Tribological performance of PTFE-ATSP and PTFE-Ekonol polymer blends aimed for oil-less engineering applications

This study examines the tribological performance of an advanced high-performance polymer (HPP), namely aromatic thermosetting copolyester (ATSP), and poly-hydroxybenzoic acid polymer or Ekonol® as additives for polytetrafluoroethylene (PTFE), under unlubricated conditions from room temperature to 30...

Full description

Autores:
Escobar Nuñez, Emerson
Bashandeh, Kian
Tsigkis, Vasilis
Rahman, Md Saifur
Polycarpou, Andreas A.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/15843
Acceso en línea:
https://hdl.handle.net/10614/15843
https://doi.org/10.1016/j.triboint.2023.108842 Received 5 May 2023; Received in revised form 8 J
https://red.uao.edu.co/
Palabra clave:
ATSP
PTFE
Ekonol
High performance polymers
Transfer films
Rights
closedAccess
License
Derechos reservados - Elsevier, 2023
id REPOUAO2_81e44e396cf4be9bb14515ce9d9884f5
oai_identifier_str oai:red.uao.edu.co:10614/15843
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Tribological performance of PTFE-ATSP and PTFE-Ekonol polymer blends aimed for oil-less engineering applications
title Tribological performance of PTFE-ATSP and PTFE-Ekonol polymer blends aimed for oil-less engineering applications
spellingShingle Tribological performance of PTFE-ATSP and PTFE-Ekonol polymer blends aimed for oil-less engineering applications
ATSP
PTFE
Ekonol
High performance polymers
Transfer films
title_short Tribological performance of PTFE-ATSP and PTFE-Ekonol polymer blends aimed for oil-less engineering applications
title_full Tribological performance of PTFE-ATSP and PTFE-Ekonol polymer blends aimed for oil-less engineering applications
title_fullStr Tribological performance of PTFE-ATSP and PTFE-Ekonol polymer blends aimed for oil-less engineering applications
title_full_unstemmed Tribological performance of PTFE-ATSP and PTFE-Ekonol polymer blends aimed for oil-less engineering applications
title_sort Tribological performance of PTFE-ATSP and PTFE-Ekonol polymer blends aimed for oil-less engineering applications
dc.creator.fl_str_mv Escobar Nuñez, Emerson
Bashandeh, Kian
Tsigkis, Vasilis
Rahman, Md Saifur
Polycarpou, Andreas A.
dc.contributor.author.none.fl_str_mv Escobar Nuñez, Emerson
Bashandeh, Kian
Tsigkis, Vasilis
Rahman, Md Saifur
Polycarpou, Andreas A.
dc.subject.proposal.eng.fl_str_mv ATSP
PTFE
Ekonol
High performance polymers
Transfer films
topic ATSP
PTFE
Ekonol
High performance polymers
Transfer films
description This study examines the tribological performance of an advanced high-performance polymer (HPP), namely aromatic thermosetting copolyester (ATSP), and poly-hydroxybenzoic acid polymer or Ekonol® as additives for polytetrafluoroethylene (PTFE), under unlubricated conditions from room temperature to 300 ◦C. Compared to PTFE-Ekonol composites, PTFE-ATSP blends showed 50% reduction in the wear rate at all tested temperaturas and higher wear resistance at different sliding speeds, partially attributed to its viscoelastic stability or higher mechanical strength. Also, a fluoride-rich lubricating transfer film was formed on the metallic counter Surface when tested against PTFE-ATSP, and this film is temperature-dependent. PTFE-ATSP blends are an attractive solution for oil-less applications in the temperature range of 25–300 ◦C.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-10
dc.date.accessioned.none.fl_str_mv 2024-10-04T16:26:18Z
dc.date.available.none.fl_str_mv 2024-10-04T16:26:18Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.eng.fl_str_mv Escobar Núñez, E., et. al. (2023). Tribological performance of PTFE-ATSP and PTFE-Ekonol polymer blends aimed for oil-less engineering applications. Tribology International. volumen 18, 12p. ISSN: 0301-679X https://doi.org/10.1016/j.triboint.2023.108842
dc.identifier.issn.spa.fl_str_mv 0301679X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/15843
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.triboint.2023.108842 Received 5 May 2023; Received in revised form 8 J
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Escobar Núñez, E., et. al. (2023). Tribological performance of PTFE-ATSP and PTFE-Ekonol polymer blends aimed for oil-less engineering applications. Tribology International. volumen 18, 12p. ISSN: 0301-679X https://doi.org/10.1016/j.triboint.2023.108842
0301679X
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/15843
https://doi.org/10.1016/j.triboint.2023.108842 Received 5 May 2023; Received in revised form 8 J
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 12
dc.relation.citationvolume.spa.fl_str_mv 188
dc.relation.ispartofjournal.eng.fl_str_mv Tribology International
dc.relation.references.none.fl_str_mv [1] Friedrich K. Polymer composites for tribological applications. Adv Ind Eng Polym Res 2018;1(1):3–39. [2] Nunez EE, Gheisari R, Polycarpou AA. Tribology review of blended bulk polymers and their coatings for high-load bearing applications. Tribol Int 2019;129:92–111. [3] Holmberg K, Erdemir A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017;5:263–84. [4] Holmberg K, Andersson P, Erdemir A. Global energy consumption due to friction in passenger cars. Tribol Int 2012;47:221–34. [5] Bahadur S. The development of transfer layers and their role in polymer tribology. Wear 2000;245:92–9. [6] Briscoe B. Wear of polymers–an essay on fundamental-aspects. Tribol Int 1981;14 (4):231–43. [7] Cao W, Gong J, Qi Y, Yang D, Gao G. Tribological behavior of nano-ZrO2 reinforced PTFE-PPS composites. J Wuhan Univ Technol Mater Sci Ed 2019: 527–35. [8] McCook NL, Boesl B, Burris DL, Sawyer WG. Epoxy, ZnO, and PTFE nanocomposite: friction and wear. Tribol Lett 2006:253–7. [9] Burris DL, Sawyer WG. Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles. Wear 2006;260:915–8. [10] Chang L, Zhang Z, Ye L, Friedrich K. Synergistic effects of nanoparticles and traditional tribofillers on sliding wear of polymeric hybrid composites. Tribology Polym Nanocomposites: Frict Wear Bulk Mater Coat 2013:49–89. [11] Harris KL, Curry JF, Pitenis AA, Rowe KG, Sidebottom MA, Sawyer WG, et al. Wear debris mobility, aligned surface roughness, and the low wear behavior of filled polytetrafluoroethylene. Tribol Lett 2015;60(2):1–8. [12] Pitenis A, Harris K, Junk C, Blackman G, Sawyer WG, Krick B. Ultralow wear PTFE and alumina composites: it is all about tribochemistry. Tribol Lett 2015;57:1–8. [13] Wang Y, Yan F. Tribological properties of transfer films of PTFE-based composites. Wear 2006;261:1359–66. [14] Nunez EE, Polycarpou AA. The effect of surface roughness on the transfer of polymer films under unlubricated testing conditions. Wear 2015;326:74–83. [15] Demas NG, Zhang J, Polycarpou AA, Economy J. Tribological characterization of aromatic thermosetting copolyester–PTFE blends in air conditioning compressor environment. Tribol Lett 2008;29:253–8. [16] Gong H, Yu C, Zhang L, Xie G, Guo D, Luo J. Intelligent lubricating materials: a review. Compos B Eng 2020;202:108450. [17] Somberg J, Saravanan P, Vadivel HS, Berglund K, Shi Y, Ukonsaari J, et al. Tribological characterization of polymer composites for hydropower bearings: experimentally developed versus commercial materials. Tribol Int 2021;162: 107101. [18] Zhang J, Demas NG, Polycarpou AA, Economy J. A new family of low wear low coefficient of friction polymer blends based on polytetrafluoroethylene and aromatic thermosetting polyester. Polym Adv Technol 2008;19:1105–12. [19] Gateman S, Alidokht S, Mena-Morcillo E, Schulz R, et al. Wear resistant solid lubricating coatings via compression molding and thermal spraying technologies. Surf Coat Technol 2021;426:127790. [20] Zhang J, Polycarpou AA, Economy J. An improved tribological polymer coating system for metal surfaces. Tribology Lett 2010;38(3):355–65. [21] Salvaro D, Dudy JMW, de Oliveira F, Binder C, Kleine AN, de Oliveira GM. Influence of grinding energy in morphology and tribological performance of selflubricating polymeric blends PAEK + PTFE. Wear 2023;523:204783. [22] Lan P, Meyer JL, Economy J. Unlubricated tribological performance of aromatic thermosetting polyester (ATSP) coatings under different temperature conditions. Tribol Lett 2016;61:1–14. [23] Valente CAGS, Boutin FF, Rocha LPC, do Vale JL, da Silva CH. Effect of graphite and bronze fillers on PTFE tribological behavior: a commercial materials evaluation. Tribol Trans 2020;63:356–70. [24] Joshi MD, Kumbhar NK, Rambadey OV, Sagdeo PR, Devan RS, Hosmani SS. Exfoliated nano-hBN additives for enhancing tribological performance of ATSP coatings deposited on AISI 316L steel: role of SMAT pre-treatment. Surf Coat Tech 2022;447:128829. [25] Bashandeh K, Lan P, Polycarpou AA. Tribology of self-lubricating high performance ATSP, PI, and PEEK-based polymer composites up to 300◦ C. Friction 2022:1–13. [26] Sawae Y, Morita T, Takeda K, Onitsuka S, Kaneuti J, Yamaguchi T, et al. Friction and wear of PTFE composites with different filler in high purity hydrogen gas. Tribol Int 2021;157:106884. [27] Lan P, Gheisari R, Meyer JL, Polycarpou AA. Tribological performance of aromatic thermosetting polyester (ATSP) coatings under cryogenic conditions. Wear 2018; 398:47–55. [28] Pachirisamy S, Schwam D, Litt MH. Atomic oxygen resistant coatings for low earth orbit space structures. J Mater Sci 1995;30:308–20. [29] Lan P, Polychronopoulou K, Zhang Y, Polycarpou AA. Three-body abrasive wear by (silica) sand of advanced polymeric coatings for tilting pad bearings. Wear 2017; 382:40–50. [30] Johansson P, Marklund P, Bjorling ¨ M, Shi Y. Effect of roughness on the running-in behavior and tribofilm formation of carbon fiber reinforced PTFE composite in trace moisture environment. Wear 2022;500:204367. [31] Lan P, Polycarpou AA. High temperature and high pressure tribological experiments of advanced polymeric coatings in the presence of drilling mud for oil & gas applications. Tribol Int 2018;120:218–25. [32] Ye J, Khare HS, Burris DL. Transfer film evolution and its role in promoting ultralow wear of a PTFE nanocomposite. Wear 2013;297:1095–102. [33] Bashandeh K, Tsigkis V, Lan P, Polycarpou AA. Extreme environment tribological study of advanced bearing polymers for space applications. Tribol Int 2021;153: 106634. [34] Ye J, Tao B, Sun W, Haidar DR, Alam KI, Liu K, et al. The competing effects of counterface peaks and valleys on the wear and transfer of ultra-low wear alumina–PTFE. Tribol Lett 2018;66. [35] Bashandeh K, Lan P, Meyer JL, Polycarpou AA. Tribological performance of graphene and PTFE solid lubricants for polymer coatings at elevated temperatures. Tribol Lett 2019;67:1–14. [36] Simmons JE, Knox RT, Moss WO. The development of PTFE (polytetrafluoroethylene)- faced hydrodynamic thrust bearings for hydrogenerator application in the United Kingdom. Proc Inst Mech Eng Part J: J Eng Tribol 1998; 212:345–52. [37] Lan P, Nunez EE, Polycarpou AA. Advanced polymeric coatings and their applications: geen tribology. Encycl Renew Sustain Mater 2020;4:345–58. [38] Hu H, He Y, Wang Q, Tao L. Investigation of in-situ tribological performance of Polyimide-MoS2/PTFE composite under atomic oxygen irradiation. Tribol Int 2023;183:108437. [39] Bashandeh K, Amiri A, Rafieerad A, Rahman S, Yan W, Dhindra S, et al. MXenearomatic thermosetting copolyester nanocomposite as an extremely wear-resistant biocompatible implant material for osteoarthritis applications. Appl Surf Sci 2022: 154124. [40] Yuan XD, Yang XJ. A study on friction and wear properties of PTFE coatings under vacuum conditions. Wear 2010;269:291–7. [41] Nunez EE, Polycarpou AA, Economy J. Tribological studies of a novel highperformance aromatic thermosetting copolyester containing carbon nanotubes for artificial hip joints. Tribol Int 2023;178:108038. [42] Tsigkis V, Bashandeh K, Lan P, Polycarpou AA. Tribological behavior of PS400- related tribopairs for space exploration. Tribol Int 2021;153:106636. [43] Pitenis A, Ewin J, Harris K, Sawyer WG, Krick B. In vacuo tribological behavior of polytetrafluoroethylene (ptfe) and alumina nanocomposites: the importance of water for ultralow wear. Tribol Lett 2014;53:189–97. [44] R. Gheisari, A.A. Polycarpou; inventors, Texas A&M University System, Phase change material compositions and methods for their use to lower surface friction and wear, United States Patent US 11225626. 2022 Jan 18. [45] Yu C, Ju P, Wan H, Chen L, Li H, Zhou H, et al. Enhanced atomic oxygen resistance and tribological properties of PAI/PTFE composites reinforced by POSS. Prog Org Coat 2020;139:105427. [46] Nunez EE, Bashandeh K, Polycarpou AA. Thermal and mechanical properties of polymer coatings. Polymer coatings technologies and applications. CRC Press; 2020. p. 157–75. [47] Nunez EE, Polycarpou AA. Wear study of metallic interfaces for air-conditioning compressors under submerged Lubrication in the presence of carbon dioxide. Wear 2015;326:28–35. [48] Nunez EE, Yeo SM, Polycarpou AA. Tribological behavior of PTFE, PEEK, and fluorocarbon-based polymeric coatings used in air-conditioning and refrigeration compressors. Int Compress Eng Conf 2010:1–8. [49] Economy J, Storm RS, Matkovich VI, Cottis SG, Nowak BE. Synthesis and structure of the p-hydroxybenzoic acid polymer. J Polym Sci, Polym Chem 1976;14: 2207–24. [50] Long CG, Liu WX, Wang XY. Studies on POM/graphite/Ekonol composites. Bull Mater Sci 2003;26:575–8. [51] Sikkema DJ. Chapter 4: Rigid-chain polymers: aromatic polyamides, heterocyclic rigid rod polymers, and polyesters. Adv Ind Eng Polym Res 2022;5:80–9. [52] Qu J, Zhang Y, Tian X, Guo W. Mechanical and tribological properties of ekonol blends as frictional materials of ultrasonic motors. Tribol Lett 2014;56:387–95. [53] Qu J, Zhang Y, Tian X, Li J. Wear behavior of filled polymers for ultrasonic motor in vacuum environments. Wear 2015;322–323:108–16. [54] Chen H, Cheng X. Mechanical and tribological behavior of polytetrafluoroethylene composites reinforced by carbon nanotubes and poly-p-oxybenzoate. High Perform Polym 2013;25:611–62. [55] Bashandeh K, Lan P, Polycarpou AA. Tribological performance improvement of polyamide against steel using polymer coating. Trib Trans 2019;62(6):1051–62. [56] Menard KP, Menard NR. Dynamic mechanical analysis. CRC Press; 2020. [57] Chartoff RP, Menczel JD, Dillman SH. Dynamic mechanical analysis (DMA). Thermal analysis of polymers: fundamentals and applications. Wiley; 2009. [58] Economy J. Aromatic polyesters of p-Hydroxybenzoic acid. Mol Cryst Liq Cryst 1989;169:1–22. [59] Economy J. Liquid crystalline aromatic polyesters. J Macromol Sci Chem 1984;21: 1705–24. [60] Economy J, Volksen W, Viney C, Geiss R, Siemens R, Karis T. The nature of the thermal transitions in poly (p-oxybenzoate). Macromolecules 1988;21:2777–81. [61] Economy J, Parker Z. High-temperature aromatic polyesters of p-Hydroxybenzoic acid and their copolyesters. 100+ Years of Plastics. Leo Baekeland and Beyond. American Chemical Society; 2011. p. 93–103. [62] Kim YC, Economy J. The mechanical properties of thermally treated 73/27 HBA/ HNA copolyester. Polym Adv Technol 1999;10(8):493–500. [63] Biswas SK, Vijayan K. Friction and wear of PTFE - a review. Wear 1992;158: 193–211. [64] Calleja G, Jourdan A, Ameduri B, Habas J. Where is the glass transition temperature of poly(tetrafluoroethylene)? A new approach by dynamic rheometry and mechanical tests. Eur Polym J 2013;49(8):2214–22. [65] Yang EL, Hirvonen JP, Toivanen RO. Effect of temperature on the transfer film formation in sliding contact of PTFE with stainless steel. Wear 1991;146:367–76. [66] Ovaert TC, Ramachandra S. The effect of counterface topography on polymer transfer and wear. Int J Mach Tools Manuf 1991;35:311–6. [67] Ovaert TC, Cheng HS. Counterface topographical effects on the wear of polyetheretherketone and polyetheretherketone-carbon fiber composite. Wear 1991;150:275–87. [68] Bahadur S, Gong D. The action of fillers in the modification of the tribological behavior of polymers. Wear 1992;158(1–2):41–59. [69] Menezes PL, Kailas SV, Lovell MR. Friction and transfer layer formation in polymer-steel tribo-system: role of surface texture and roughness parameters. Wear 2011;271:2213–21. [70] Wieleba W. The statistical correlation of the coefficient of friction and wear rate of PTFE composites with steel counterface roughness and hardness. Wear 2002;252: 719–29.
dc.rights.spa.fl_str_mv Derechos reservados - Elsevier, 2023
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Elsevier, 2023
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Paises Bajos
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/09470467-f878-457b-8cd8-4052eb920eb1/download
bitstream.checksum.fl_str_mv 6987b791264a2b5525252450f99b10d1
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259877003919360
spelling Escobar Nuñez, Emersonvirtual::5709-1Bashandeh, KianTsigkis, VasilisRahman, Md SaifurPolycarpou, Andreas A.2024-10-04T16:26:18Z2024-10-04T16:26:18Z2023-10Escobar Núñez, E., et. al. (2023). Tribological performance of PTFE-ATSP and PTFE-Ekonol polymer blends aimed for oil-less engineering applications. Tribology International. volumen 18, 12p. ISSN: 0301-679X https://doi.org/10.1016/j.triboint.2023.1088420301679Xhttps://hdl.handle.net/10614/15843https://doi.org/10.1016/j.triboint.2023.108842 Received 5 May 2023; Received in revised form 8 JUniversidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/This study examines the tribological performance of an advanced high-performance polymer (HPP), namely aromatic thermosetting copolyester (ATSP), and poly-hydroxybenzoic acid polymer or Ekonol® as additives for polytetrafluoroethylene (PTFE), under unlubricated conditions from room temperature to 300 ◦C. Compared to PTFE-Ekonol composites, PTFE-ATSP blends showed 50% reduction in the wear rate at all tested temperaturas and higher wear resistance at different sliding speeds, partially attributed to its viscoelastic stability or higher mechanical strength. Also, a fluoride-rich lubricating transfer film was formed on the metallic counter Surface when tested against PTFE-ATSP, and this film is temperature-dependent. PTFE-ATSP blends are an attractive solution for oil-less applications in the temperature range of 25–300 ◦C.12 páginasapplication/pdfengElsevierPaises BajosDerechos reservados - Elsevier, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_14cbTribological performance of PTFE-ATSP and PTFE-Ekonol polymer blends aimed for oil-less engineering applicationsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8512188Tribology International[1] Friedrich K. Polymer composites for tribological applications. Adv Ind Eng Polym Res 2018;1(1):3–39. [2] Nunez EE, Gheisari R, Polycarpou AA. Tribology review of blended bulk polymers and their coatings for high-load bearing applications. Tribol Int 2019;129:92–111. [3] Holmberg K, Erdemir A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017;5:263–84. [4] Holmberg K, Andersson P, Erdemir A. Global energy consumption due to friction in passenger cars. Tribol Int 2012;47:221–34. [5] Bahadur S. The development of transfer layers and their role in polymer tribology. Wear 2000;245:92–9. [6] Briscoe B. Wear of polymers–an essay on fundamental-aspects. Tribol Int 1981;14 (4):231–43. [7] Cao W, Gong J, Qi Y, Yang D, Gao G. Tribological behavior of nano-ZrO2 reinforced PTFE-PPS composites. J Wuhan Univ Technol Mater Sci Ed 2019: 527–35. [8] McCook NL, Boesl B, Burris DL, Sawyer WG. Epoxy, ZnO, and PTFE nanocomposite: friction and wear. Tribol Lett 2006:253–7. [9] Burris DL, Sawyer WG. Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles. Wear 2006;260:915–8. [10] Chang L, Zhang Z, Ye L, Friedrich K. Synergistic effects of nanoparticles and traditional tribofillers on sliding wear of polymeric hybrid composites. Tribology Polym Nanocomposites: Frict Wear Bulk Mater Coat 2013:49–89. [11] Harris KL, Curry JF, Pitenis AA, Rowe KG, Sidebottom MA, Sawyer WG, et al. Wear debris mobility, aligned surface roughness, and the low wear behavior of filled polytetrafluoroethylene. Tribol Lett 2015;60(2):1–8. [12] Pitenis A, Harris K, Junk C, Blackman G, Sawyer WG, Krick B. Ultralow wear PTFE and alumina composites: it is all about tribochemistry. Tribol Lett 2015;57:1–8. [13] Wang Y, Yan F. Tribological properties of transfer films of PTFE-based composites. Wear 2006;261:1359–66. [14] Nunez EE, Polycarpou AA. The effect of surface roughness on the transfer of polymer films under unlubricated testing conditions. Wear 2015;326:74–83. [15] Demas NG, Zhang J, Polycarpou AA, Economy J. Tribological characterization of aromatic thermosetting copolyester–PTFE blends in air conditioning compressor environment. Tribol Lett 2008;29:253–8. [16] Gong H, Yu C, Zhang L, Xie G, Guo D, Luo J. Intelligent lubricating materials: a review. Compos B Eng 2020;202:108450. [17] Somberg J, Saravanan P, Vadivel HS, Berglund K, Shi Y, Ukonsaari J, et al. Tribological characterization of polymer composites for hydropower bearings: experimentally developed versus commercial materials. Tribol Int 2021;162: 107101. [18] Zhang J, Demas NG, Polycarpou AA, Economy J. A new family of low wear low coefficient of friction polymer blends based on polytetrafluoroethylene and aromatic thermosetting polyester. Polym Adv Technol 2008;19:1105–12. [19] Gateman S, Alidokht S, Mena-Morcillo E, Schulz R, et al. Wear resistant solid lubricating coatings via compression molding and thermal spraying technologies. Surf Coat Technol 2021;426:127790. [20] Zhang J, Polycarpou AA, Economy J. An improved tribological polymer coating system for metal surfaces. Tribology Lett 2010;38(3):355–65. [21] Salvaro D, Dudy JMW, de Oliveira F, Binder C, Kleine AN, de Oliveira GM. Influence of grinding energy in morphology and tribological performance of selflubricating polymeric blends PAEK + PTFE. Wear 2023;523:204783. [22] Lan P, Meyer JL, Economy J. Unlubricated tribological performance of aromatic thermosetting polyester (ATSP) coatings under different temperature conditions. Tribol Lett 2016;61:1–14. [23] Valente CAGS, Boutin FF, Rocha LPC, do Vale JL, da Silva CH. Effect of graphite and bronze fillers on PTFE tribological behavior: a commercial materials evaluation. Tribol Trans 2020;63:356–70. [24] Joshi MD, Kumbhar NK, Rambadey OV, Sagdeo PR, Devan RS, Hosmani SS. Exfoliated nano-hBN additives for enhancing tribological performance of ATSP coatings deposited on AISI 316L steel: role of SMAT pre-treatment. Surf Coat Tech 2022;447:128829. [25] Bashandeh K, Lan P, Polycarpou AA. Tribology of self-lubricating high performance ATSP, PI, and PEEK-based polymer composites up to 300◦ C. Friction 2022:1–13. [26] Sawae Y, Morita T, Takeda K, Onitsuka S, Kaneuti J, Yamaguchi T, et al. Friction and wear of PTFE composites with different filler in high purity hydrogen gas. Tribol Int 2021;157:106884. [27] Lan P, Gheisari R, Meyer JL, Polycarpou AA. Tribological performance of aromatic thermosetting polyester (ATSP) coatings under cryogenic conditions. Wear 2018; 398:47–55. [28] Pachirisamy S, Schwam D, Litt MH. Atomic oxygen resistant coatings for low earth orbit space structures. J Mater Sci 1995;30:308–20. [29] Lan P, Polychronopoulou K, Zhang Y, Polycarpou AA. Three-body abrasive wear by (silica) sand of advanced polymeric coatings for tilting pad bearings. Wear 2017; 382:40–50. [30] Johansson P, Marklund P, Bjorling ¨ M, Shi Y. Effect of roughness on the running-in behavior and tribofilm formation of carbon fiber reinforced PTFE composite in trace moisture environment. Wear 2022;500:204367. [31] Lan P, Polycarpou AA. High temperature and high pressure tribological experiments of advanced polymeric coatings in the presence of drilling mud for oil & gas applications. Tribol Int 2018;120:218–25. [32] Ye J, Khare HS, Burris DL. Transfer film evolution and its role in promoting ultralow wear of a PTFE nanocomposite. Wear 2013;297:1095–102. [33] Bashandeh K, Tsigkis V, Lan P, Polycarpou AA. Extreme environment tribological study of advanced bearing polymers for space applications. Tribol Int 2021;153: 106634. [34] Ye J, Tao B, Sun W, Haidar DR, Alam KI, Liu K, et al. The competing effects of counterface peaks and valleys on the wear and transfer of ultra-low wear alumina–PTFE. Tribol Lett 2018;66. [35] Bashandeh K, Lan P, Meyer JL, Polycarpou AA. Tribological performance of graphene and PTFE solid lubricants for polymer coatings at elevated temperatures. Tribol Lett 2019;67:1–14. [36] Simmons JE, Knox RT, Moss WO. The development of PTFE (polytetrafluoroethylene)- faced hydrodynamic thrust bearings for hydrogenerator application in the United Kingdom. Proc Inst Mech Eng Part J: J Eng Tribol 1998; 212:345–52. [37] Lan P, Nunez EE, Polycarpou AA. Advanced polymeric coatings and their applications: geen tribology. Encycl Renew Sustain Mater 2020;4:345–58. [38] Hu H, He Y, Wang Q, Tao L. Investigation of in-situ tribological performance of Polyimide-MoS2/PTFE composite under atomic oxygen irradiation. Tribol Int 2023;183:108437. [39] Bashandeh K, Amiri A, Rafieerad A, Rahman S, Yan W, Dhindra S, et al. MXenearomatic thermosetting copolyester nanocomposite as an extremely wear-resistant biocompatible implant material for osteoarthritis applications. Appl Surf Sci 2022: 154124. [40] Yuan XD, Yang XJ. A study on friction and wear properties of PTFE coatings under vacuum conditions. Wear 2010;269:291–7. [41] Nunez EE, Polycarpou AA, Economy J. Tribological studies of a novel highperformance aromatic thermosetting copolyester containing carbon nanotubes for artificial hip joints. Tribol Int 2023;178:108038. [42] Tsigkis V, Bashandeh K, Lan P, Polycarpou AA. Tribological behavior of PS400- related tribopairs for space exploration. Tribol Int 2021;153:106636. [43] Pitenis A, Ewin J, Harris K, Sawyer WG, Krick B. In vacuo tribological behavior of polytetrafluoroethylene (ptfe) and alumina nanocomposites: the importance of water for ultralow wear. Tribol Lett 2014;53:189–97. [44] R. Gheisari, A.A. Polycarpou; inventors, Texas A&M University System, Phase change material compositions and methods for their use to lower surface friction and wear, United States Patent US 11225626. 2022 Jan 18. [45] Yu C, Ju P, Wan H, Chen L, Li H, Zhou H, et al. Enhanced atomic oxygen resistance and tribological properties of PAI/PTFE composites reinforced by POSS. Prog Org Coat 2020;139:105427. [46] Nunez EE, Bashandeh K, Polycarpou AA. Thermal and mechanical properties of polymer coatings. Polymer coatings technologies and applications. CRC Press; 2020. p. 157–75. [47] Nunez EE, Polycarpou AA. Wear study of metallic interfaces for air-conditioning compressors under submerged Lubrication in the presence of carbon dioxide. Wear 2015;326:28–35. [48] Nunez EE, Yeo SM, Polycarpou AA. Tribological behavior of PTFE, PEEK, and fluorocarbon-based polymeric coatings used in air-conditioning and refrigeration compressors. Int Compress Eng Conf 2010:1–8. [49] Economy J, Storm RS, Matkovich VI, Cottis SG, Nowak BE. Synthesis and structure of the p-hydroxybenzoic acid polymer. J Polym Sci, Polym Chem 1976;14: 2207–24. [50] Long CG, Liu WX, Wang XY. Studies on POM/graphite/Ekonol composites. Bull Mater Sci 2003;26:575–8. [51] Sikkema DJ. Chapter 4: Rigid-chain polymers: aromatic polyamides, heterocyclic rigid rod polymers, and polyesters. Adv Ind Eng Polym Res 2022;5:80–9. [52] Qu J, Zhang Y, Tian X, Guo W. Mechanical and tribological properties of ekonol blends as frictional materials of ultrasonic motors. Tribol Lett 2014;56:387–95. [53] Qu J, Zhang Y, Tian X, Li J. Wear behavior of filled polymers for ultrasonic motor in vacuum environments. Wear 2015;322–323:108–16. [54] Chen H, Cheng X. Mechanical and tribological behavior of polytetrafluoroethylene composites reinforced by carbon nanotubes and poly-p-oxybenzoate. High Perform Polym 2013;25:611–62. [55] Bashandeh K, Lan P, Polycarpou AA. Tribological performance improvement of polyamide against steel using polymer coating. Trib Trans 2019;62(6):1051–62. [56] Menard KP, Menard NR. Dynamic mechanical analysis. CRC Press; 2020. [57] Chartoff RP, Menczel JD, Dillman SH. Dynamic mechanical analysis (DMA). Thermal analysis of polymers: fundamentals and applications. Wiley; 2009. [58] Economy J. Aromatic polyesters of p-Hydroxybenzoic acid. Mol Cryst Liq Cryst 1989;169:1–22. [59] Economy J. Liquid crystalline aromatic polyesters. J Macromol Sci Chem 1984;21: 1705–24. [60] Economy J, Volksen W, Viney C, Geiss R, Siemens R, Karis T. The nature of the thermal transitions in poly (p-oxybenzoate). Macromolecules 1988;21:2777–81. [61] Economy J, Parker Z. High-temperature aromatic polyesters of p-Hydroxybenzoic acid and their copolyesters. 100+ Years of Plastics. Leo Baekeland and Beyond. American Chemical Society; 2011. p. 93–103. [62] Kim YC, Economy J. The mechanical properties of thermally treated 73/27 HBA/ HNA copolyester. Polym Adv Technol 1999;10(8):493–500. [63] Biswas SK, Vijayan K. Friction and wear of PTFE - a review. Wear 1992;158: 193–211. [64] Calleja G, Jourdan A, Ameduri B, Habas J. Where is the glass transition temperature of poly(tetrafluoroethylene)? A new approach by dynamic rheometry and mechanical tests. Eur Polym J 2013;49(8):2214–22. [65] Yang EL, Hirvonen JP, Toivanen RO. Effect of temperature on the transfer film formation in sliding contact of PTFE with stainless steel. Wear 1991;146:367–76. [66] Ovaert TC, Ramachandra S. The effect of counterface topography on polymer transfer and wear. Int J Mach Tools Manuf 1991;35:311–6. [67] Ovaert TC, Cheng HS. Counterface topographical effects on the wear of polyetheretherketone and polyetheretherketone-carbon fiber composite. Wear 1991;150:275–87. [68] Bahadur S, Gong D. The action of fillers in the modification of the tribological behavior of polymers. Wear 1992;158(1–2):41–59. [69] Menezes PL, Kailas SV, Lovell MR. Friction and transfer layer formation in polymer-steel tribo-system: role of surface texture and roughness parameters. Wear 2011;271:2213–21. [70] Wieleba W. The statistical correlation of the coefficient of friction and wear rate of PTFE composites with steel counterface roughness and hardness. Wear 2002;252: 719–29.ATSPPTFEEkonolHigh performance polymersTransfer filmsComunidad generalPublication7e06127e-a4cd-48a0-b6d9-8fb7fe47d942virtual::5709-17e06127e-a4cd-48a0-b6d9-8fb7fe47d942virtual::5709-1https://scholar.google.com/citations?user=vQ6ZVoIAAAAJ&hl=esvirtual::5709-10000-0002-9582-551Xvirtual::5709-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000151203virtual::5709-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/09470467-f878-457b-8cd8-4052eb920eb1/download6987b791264a2b5525252450f99b10d1MD5210614/15843oai:red.uao.edu.co:10614/158432024-10-04 11:39:24.711https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2023metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==