos en una losa de cristal fotónico. IEEE J. Quantum Electron. 38 , 891 (2002)AL Bingham, D. Grischkowsky, Terahertz cavidades de guía de onda de cristal fotónico de alta Q bidimensional. Optar. Letón. 33 , 348 (2008)R. Meisels, O. Glushko, F. Kuchar, Photonics Nanostruct. 10 , 60 (2012)L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, KJ Boller, transmisión de IR medio de una losa de cristal fotónico de silicio 2D de gran área. J. Phys. D Appl. Phys. 41 , 135105 (2008)M. Skorobogatiy, J. Yang, Fundamentos de la guía de cristales fotónicos (Cambridge University Press, Cambridge, 2009)AF Oskooi, D. Roundy, M. Ibanescu, P. Bermel, JD Joannopoulos, SG Johnson, Comput. Phys. Commun. 181 (3), 687 (2010)SG Jhonson, JD Joannopoulos, Opt. Express 8 , 173 (2001)SG Jhonson, PR Villenueve, S. Fan, JD Joannopoulos, Phys. Rev. B 62 , 8212 (2000)A. Taflove, SC Hagness, Electrodinámica computacional: El método de dominio de tiempo de diferencia finita (Artech House, Norwood, MA, 2005)DM Sulivan, Simulación electromagnética utilizando el método FDTD. Serie sobre tecnología de RF y microondas (IEEE Press, Nueva York, 2000)GA Samara, Dependencias de temperatura y presión de las constantes dieléctricas de semiconductores. Phys. Rev. B 27 , 3494 (1983)S. Adachi, Propiedades de los semiconductores del grupo IV, IIIV y IIVI. in Wiley Series in Materials for Electronic and Optoelectronic Applications (Wiley, England 2005), págs. 195–198MP MikhaiIova, en la serie de manuales sobre parámetros de semiconductores , vol. 2, ed. por M. Levinshtein, S. Rumyantsev, M. Shur (Singapur, World Scietific, 1999), págs. 180–191R. Sánchez-Cano, N. Porras-Montenegro, Phys. E Dimensiones bajas. Syst. Nanoestructura 43 , 76 (2010)J. Barvestani, S. Dehghan, AS Vala, Ajuste de temperatura del acoplamiento de guía de onda semiconductora de cavidad en un cristal fotónico bidimensional. Fotón nanoestructura. Fundam. Appl. (2014) doi: 10.1016 / j.photonics2014.07.002Publication56129f5e-4a76-48d6-b925-bc429fd6d848virtual::4602-156129f5e-4a76-48d6-b925-bc429fd6d848virtual::4602-1https://scholar.google.com/citations?hl=es&user=WXol0WcAAAAJvirtual::4602-10000-0003-0906-4150virtual::4602-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000311405virtual::4602-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/9c5a9013-7c47-4184-8b50-b880dcb719eb/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/714194e2-4e46-41f8-b402-9345b4136466/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALA0316_Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab.pdfA0316_Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab.pdfArchivo texto completo del artículoapplication/pdf1073555https://red.uao.edu.co/bitstreams/644c42cb-2e1c-44de-83de-51dc763b9151/downloadcc9d4ab57e1322a6812d9437b071e036MD54TEXTA0316_Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab.pdf.txtA0316_Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab.pdf.txtExtracted texttext/plain21900https://red.uao.edu.co/bitstreams/0bc76196-68ef-4d83-8d05-212b057f778e/download74ab027fcfa6064f9c4dc22609622158MD55THUMBNAILA0316_Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab.pdf.jpgA0316_Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab.pdf.jpgGenerated Thumbnailimage/jpeg15197https://red.uao.edu.co/bitstreams/69b78e58-6a0c-4244-8b9f-abb369bb6ab3/download8d147b0e7947362da0fb3e37853dcc32MD5610614/11077oai:red.uao.edu.co:10614/110772024-03-14 16:43:58.917https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Springer-Verlag Berlin Heidelberg 2016restrictedhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |