A review on the estimation of power loss due to icing in wind turbines
The objective of this article is to review the methodologies used in the last 15 years to estimate the power loss in wind turbines due to their exposure to adverse meteorological conditions. Among the methods, the use of computational fluid dynamics (CFD) for the three-dimensional numerical simulati...
- Autores:
-
Contreras Montoya, Leidy Tatiana
Ilinca, Adrian
Laín Beatove, Santiago
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/14694
- Acceso en línea:
- https://hdl.handle.net/10614/14694
https://red.uao.edu.co/
- Palabra clave:
- Turbinas de aire
Wind turbine
Icing conditions
Power loss
CFD
BEM
- Rights
- openAccess
- License
- Derechos reservados - MDPI, 2022
id |
REPOUAO2_7ce738b7e9d0646461c840c5f9a86a31 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/14694 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A review on the estimation of power loss due to icing in wind turbines |
title |
A review on the estimation of power loss due to icing in wind turbines |
spellingShingle |
A review on the estimation of power loss due to icing in wind turbines Turbinas de aire Wind turbine Icing conditions Power loss CFD BEM |
title_short |
A review on the estimation of power loss due to icing in wind turbines |
title_full |
A review on the estimation of power loss due to icing in wind turbines |
title_fullStr |
A review on the estimation of power loss due to icing in wind turbines |
title_full_unstemmed |
A review on the estimation of power loss due to icing in wind turbines |
title_sort |
A review on the estimation of power loss due to icing in wind turbines |
dc.creator.fl_str_mv |
Contreras Montoya, Leidy Tatiana Ilinca, Adrian Laín Beatove, Santiago |
dc.contributor.author.none.fl_str_mv |
Contreras Montoya, Leidy Tatiana Ilinca, Adrian Laín Beatove, Santiago |
dc.subject.armarc.spa.fl_str_mv |
Turbinas de aire |
topic |
Turbinas de aire Wind turbine Icing conditions Power loss CFD BEM |
dc.subject.proposal.eng.fl_str_mv |
Wind turbine Icing conditions Power loss CFD BEM |
description |
The objective of this article is to review the methodologies used in the last 15 years to estimate the power loss in wind turbines due to their exposure to adverse meteorological conditions. Among the methods, the use of computational fluid dynamics (CFD) for the three-dimensional numerical simulation of wind turbines is highlighted, as well as the use of two dimensional CFD simulation in conjunction with the blade element momentum theory (BEM). In addition, a brief review of other methodologies such as image analysis, deep learning, and forecasting models is also presented. This review constitutes a baseline for new investigations of the icing effects on wind turbines’ power outputs. Furthermore, it contributes to a continuous improvement in powerloss prediction and the better response of icing protection systems. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-02 |
dc.date.accessioned.none.fl_str_mv |
2023-05-03T20:41:38Z |
dc.date.available.none.fl_str_mv |
2023-05-03T20:41:38Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
19961073 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/14694 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital UAO |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
19961073 Universidad Autónoma de Occidente Repositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/14694 https://red.uao.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.citationendpage.spa.fl_str_mv |
26 |
dc.relation.citationissue.spa.fl_str_mv |
1083 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
15 |
dc.relation.cites.spa.fl_str_mv |
Contreras Montoya, L. T.; Lain, S.; Ilinca A. (2022). A Review on the Estimation of Power Loss Due to Icing in Wind Turbines. Energies. 15 (1083),1-26. https://hdl.handle.net/10614/14694 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Energies |
dc.relation.references.none.fl_str_mv |
IEA Wind TCP TASK. Task 19 Report 2020: Wind Energy in Cold Climates; VTT Technical Research Centre: Espoo, Finland, 2020 Pedersen, M.C.; Sørensen, H. Towards a CFD Model for Prediction of Wind Turbine Power Losses due to Icing in Cold Climate. In Proceedings of the 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, USA, 10–15 April 2016; p. 6 Makkonen, L.; Laakso, T.; Marjaniemi, M.; Finstad, K.J. Modelling and Prevention of Ice Accretion on Wind Turbines. Wind Eng. 2001, 25, 3–21. Fu, P.; Farzaneh, M. A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine. J. Wind Eng. Ind. Aerodyn. 2010, 98, 181–188 Makkonen, L. Models for the growth of rime, glaze, icicles and wet snow on structures. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2000, 358, 2913–2939 Virk, M.; Mughal, U.; Hu, Q.; Jiang, X. Multiphysics Based Numerical Study of Atmospheric Ice Accretion on a Full Scale Horizontal Axis Wind Turbine Blade. Int. J. Multiphysics 2016, 10, 237–246. [ Abbadi, M.; Mussa, I.; Lin, Y.; Wang, J. Preliminary Analysis of Ice Accretion Prediction on Wind Turbine Blades. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020 Pedersen, M.C.; Yin, C. Preliminary Modelling Study of Ice Accretion on Wind Turbines. Energy Procedia 2014, 61, 258–261. Makkonen, L.; Zhang, J.; Karlsson, T.; Tiihonen, M. Modelling the growth of large rime ice accretions. Cold Reg. Sci. Technol. 2018, 151, 133–137 Taborda Ceballos, M.A. Simulación Tridimensional Transitoria de Flujo Turbulento en Configuraciones de Interés Industrial. Master’s Thesis, Universidad Autónoma de Occidente, Cali, Colombia Villalpando, F.; Reggio, M.; Ilinca, A. Assessment of Turbulence Models for Flow Simulation around a Wind Turbine Airfoil. Model. Simul. Eng. 2011, 2011, 71414 Menter, F. Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. In Proceedings of the 23rd Fluid Dynamics Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993. Sagol, E.; Reggio, M.; Ilinca, A. Assessment of Two-Equation Turbulence Models and Validation of the Performance Characteristics of an Experimental Wind Turbine by CFD. ISRN Mech. Eng. 2012, 2012, 428671 Virk, M.; Homola, M.; Nicklasson, P.J. Atmospheric icing on large wind turbine blades. Int. J. Energy Environ. 2012, 3, 1–8. van Wachem, B.G.M.; Almstedt, A.E. Methods for multiphase computational fluid dynamics. Chem. Eng. J. 2003, 96, 81–98. |
dc.rights.spa.fl_str_mv |
Derechos reservados - MDPI, 2022 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - MDPI, 2022 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
26 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/11fa6f46-6624-49b6-8b9d-4f96492654c0/download https://red.uao.edu.co/bitstreams/2af3e169-7592-4b32-8d06-b45863763dd9/download https://red.uao.edu.co/bitstreams/7849ab6b-0b29-4a75-b71b-16b17984ea37/download https://red.uao.edu.co/bitstreams/ebcc6051-7e2d-4455-9089-7098012f04ba/download |
bitstream.checksum.fl_str_mv |
bfb01a0be207432b5839d6d407566a8c 20b5ba22b1117f71589c7318baa2c560 719418051c18f450ac7ae49c3b1ba84a 063bdddf24ea43fe3b62aae87ba06f7b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260163069083648 |
spelling |
Contreras Montoya, Leidy Tatianaa9646bffbcc08ad25222afa2be038c2bIlinca, Adriand1298ac38d0870860402185a725de603Laín Beatove, Santiagovirtual::2574-12023-05-03T20:41:38Z2023-05-03T20:41:38Z2022-0219961073https://hdl.handle.net/10614/14694Universidad Autónoma de OccidenteRepositorio Educativo Digital UAOhttps://red.uao.edu.co/The objective of this article is to review the methodologies used in the last 15 years to estimate the power loss in wind turbines due to their exposure to adverse meteorological conditions. Among the methods, the use of computational fluid dynamics (CFD) for the three-dimensional numerical simulation of wind turbines is highlighted, as well as the use of two dimensional CFD simulation in conjunction with the blade element momentum theory (BEM). In addition, a brief review of other methodologies such as image analysis, deep learning, and forecasting models is also presented. This review constitutes a baseline for new investigations of the icing effects on wind turbines’ power outputs. Furthermore, it contributes to a continuous improvement in powerloss prediction and the better response of icing protection systems. 26 páginasapplication/pdfspaMDPIDerechos reservados - MDPI, 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2A review on the estimation of power loss due to icing in wind turbinesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Turbinas de aireWind turbineIcing conditionsPower lossCFDBEM261083115Contreras Montoya, L. T.; Lain, S.; Ilinca A. (2022). A Review on the Estimation of Power Loss Due to Icing in Wind Turbines. Energies. 15 (1083),1-26. https://hdl.handle.net/10614/14694EnergiesIEA Wind TCP TASK. Task 19 Report 2020: Wind Energy in Cold Climates; VTT Technical Research Centre: Espoo, Finland, 2020Pedersen, M.C.; Sørensen, H. Towards a CFD Model for Prediction of Wind Turbine Power Losses due to Icing in Cold Climate. In Proceedings of the 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, USA, 10–15 April 2016; p. 6Makkonen, L.; Laakso, T.; Marjaniemi, M.; Finstad, K.J. Modelling and Prevention of Ice Accretion on Wind Turbines. Wind Eng. 2001, 25, 3–21.Fu, P.; Farzaneh, M. A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine. J. Wind Eng. Ind. Aerodyn. 2010, 98, 181–188Makkonen, L. Models for the growth of rime, glaze, icicles and wet snow on structures. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2000, 358, 2913–2939Virk, M.; Mughal, U.; Hu, Q.; Jiang, X. Multiphysics Based Numerical Study of Atmospheric Ice Accretion on a Full Scale Horizontal Axis Wind Turbine Blade. Int. J. Multiphysics 2016, 10, 237–246. [Abbadi, M.; Mussa, I.; Lin, Y.; Wang, J. Preliminary Analysis of Ice Accretion Prediction on Wind Turbine Blades. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020Pedersen, M.C.; Yin, C. Preliminary Modelling Study of Ice Accretion on Wind Turbines. Energy Procedia 2014, 61, 258–261.Makkonen, L.; Zhang, J.; Karlsson, T.; Tiihonen, M. Modelling the growth of large rime ice accretions. Cold Reg. Sci. Technol. 2018, 151, 133–137Taborda Ceballos, M.A. Simulación Tridimensional Transitoria de Flujo Turbulento en Configuraciones de Interés Industrial. Master’s Thesis, Universidad Autónoma de Occidente, Cali, ColombiaVillalpando, F.; Reggio, M.; Ilinca, A. Assessment of Turbulence Models for Flow Simulation around a Wind Turbine Airfoil. Model. Simul. Eng. 2011, 2011, 71414Menter, F. Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. In Proceedings of the 23rd Fluid Dynamics Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993.Sagol, E.; Reggio, M.; Ilinca, A. Assessment of Two-Equation Turbulence Models and Validation of the Performance Characteristics of an Experimental Wind Turbine by CFD. ISRN Mech. Eng. 2012, 2012, 428671Virk, M.; Homola, M.; Nicklasson, P.J. Atmospheric icing on large wind turbine blades. Int. J. Energy Environ. 2012, 3, 1–8.van Wachem, B.G.M.; Almstedt, A.E. Methods for multiphase computational fluid dynamics. Chem. Eng. J. 2003, 96, 81–98.Comunidad universitaria en generalPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2574-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2574-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2574-10000-0002-0269-2608virtual::2574-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2574-1ORIGINALA_Review_on_the_Estimation_of Power_Loss_Due_to_Icing_in_Wind_Turbines.pdfA_Review_on_the_Estimation_of Power_Loss_Due_to_Icing_in_Wind_Turbines.pdftexto completo del artículoapplication/pdf1412801https://red.uao.edu.co/bitstreams/11fa6f46-6624-49b6-8b9d-4f96492654c0/downloadbfb01a0be207432b5839d6d407566a8cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/2af3e169-7592-4b32-8d06-b45863763dd9/download20b5ba22b1117f71589c7318baa2c560MD52TEXTA_Review_on_the_Estimation_of Power_Loss_Due_to_Icing_in_Wind_Turbines.pdf.txtA_Review_on_the_Estimation_of Power_Loss_Due_to_Icing_in_Wind_Turbines.pdf.txtExtracted texttext/plain104844https://red.uao.edu.co/bitstreams/7849ab6b-0b29-4a75-b71b-16b17984ea37/download719418051c18f450ac7ae49c3b1ba84aMD53THUMBNAILA_Review_on_the_Estimation_of Power_Loss_Due_to_Icing_in_Wind_Turbines.pdf.jpgA_Review_on_the_Estimation_of Power_Loss_Due_to_Icing_in_Wind_Turbines.pdf.jpgGenerated Thumbnailimage/jpeg16120https://red.uao.edu.co/bitstreams/ebcc6051-7e2d-4455-9089-7098012f04ba/download063bdddf24ea43fe3b62aae87ba06f7bMD5410614/14694oai:red.uao.edu.co:10614/146942024-04-01 10:12:54.512https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2022open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |