Structural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices

This paper presents the structural, mechanical and tribological behaviors for AISI 1045 steel uncoated and coated with Titanium Carbo-nitride (TiCN), Aluminum Chrome Nitride (CrAlN) and Boron Carbo-nitride (BCN) under lubricated and non-lubricated environments. The coating's natural effect on t...

Full description

Autores:
Correa, J. F.
Aperador, William
Amaya, César
Caicedo Angulo, Julio César
Alba de Sánchez, Nelly Cecilia
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13284
Acceso en línea:
https://hdl.handle.net/10614/13284
Palabra clave:
Revestimientos
Fricción (Mecánica)
Tribología
Coatings
Friction
Tribology
TiCN
CrAlN
BCN coatings
Friction coefficient
Lubricated environments
Rights
openAccess
License
Derechos reservados - Elsiever, 2020
id REPOUAO2_824576da37c2fb64f9efa714afa3670b
oai_identifier_str oai:red.uao.edu.co:10614/13284
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Structural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices
title Structural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices
spellingShingle Structural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices
Revestimientos
Fricción (Mecánica)
Tribología
Coatings
Friction
Tribology
TiCN
CrAlN
BCN coatings
Friction coefficient
Lubricated environments
title_short Structural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices
title_full Structural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices
title_fullStr Structural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices
title_full_unstemmed Structural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices
title_sort Structural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices
dc.creator.fl_str_mv Correa, J. F.
Aperador, William
Amaya, César
Caicedo Angulo, Julio César
Alba de Sánchez, Nelly Cecilia
dc.contributor.author.spa.fl_str_mv Correa, J. F.
Aperador, William
Amaya, César
Caicedo Angulo, Julio César
Alba de Sánchez, Nelly Cecilia
dc.subject.armarc.spa.fl_str_mv Revestimientos
Fricción (Mecánica)
Tribología
topic Revestimientos
Fricción (Mecánica)
Tribología
Coatings
Friction
Tribology
TiCN
CrAlN
BCN coatings
Friction coefficient
Lubricated environments
dc.subject.armarc.eng.fl_str_mv Coatings
Friction
Tribology
dc.subject.proposal.eng.fl_str_mv TiCN
CrAlN
BCN coatings
Friction coefficient
Lubricated environments
description This paper presents the structural, mechanical and tribological behaviors for AISI 1045 steel uncoated and coated with Titanium Carbo-nitride (TiCN), Aluminum Chrome Nitride (CrAlN) and Boron Carbo-nitride (BCN) under lubricated and non-lubricated environments. The coating's natural effect on the crystalline structure, chemical composition, as well as the mechanical properties were determined by X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), nanoindentation and tribological characterization techniques. The results show that the material with the lowest elastic modulus was TiCN (224 GPa), followed by CrAlN (235 GPa), and the BCN (251 GPa). The friction coefficient results for the coatings without lubrication were 0.74, 0.66 and 0.60, respectively, and with lubrication were 0.24, 0.23 and 0.21, respectively. These results indicate that the tribological properties are strongly dependent on the lubricated environment's nature and the coating's nature. Advanced surface treatments are increasingly used in the daily manufacture of parts for the metalworking and automotive industry due to high mechanical and tribological requirements; therefore, TiCN, CrAlN and BCN coatings can be used as future materials for elements subject to high stress and wear in lubricated environments
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-09-15
dc.date.accessioned.none.fl_str_mv 2021-09-29T13:18:56Z
dc.date.available.none.fl_str_mv 2021-09-29T13:18:56Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2540584
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13284
identifier_str_mv 2540584
url https://hdl.handle.net/10614/13284
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Volumen 252 (2020)
dc.relation.citationendpage.spa.fl_str_mv 12
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv Volumen 252
dc.relation.cites.eng.fl_str_mv Correa, J.F., Aperador, W., Caicedo, J.C., Alba, N.C., Amaya, C. (2020). Structural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices. Materials Chemistry and Physics, (Vol. 252 (20), pp. 1-12). https://doi.org/10.1016/j.matchemphys.2020.123164
dc.relation.ispartofjournal.eng.fl_str_mv Materials Chemistry and Physics
dc.relation.references.eng.fl_str_mv J.C. Caicedo, C. Amaya, L. Yate, M.E. Gómez, G. Zambrano, TiCN/TiNbCN multilayer coatings with enhanced mechanical properties, Appl. Surf. Sci. 256 (20) (2010) 5898–5904.
P.V. Kola, S. Daniels, D.C. Cameron, M.S.J. Hashmi, Magnetron sputtering of tin protective coatings for medical applications, Mater. Process. Technol. 56 (1–4) (1996) 422–430.
P. Panjan, et al., “Carbon-containing Ti–C:H and Cr–C:H PVD hard coatings, Vacuum 71 (1–2) (2003) 261–265.
E.Y. Choi, C.S. Jang, M.C. Kang, K.H. Kim, Synthesis and characterization of Ti-cx- N1-x coatings prepared by arc ion plating 118 (2006) 311–316.
T. Moskalewicz, B. Wendler, S. Zimowski, B. Dubiel, A. Czyrska-filemonowicz, “Microstructure, micro-mechanical and tribological properties of the nc-WC/a-C nanocomposite coatings magnetron sputtered on non-hardened and oxygen hardened Ti – 6Al – 4V alloy, Surf. Coating. Technol. 205 (7) (2010) 2668–2677.
C. Escobar, J.C. Caicedo, H.H. Caicedo, M. Mozafari, Design of hard surfaces with metal (Hf/V) nitride multinanolayers, J. Superhard Master. 36 (6) (2014) 366–367.
J.E. Sánchez, O.M. Sánchez, L. Ipaz, W. Aperador, J.C. Caicedo, C. Amaya, M. A. Hernández Landaverde, F. Espinoza Beltran, J. Mu~noz-Salda~na, G. Zambrano, Mechanical, tribological and electrochemical behavior of Cr1-xAlxN coatings deposited by r.f . reactive magnetron co-sputtering method, Appl. Surf. Sci. 256
(2010) 2380–2387. [8] H.C. Barshilia, B. Deepthi, K.S. Rajam, Deposition and characterization of CrN/ Si3N4 and CrAlN/Si3N4 nanocomposite coatings prepared using reactive DC unbalanced magnetron sputtering, Surf. Coating. Technol. 201 (24) (2007) 9468–9475.
O.M. Sánchez Quintero, W. Aperador Chaparro, L. Ipaz, J.E. Sánchez Barco, F. Espinoza Beltrán, G. Zambrano, Influence of the microestructure on the electrochemical porperties of Al-Cr-N coatings deposited by Co-sputtering method from a Cr-Al binary target, Mater. Res. 16 (1) (2013) 204–214.
S. Surviliene, S. Bellozor, M. Kurtinaitiene, V.A. Safonov, Protective properties of the chromium-titanium carbonitride composite coatings, Surf. Coating. Technol. 176 (2) (2004) 193–201.
H. Feng, C. Hsu, J. Lu, Y. Shy, Effects of PVD sputtered coatings on the corrosion resistance of AISI 304 stainless steel, Mater. Sci. Eng., A 349 (1–2) (2003) 73–79.
G.S. Kim, S.Y. Lee, J.H. Hahn, B.Y. Lee, J.G. Han, J.H. Lee, S.Y. Lee, Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings, Surf. Coating. Technol. 171 (1–3) (2003) 83–90.
B. Warcholinski, A. Gilewicz, Z. Kuklinski, P. Myslinski, Arc-evaporated CrN , CrN and CrCN coatings, Vacuum 83 (4) (2009) 715–718
M. Balaceanu, et al., Characterization of Zr-based hard coatings for medical implant applications, Surf. Coating. Technol. 204 (12–13) (2010) 2046–2050.
N. Madaoui, N. Saoula, B. Zaid, D. Saidi, A. Si Ahmed, Structural, mechanical and electrochemical comparison of TiN and TiCN coatings on XC48 steel substrates in NaCl 3.5% water solution, Appl. Surf. Sci. 312 (2014) 134–138.
J.C. Caicedo, G. Zambrabo, W. Aperador, L. Escobar-Alarcon, E. Camps, Mechanical and electrochemical characterization of vanadium nitride (VN) thin films, Appl. Surf. Sci. 258 (1) (2011) 312–320.
C. Adelhelm, M. Balden, F. Kost, A. Herrmann, S. Lindig, Thermal induced structural changes of a-C and a-C:Ti films analized by NEXAFS and XPS, J. Phys. 100 (2008) 10–14.
J.L. Endrino, G.S. Fox-Rabinovich, A. Reiter, S.V. Veldhuis, R. Escobar Galindo, J. M. Albella, J.F. Marco, Oxidation tuning in AlCrN coatings, Surf. Coating. Technol. 201 (8) (2007) 4505–4511.
H. Riascos, J. Neidhardt, G.Z. Radnoczi, J. Emmerlich, G. Zambrano, L. Hultman, P. Prieto, Structure and properties of pulsed-laser deposited carbon nitride thin films, Thin Solid Films 497 (1–2) (2006) 1–6.
W.F. Piedrahita, W. Aperador, J.C. Caicedo, P. Prieto, Evolution of physical properties in hafnium carbonitride thin films, J. Alloys Compd. 690 (1) (2017) 485–496.
ASTM G99-17, Standard Test Method for Wear Testing with a Pin-On-Disk Apparatus, 2017, pp. 1–6.
ASTM G171-03, Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus, 2017, pp. 1–7.
P.E. Hovsepian, A.P. Ehiasarian, I. Petrov, Structure evolution and properties of TiAlCN/VCN coatings deposited by reactive HIPIMS, Surf. Coating. Technol. 257 (2014) 38–47.
J.C. Caicedo, W. Aperador, M. Mozafari, L. Tirado, Evidence of electrochemical resistance on ternary V-C-N layers, Siliconindia 10 (6) (2018) 2499–2507.
A. Vyas, K.Y. Li, Z.F. Zhou, Y.G. Shen, Synthesis and characterization of CNx/TiN multilayers on Si(100) substrates, Surf. Coating. Technol. 200 (7) (2005) 2293–2300.
J.E. Nocua, G. Morell, F. Piazza, V.R. Weiner, Síntesis y caracterización de nanoestructuras estequiometrias de nitruro de boro, Superf. y vacío 25 (3) (2012) 194–198.
L. Ipaz, W. Aperador, J. Caicedo, J. Esteve, G. Zambrano, A practical application of X-ray spectroscopy in Ti-Al-N and Cr-Al-N thin films, X Ray Spectrom. (2012) 21–38.
H.O. Pierson, Handbook of Refractory Carbides and Nitrides, 1996, pp. 1–340.
J.F. Archard, Contact and rubbing of flat surfaces, J. Appl. Phys. 24 (8) (2004).
A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear 246 (1–2) (2000) 1–11.
J. Esteve, E. Martinez, A. Lousa, F. Montala, L.L. Carreras, Microtribological characterization of group V and VI metal-carbide wear-resistant coatings effective in the metal casting industry, Surf. Coating. Technol. 133 (134) (2000) 314–318.
dc.rights.spa.fl_str_mv Derechos reservados - Elsiever, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Elsiever, 2020
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Elsevier
dc.source.eng.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0254058420305356
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://dspace7-uao.metacatalogo.com/bitstreams/77e0172d-f9ba-459a-bf82-e9ce66c777b7/download
https://dspace7-uao.metacatalogo.com/bitstreams/35a3291f-028f-4d85-8e80-3cf671ae99bd/download
https://dspace7-uao.metacatalogo.com/bitstreams/ee3ed3e9-df8f-4e53-b9df-8fed9eea7e77/download
https://dspace7-uao.metacatalogo.com/bitstreams/16904823-3d1d-4391-9683-8f3c7141b786/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
c83a799ca5e96a2fd086c4c9cfde1349
a3eb7b924ec16932f03b0edc45960c56
18377f6b88e05279b443fe98fd365462
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UAO
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259890677350400
spelling Correa, J. F.2d04af1bf3718a4f062d7466f4cfca35Aperador, William22f23595993c3e95414c1bb06d41b3b1Amaya, César0d71ec06608452d3b1d9e3d811348b8cCaicedo Angulo, Julio Césarf992baa0bb173e69c42dd9c1ed408b05Alba de Sánchez, Nelly Cecilia2793e3a51a82a454e83e94b5b61af1132021-09-29T13:18:56Z2021-09-29T13:18:56Z2020-09-152540584https://hdl.handle.net/10614/13284This paper presents the structural, mechanical and tribological behaviors for AISI 1045 steel uncoated and coated with Titanium Carbo-nitride (TiCN), Aluminum Chrome Nitride (CrAlN) and Boron Carbo-nitride (BCN) under lubricated and non-lubricated environments. The coating's natural effect on the crystalline structure, chemical composition, as well as the mechanical properties were determined by X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), nanoindentation and tribological characterization techniques. The results show that the material with the lowest elastic modulus was TiCN (224 GPa), followed by CrAlN (235 GPa), and the BCN (251 GPa). The friction coefficient results for the coatings without lubrication were 0.74, 0.66 and 0.60, respectively, and with lubrication were 0.24, 0.23 and 0.21, respectively. These results indicate that the tribological properties are strongly dependent on the lubricated environment's nature and the coating's nature. Advanced surface treatments are increasingly used in the daily manufacture of parts for the metalworking and automotive industry due to high mechanical and tribological requirements; therefore, TiCN, CrAlN and BCN coatings can be used as future materials for elements subject to high stress and wear in lubricated environments12 páginasapplication/pdfengElsevierDerechos reservados - Elsiever, 2020https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S0254058420305356Structural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devicesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85RevestimientosFricción (Mecánica)TribologíaCoatingsFrictionTribologyTiCNCrAlNBCN coatingsFriction coefficientLubricated environmentsVolumen 252 (2020)121Volumen 252Correa, J.F., Aperador, W., Caicedo, J.C., Alba, N.C., Amaya, C. (2020). Structural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices. Materials Chemistry and Physics, (Vol. 252 (20), pp. 1-12). https://doi.org/10.1016/j.matchemphys.2020.123164Materials Chemistry and PhysicsJ.C. Caicedo, C. Amaya, L. Yate, M.E. Gómez, G. Zambrano, TiCN/TiNbCN multilayer coatings with enhanced mechanical properties, Appl. Surf. Sci. 256 (20) (2010) 5898–5904.P.V. Kola, S. Daniels, D.C. Cameron, M.S.J. Hashmi, Magnetron sputtering of tin protective coatings for medical applications, Mater. Process. Technol. 56 (1–4) (1996) 422–430.P. Panjan, et al., “Carbon-containing Ti–C:H and Cr–C:H PVD hard coatings, Vacuum 71 (1–2) (2003) 261–265.E.Y. Choi, C.S. Jang, M.C. Kang, K.H. Kim, Synthesis and characterization of Ti-cx- N1-x coatings prepared by arc ion plating 118 (2006) 311–316.T. Moskalewicz, B. Wendler, S. Zimowski, B. Dubiel, A. Czyrska-filemonowicz, “Microstructure, micro-mechanical and tribological properties of the nc-WC/a-C nanocomposite coatings magnetron sputtered on non-hardened and oxygen hardened Ti – 6Al – 4V alloy, Surf. Coating. Technol. 205 (7) (2010) 2668–2677.C. Escobar, J.C. Caicedo, H.H. Caicedo, M. Mozafari, Design of hard surfaces with metal (Hf/V) nitride multinanolayers, J. Superhard Master. 36 (6) (2014) 366–367.J.E. Sánchez, O.M. Sánchez, L. Ipaz, W. Aperador, J.C. Caicedo, C. Amaya, M. A. Hernández Landaverde, F. Espinoza Beltran, J. Mu~noz-Salda~na, G. Zambrano, Mechanical, tribological and electrochemical behavior of Cr1-xAlxN coatings deposited by r.f . reactive magnetron co-sputtering method, Appl. Surf. Sci. 256(2010) 2380–2387. [8] H.C. Barshilia, B. Deepthi, K.S. Rajam, Deposition and characterization of CrN/ Si3N4 and CrAlN/Si3N4 nanocomposite coatings prepared using reactive DC unbalanced magnetron sputtering, Surf. Coating. Technol. 201 (24) (2007) 9468–9475.O.M. Sánchez Quintero, W. Aperador Chaparro, L. Ipaz, J.E. Sánchez Barco, F. Espinoza Beltrán, G. Zambrano, Influence of the microestructure on the electrochemical porperties of Al-Cr-N coatings deposited by Co-sputtering method from a Cr-Al binary target, Mater. Res. 16 (1) (2013) 204–214.S. Surviliene, S. Bellozor, M. Kurtinaitiene, V.A. Safonov, Protective properties of the chromium-titanium carbonitride composite coatings, Surf. Coating. Technol. 176 (2) (2004) 193–201.H. Feng, C. Hsu, J. Lu, Y. Shy, Effects of PVD sputtered coatings on the corrosion resistance of AISI 304 stainless steel, Mater. Sci. Eng., A 349 (1–2) (2003) 73–79.G.S. Kim, S.Y. Lee, J.H. Hahn, B.Y. Lee, J.G. Han, J.H. Lee, S.Y. Lee, Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings, Surf. Coating. Technol. 171 (1–3) (2003) 83–90.B. Warcholinski, A. Gilewicz, Z. Kuklinski, P. Myslinski, Arc-evaporated CrN , CrN and CrCN coatings, Vacuum 83 (4) (2009) 715–718M. Balaceanu, et al., Characterization of Zr-based hard coatings for medical implant applications, Surf. Coating. Technol. 204 (12–13) (2010) 2046–2050.N. Madaoui, N. Saoula, B. Zaid, D. Saidi, A. Si Ahmed, Structural, mechanical and electrochemical comparison of TiN and TiCN coatings on XC48 steel substrates in NaCl 3.5% water solution, Appl. Surf. Sci. 312 (2014) 134–138.J.C. Caicedo, G. Zambrabo, W. Aperador, L. Escobar-Alarcon, E. Camps, Mechanical and electrochemical characterization of vanadium nitride (VN) thin films, Appl. Surf. Sci. 258 (1) (2011) 312–320.C. Adelhelm, M. Balden, F. Kost, A. Herrmann, S. Lindig, Thermal induced structural changes of a-C and a-C:Ti films analized by NEXAFS and XPS, J. Phys. 100 (2008) 10–14.J.L. Endrino, G.S. Fox-Rabinovich, A. Reiter, S.V. Veldhuis, R. Escobar Galindo, J. M. Albella, J.F. Marco, Oxidation tuning in AlCrN coatings, Surf. Coating. Technol. 201 (8) (2007) 4505–4511.H. Riascos, J. Neidhardt, G.Z. Radnoczi, J. Emmerlich, G. Zambrano, L. Hultman, P. Prieto, Structure and properties of pulsed-laser deposited carbon nitride thin films, Thin Solid Films 497 (1–2) (2006) 1–6.W.F. Piedrahita, W. Aperador, J.C. Caicedo, P. Prieto, Evolution of physical properties in hafnium carbonitride thin films, J. Alloys Compd. 690 (1) (2017) 485–496.ASTM G99-17, Standard Test Method for Wear Testing with a Pin-On-Disk Apparatus, 2017, pp. 1–6.ASTM G171-03, Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus, 2017, pp. 1–7.P.E. Hovsepian, A.P. Ehiasarian, I. Petrov, Structure evolution and properties of TiAlCN/VCN coatings deposited by reactive HIPIMS, Surf. Coating. Technol. 257 (2014) 38–47.J.C. Caicedo, W. Aperador, M. Mozafari, L. Tirado, Evidence of electrochemical resistance on ternary V-C-N layers, Siliconindia 10 (6) (2018) 2499–2507.A. Vyas, K.Y. Li, Z.F. Zhou, Y.G. Shen, Synthesis and characterization of CNx/TiN multilayers on Si(100) substrates, Surf. Coating. Technol. 200 (7) (2005) 2293–2300.J.E. Nocua, G. Morell, F. Piazza, V.R. Weiner, Síntesis y caracterización de nanoestructuras estequiometrias de nitruro de boro, Superf. y vacío 25 (3) (2012) 194–198.L. Ipaz, W. Aperador, J. Caicedo, J. Esteve, G. Zambrano, A practical application of X-ray spectroscopy in Ti-Al-N and Cr-Al-N thin films, X Ray Spectrom. (2012) 21–38.H.O. Pierson, Handbook of Refractory Carbides and Nitrides, 1996, pp. 1–340.J.F. Archard, Contact and rubbing of flat surfaces, J. Appl. Phys. 24 (8) (2004).A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear 246 (1–2) (2000) 1–11.J. Esteve, E. Martinez, A. Lousa, F. Montala, L.L. Carreras, Microtribological characterization of group V and VI metal-carbide wear-resistant coatings effective in the metal casting industry, Surf. Coating. Technol. 133 (134) (2000) 314–318.GeneralPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/77e0172d-f9ba-459a-bf82-e9ce66c777b7/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALStructural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices.pdfStructural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1247703https://dspace7-uao.metacatalogo.com/bitstreams/35a3291f-028f-4d85-8e80-3cf671ae99bd/downloadc83a799ca5e96a2fd086c4c9cfde1349MD53TEXTStructural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices.pdf.txtStructural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices.pdf.txtExtracted texttext/plain48897https://dspace7-uao.metacatalogo.com/bitstreams/ee3ed3e9-df8f-4e53-b9df-8fed9eea7e77/downloada3eb7b924ec16932f03b0edc45960c56MD54THUMBNAILStructural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices.pdf.jpgStructural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices.pdf.jpgGenerated Thumbnailimage/jpeg12927https://dspace7-uao.metacatalogo.com/bitstreams/16904823-3d1d-4391-9683-8f3c7141b786/download18377f6b88e05279b443fe98fd365462MD5510614/13284oai:dspace7-uao.metacatalogo.com:10614/132842024-01-19 16:05:15.06https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsiever, 2020restrictedhttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K