Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab

We present numerical predictions for the photonic TE-like band gap ratio and the quality factors of symmetric localized defect as a function of the thickness slab and temperature by the use of plane wave expansion and the finite-difference time-domain methods. The photonic-crystal hole slab is compo...

Full description

Autores:
Sánchez Cano, Robert
Porras Montenegro, Nelson
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11077
Acceso en línea:
http://hdl.handle.net/10614/11077
https://link.springer.com/article/10.1007/s00339-016-9906-0
https://link.springer.com/content/pdf/10.1007%2Fs00339-016-9906-0.pdf
Palabra clave:
Campos electromagnéticos
Electromagnetic fields
Electromagnetismo
Optoelectrónica
Aleaciones magnéticas
Optoelectronics
Electromagnetism
Magnetic alloys
Rights
openAccess
License
Derechos Reservados - Springer-Verlag Berlin Heidelberg 2016
id REPOUAO2_859545c3acb37e7eeb1087f011b6e650
oai_identifier_str oai:red.uao.edu.co:10614/11077
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab
title Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab
spellingShingle Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab
Campos electromagnéticos
Electromagnetic fields
Electromagnetismo
Optoelectrónica
Aleaciones magnéticas
Optoelectronics
Electromagnetism
Magnetic alloys
title_short Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab
title_full Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab
title_fullStr Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab
title_full_unstemmed Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab
title_sort Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab
dc.creator.fl_str_mv Sánchez Cano, Robert
Porras Montenegro, Nelson
dc.contributor.author.none.fl_str_mv Sánchez Cano, Robert
Porras Montenegro, Nelson
dc.subject.lemb.spa.fl_str_mv Campos electromagnéticos
topic Campos electromagnéticos
Electromagnetic fields
Electromagnetismo
Optoelectrónica
Aleaciones magnéticas
Optoelectronics
Electromagnetism
Magnetic alloys
dc.subject.lemb.eng.fl_str_mv Electromagnetic fields
dc.subject.armarc.spa.fl_str_mv Electromagnetismo
Optoelectrónica
Aleaciones magnéticas
Optoelectronics
dc.subject.armarc.eng.fl_str_mv Electromagnetism
Magnetic alloys
description We present numerical predictions for the photonic TE-like band gap ratio and the quality factors of symmetric localized defect as a function of the thickness slab and temperature by the use of plane wave expansion and the finite-difference time-domain methods. The photonic-crystal hole slab is composed of a 2D hexagonal array with identical air holes and a circular cross section, embedded in a non-dispersive III–V semiconductor quaternary alloy slab, which has a high value of dielectric function in the near-infrared region, and the symmetric defect is formed by increasing the radius of a single hole in the 2D hexagonal lattice. We show that the band gap ratio depends linearly on the temperature in the range 150–400 K. Our results show a strong temperature dependence of the quality factor Q, the maximum ( Q=7000 ) is reached at T=350K, but if the temperature continues to increase, the efficiency drops sharply. Furthermore, we present numerical predictions for the electromagnetic field distribution at T=350K
publishDate 2016
dc.date.issued.none.fl_str_mv 2016-03-10
dc.date.accessioned.none.fl_str_mv 2019-09-09T22:16:32Z
dc.date.available.none.fl_str_mv 2019-09-09T22:16:32Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1432-0630 (en línea)
0947-8396 (impresa)
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11077
https://link.springer.com/article/10.1007/s00339-016-9906-0
https://link.springer.com/content/pdf/10.1007%2Fs00339-016-9906-0.pdf
dc.identifier.doi.spa.fl_str_mv doi: 10.1007/s00339-016-9906-0
identifier_str_mv 1432-0630 (en línea)
0947-8396 (impresa)
doi: 10.1007/s00339-016-9906-0
url http://hdl.handle.net/10614/11077
https://link.springer.com/article/10.1007/s00339-016-9906-0
https://link.springer.com/content/pdf/10.1007%2Fs00339-016-9906-0.pdf
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Volumen 122, número 4, (abril, 2016)
dc.relation.citationissue.none.fl_str_mv 4
dc.relation.citationvolume.none.fl_str_mv 122
dc.relation.cites.eng.fl_str_mv Sánchez-Cano, R., & Porras-Montenegro, N. (2016). Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab. Applied Physics A, 122(4), 6 pp. https://doi.org/10.1007/s00339-016-9906-0
dc.relation.ispartofjournal.eng.fl_str_mv Applied physics A: saterials science & processing
dc.relation.references.spa.fl_str_mv A. Joullié, P. Christol, AN Baranov, A. Vicet, Fuentes de láser de infrarrojo medio de estado sólido, en IT Sorokina, KL Vodopyanov, (eds.), Topics in Applied Physics , vol. 89 (Springer, Alemania, 2003), págs. 1–59
G. Ru, Y. Zheng, A. Li, El cambio de longitud de onda en las estructuras de fotodiodos GaInAsSb. J. Appl. Phys.77, 6721 (1995)
O. Levi, W. Suh, MM Lee, J. Zhang, SRJ Brueck, S. Fan, JS Harris, nanosensor biomédico integrado utilizando resonancia guiada en estructuras de cristal fotónico. Proc. Spie 6095, 60950N (2006)
CH Bui, J. Zheng, SW Hoch, LYT Lee, JGE Harris, CW Wong, Membranas micromecánicas de alta reflectividad y alta Q mediante resonancias guiadas para un acoplamiento optomecánico mejorado. Appl. Phys. Letón. 100 , 021110 (2012)
Y. Nazirizadeh, J. Reverey, U. Geyer, U. Lemmer, C. Selhuber-Unkel, M. Gerken, Imágenes tridimensionales basadas en materiales con superficies nanoestructuradas. Appl. Phys. Letón. 102 , 011116 (2013)
E. De Tommasi, AC De Luca, S. Cabrini, I. Rendina, S. Romano, V. Mocella, Estados superficiales similares al plasma en cristales fotónicos de índice de refracción negativo. Appl. Phys. Letón. 102 , 081113 (2013)
H. Kurt, E. Colak, O. Cakmak, H. Caglayan, E. Ozbay, El efecto de enfoque de los cristales fotónicos de índice graduado. Appl. Phys. Letón. 93 , 171108 (2008)
S. Fan, PR Villenueve, JD Joannopoulos, EF Schubert, diodos emisores de luz de cristal fotónico. Proc. SPIE 3002 , 67 (1997)
DH Long, I.-K. Hwang, S.-W. Ryu, J. Phys. Coreana. Soc. 51 , 1400 (2007)
JJ Wierer, MR Krames, JE Epler, NF Gardner, MG Graford, diodos emisores de luz de heteroestructura de pozos cuánticos InGaN / GaN que emplean estructuras de cristal fotónico. Appl. Phys. Letón. 84 , 3885 (2004)
LC Andreani, M. Agio, Bandas fotónicas y mapas de huecos en una losa de cristal fotónico. IEEE J. Quantum Electron. 38 , 891 (2002)
AL Bingham, D. Grischkowsky, Terahertz cavidades de guía de onda de cristal fotónico de alta Q bidimensional. Optar. Letón. 33 , 348 (2008)
R. Meisels, O. Glushko, F. Kuchar, Photonics Nanostruct. 10 , 60 (2012)
L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, KJ Boller, transmisión de IR medio de una losa de cristal fotónico de silicio 2D de gran área. J. Phys. D Appl. Phys. 41 , 135105 (2008)
M. Skorobogatiy, J. Yang, Fundamentos de la guía de cristales fotónicos (Cambridge University Press, Cambridge, 2009)
AF Oskooi, D. Roundy, M. Ibanescu, P. Bermel, JD Joannopoulos, SG Johnson, Comput. Phys. Commun. 181 (3), 687 (2010)
SG Jhonson, JD Joannopoulos, Opt. Express 8 , 173 (2001)
SG Jhonson, PR Villenueve, S. Fan, JD Joannopoulos, Phys. Rev. B 62 , 8212 (2000)
A. Taflove, SC Hagness, Electrodinámica computacional: El método de dominio de tiempo de diferencia finita (Artech House, Norwood, MA, 2005)
DM Sulivan, Simulación electromagnética utilizando el método FDTD. Serie sobre tecnología de RF y microondas (IEEE Press, Nueva York, 2000)
GA Samara, Dependencias de temperatura y presión de las constantes dieléctricas de semiconductores. Phys. Rev. B 27 , 3494 (1983)
S. Adachi, Propiedades de los semiconductores del grupo IV, IIIV y IIVI. in Wiley Series in Materials for Electronic and Optoelectronic Applications (Wiley, England 2005), págs. 195–198
MP MikhaiIova, en la serie de manuales sobre parámetros de semiconductores , vol. 2, ed. por M. Levinshtein, S. Rumyantsev, M. Shur (Singapur, World Scietific, 1999), págs. 180–191
R. Sánchez-Cano, N. Porras-Montenegro, Phys. E Dimensiones bajas. Syst. Nanoestructura 43 , 76 (2010)
J. Barvestani, S. Dehghan, AS Vala, Ajuste de temperatura del acoplamiento de guía de onda semiconductora de cavidad en un cristal fotónico bidimensional. Fotón nanoestructura. Fundam. Appl. (2014) doi: 10.1016 / j.photonics2014.07.002
dc.rights.spa.fl_str_mv Derechos Reservados - Springer-Verlag Berlin Heidelberg 2016
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Springer-Verlag Berlin Heidelberg 2016
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 6 páginas
dc.publisher.eng.fl_str_mv Springer Verlag
dc.source.spa.fl_str_mv instname:Universidad Autónoma de Occidente
reponame:Repositorio Institucional UAO
instname_str Universidad Autónoma de Occidente
institution Universidad Autónoma de Occidente
reponame_str Repositorio Institucional UAO
collection Repositorio Institucional UAO
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/9c5a9013-7c47-4184-8b50-b880dcb719eb/download
https://red.uao.edu.co/bitstreams/714194e2-4e46-41f8-b402-9345b4136466/download
https://red.uao.edu.co/bitstreams/644c42cb-2e1c-44de-83de-51dc763b9151/download
https://red.uao.edu.co/bitstreams/0bc76196-68ef-4d83-8d05-212b057f778e/download
https://red.uao.edu.co/bitstreams/69b78e58-6a0c-4244-8b9f-abb369bb6ab3/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
cc9d4ab57e1322a6812d9437b071e036
74ab027fcfa6064f9c4dc22609622158
8d147b0e7947362da0fb3e37853dcc32
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260103514161152
spelling Sánchez Cano, Robertvirtual::4602-1Porras Montenegro, Nelson3306619e6cb5c07b69120fbf5bd6292e2019-09-09T22:16:32Z2019-09-09T22:16:32Z2016-03-101432-0630 (en línea)0947-8396 (impresa)http://hdl.handle.net/10614/11077https://link.springer.com/article/10.1007/s00339-016-9906-0https://link.springer.com/content/pdf/10.1007%2Fs00339-016-9906-0.pdfdoi: 10.1007/s00339-016-9906-0We present numerical predictions for the photonic TE-like band gap ratio and the quality factors of symmetric localized defect as a function of the thickness slab and temperature by the use of plane wave expansion and the finite-difference time-domain methods. The photonic-crystal hole slab is composed of a 2D hexagonal array with identical air holes and a circular cross section, embedded in a non-dispersive III–V semiconductor quaternary alloy slab, which has a high value of dielectric function in the near-infrared region, and the symmetric defect is formed by increasing the radius of a single hole in the 2D hexagonal lattice. We show that the band gap ratio depends linearly on the temperature in the range 150–400 K. Our results show a strong temperature dependence of the quality factor Q, the maximum ( Q=7000 ) is reached at T=350K, but if the temperature continues to increase, the efficiency drops sharply. Furthermore, we present numerical predictions for the electromagnetic field distribution at T=350Kapplication/pdf6 páginasengSpringer VerlagDerechos Reservados - Springer-Verlag Berlin Heidelberg 2016https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2instname:Universidad Autónoma de Occidentereponame:Repositorio Institucional UAOTemperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slabArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Campos electromagnéticosElectromagnetic fieldsElectromagnetismoOptoelectrónicaAleaciones magnéticasOptoelectronicsElectromagnetismMagnetic alloysVolumen 122, número 4, (abril, 2016)4122Sánchez-Cano, R., & Porras-Montenegro, N. (2016). Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab. Applied Physics A, 122(4), 6 pp. https://doi.org/10.1007/s00339-016-9906-0Applied physics A: saterials science & processingA. Joullié, P. Christol, AN Baranov, A. Vicet, Fuentes de láser de infrarrojo medio de estado sólido, en IT Sorokina, KL Vodopyanov, (eds.), Topics in Applied Physics , vol. 89 (Springer, Alemania, 2003), págs. 1–59G. Ru, Y. Zheng, A. Li, El cambio de longitud de onda en las estructuras de fotodiodos GaInAsSb. J. Appl. Phys.77, 6721 (1995)O. Levi, W. Suh, MM Lee, J. Zhang, SRJ Brueck, S. Fan, JS Harris, nanosensor biomédico integrado utilizando resonancia guiada en estructuras de cristal fotónico. Proc. Spie 6095, 60950N (2006)CH Bui, J. Zheng, SW Hoch, LYT Lee, JGE Harris, CW Wong, Membranas micromecánicas de alta reflectividad y alta Q mediante resonancias guiadas para un acoplamiento optomecánico mejorado. Appl. Phys. Letón. 100 , 021110 (2012)Y. Nazirizadeh, J. Reverey, U. Geyer, U. Lemmer, C. Selhuber-Unkel, M. Gerken, Imágenes tridimensionales basadas en materiales con superficies nanoestructuradas. Appl. Phys. Letón. 102 , 011116 (2013)E. De Tommasi, AC De Luca, S. Cabrini, I. Rendina, S. Romano, V. Mocella, Estados superficiales similares al plasma en cristales fotónicos de índice de refracción negativo. Appl. Phys. Letón. 102 , 081113 (2013)H. Kurt, E. Colak, O. Cakmak, H. Caglayan, E. Ozbay, El efecto de enfoque de los cristales fotónicos de índice graduado. Appl. Phys. Letón. 93 , 171108 (2008)S. Fan, PR Villenueve, JD Joannopoulos, EF Schubert, diodos emisores de luz de cristal fotónico. Proc. SPIE 3002 , 67 (1997)DH Long, I.-K. Hwang, S.-W. Ryu, J. Phys. Coreana. Soc. 51 , 1400 (2007)JJ Wierer, MR Krames, JE Epler, NF Gardner, MG Graford, diodos emisores de luz de heteroestructura de pozos cuánticos InGaN / GaN que emplean estructuras de cristal fotónico. Appl. Phys. Letón. 84 , 3885 (2004)LC Andreani, M. Agio, Bandas fotónicas y mapas de huecos en una losa de cristal fotónico. IEEE J. Quantum Electron. 38 , 891 (2002)AL Bingham, D. Grischkowsky, Terahertz cavidades de guía de onda de cristal fotónico de alta Q bidimensional. Optar. Letón. 33 , 348 (2008)R. Meisels, O. Glushko, F. Kuchar, Photonics Nanostruct. 10 , 60 (2012)L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, KJ Boller, transmisión de IR medio de una losa de cristal fotónico de silicio 2D de gran área. J. Phys. D Appl. Phys. 41 , 135105 (2008)M. Skorobogatiy, J. Yang, Fundamentos de la guía de cristales fotónicos (Cambridge University Press, Cambridge, 2009)AF Oskooi, D. Roundy, M. Ibanescu, P. Bermel, JD Joannopoulos, SG Johnson, Comput. Phys. Commun. 181 (3), 687 (2010)SG Jhonson, JD Joannopoulos, Opt. Express 8 , 173 (2001)SG Jhonson, PR Villenueve, S. Fan, JD Joannopoulos, Phys. Rev. B 62 , 8212 (2000)A. Taflove, SC Hagness, Electrodinámica computacional: El método de dominio de tiempo de diferencia finita (Artech House, Norwood, MA, 2005)DM Sulivan, Simulación electromagnética utilizando el método FDTD. Serie sobre tecnología de RF y microondas (IEEE Press, Nueva York, 2000)GA Samara, Dependencias de temperatura y presión de las constantes dieléctricas de semiconductores. Phys. Rev. B 27 , 3494 (1983)S. Adachi, Propiedades de los semiconductores del grupo IV, IIIV y IIVI. in Wiley Series in Materials for Electronic and Optoelectronic Applications (Wiley, England 2005), págs. 195–198MP MikhaiIova, en la serie de manuales sobre parámetros de semiconductores , vol. 2, ed. por M. Levinshtein, S. Rumyantsev, M. Shur (Singapur, World Scietific, 1999), págs. 180–191R. Sánchez-Cano, N. Porras-Montenegro, Phys. E Dimensiones bajas. Syst. Nanoestructura 43 , 76 (2010)J. Barvestani, S. Dehghan, AS Vala, Ajuste de temperatura del acoplamiento de guía de onda semiconductora de cavidad en un cristal fotónico bidimensional. Fotón nanoestructura. Fundam. Appl. (2014) doi: 10.1016 / j.photonics2014.07.002Publication56129f5e-4a76-48d6-b925-bc429fd6d848virtual::4602-156129f5e-4a76-48d6-b925-bc429fd6d848virtual::4602-1https://scholar.google.com/citations?hl=es&user=WXol0WcAAAAJvirtual::4602-10000-0003-0906-4150virtual::4602-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000311405virtual::4602-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/9c5a9013-7c47-4184-8b50-b880dcb719eb/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/714194e2-4e46-41f8-b402-9345b4136466/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALA0316_Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab.pdfA0316_Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab.pdfArchivo texto completo del artículoapplication/pdf1073555https://red.uao.edu.co/bitstreams/644c42cb-2e1c-44de-83de-51dc763b9151/downloadcc9d4ab57e1322a6812d9437b071e036MD54TEXTA0316_Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab.pdf.txtA0316_Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab.pdf.txtExtracted texttext/plain21900https://red.uao.edu.co/bitstreams/0bc76196-68ef-4d83-8d05-212b057f778e/download74ab027fcfa6064f9c4dc22609622158MD55THUMBNAILA0316_Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab.pdf.jpgA0316_Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab.pdf.jpgGenerated Thumbnailimage/jpeg15197https://red.uao.edu.co/bitstreams/69b78e58-6a0c-4244-8b9f-abb369bb6ab3/download8d147b0e7947362da0fb3e37853dcc32MD5610614/11077oai:red.uao.edu.co:10614/110772024-03-14 16:43:58.917https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Springer-Verlag Berlin Heidelberg 2016restrictedhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K