A review on the estimation of power loss due to icing in wind turbines

The objective of this article is to review the methodologies used in the last 15 years to estimate the power loss in wind turbines due to their exposure to adverse meteorological conditions. Among the methods, the use of computational fluid dynamics (CFD) for the three-dimensional numerical simulati...

Full description

Autores:
Contreras Montoya, Leidy Tatiana
Ilinca, Adrian
Laín Beatove, Santiago
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/14694
Acceso en línea:
https://hdl.handle.net/10614/14694
https://red.uao.edu.co/
Palabra clave:
Turbinas de aire
Wind turbine
Icing conditions
Power loss
CFD
BEM
Rights
openAccess
License
Derechos reservados - MDPI, 2022
id REPOUAO2_7ce738b7e9d0646461c840c5f9a86a31
oai_identifier_str oai:red.uao.edu.co:10614/14694
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv A review on the estimation of power loss due to icing in wind turbines
title A review on the estimation of power loss due to icing in wind turbines
spellingShingle A review on the estimation of power loss due to icing in wind turbines
Turbinas de aire
Wind turbine
Icing conditions
Power loss
CFD
BEM
title_short A review on the estimation of power loss due to icing in wind turbines
title_full A review on the estimation of power loss due to icing in wind turbines
title_fullStr A review on the estimation of power loss due to icing in wind turbines
title_full_unstemmed A review on the estimation of power loss due to icing in wind turbines
title_sort A review on the estimation of power loss due to icing in wind turbines
dc.creator.fl_str_mv Contreras Montoya, Leidy Tatiana
Ilinca, Adrian
Laín Beatove, Santiago
dc.contributor.author.none.fl_str_mv Contreras Montoya, Leidy Tatiana
Ilinca, Adrian
Laín Beatove, Santiago
dc.subject.armarc.spa.fl_str_mv Turbinas de aire
topic Turbinas de aire
Wind turbine
Icing conditions
Power loss
CFD
BEM
dc.subject.proposal.eng.fl_str_mv Wind turbine
Icing conditions
Power loss
CFD
BEM
description The objective of this article is to review the methodologies used in the last 15 years to estimate the power loss in wind turbines due to their exposure to adverse meteorological conditions. Among the methods, the use of computational fluid dynamics (CFD) for the three-dimensional numerical simulation of wind turbines is highlighted, as well as the use of two dimensional CFD simulation in conjunction with the blade element momentum theory (BEM). In addition, a brief review of other methodologies such as image analysis, deep learning, and forecasting models is also presented. This review constitutes a baseline for new investigations of the icing effects on wind turbines’ power outputs. Furthermore, it contributes to a continuous improvement in powerloss prediction and the better response of icing protection systems.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-02
dc.date.accessioned.none.fl_str_mv 2023-05-03T20:41:38Z
dc.date.available.none.fl_str_mv 2023-05-03T20:41:38Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 19961073
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/14694
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital UAO
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 19961073
Universidad Autónoma de Occidente
Repositorio Educativo Digital UAO
url https://hdl.handle.net/10614/14694
https://red.uao.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.citationendpage.spa.fl_str_mv 26
dc.relation.citationissue.spa.fl_str_mv 1083
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.cites.spa.fl_str_mv Contreras Montoya, L. T.; Lain, S.; Ilinca A. (2022). A Review on the Estimation of Power Loss Due to Icing in Wind Turbines. Energies. 15 (1083),1-26. https://hdl.handle.net/10614/14694
dc.relation.ispartofjournal.eng.fl_str_mv Energies
dc.relation.references.none.fl_str_mv IEA Wind TCP TASK. Task 19 Report 2020: Wind Energy in Cold Climates; VTT Technical Research Centre: Espoo, Finland, 2020
Pedersen, M.C.; Sørensen, H. Towards a CFD Model for Prediction of Wind Turbine Power Losses due to Icing in Cold Climate. In Proceedings of the 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, USA, 10–15 April 2016; p. 6
Makkonen, L.; Laakso, T.; Marjaniemi, M.; Finstad, K.J. Modelling and Prevention of Ice Accretion on Wind Turbines. Wind Eng. 2001, 25, 3–21.
Fu, P.; Farzaneh, M. A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine. J. Wind Eng. Ind. Aerodyn. 2010, 98, 181–188
Makkonen, L. Models for the growth of rime, glaze, icicles and wet snow on structures. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2000, 358, 2913–2939
Virk, M.; Mughal, U.; Hu, Q.; Jiang, X. Multiphysics Based Numerical Study of Atmospheric Ice Accretion on a Full Scale Horizontal Axis Wind Turbine Blade. Int. J. Multiphysics 2016, 10, 237–246. [
Abbadi, M.; Mussa, I.; Lin, Y.; Wang, J. Preliminary Analysis of Ice Accretion Prediction on Wind Turbine Blades. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020
Pedersen, M.C.; Yin, C. Preliminary Modelling Study of Ice Accretion on Wind Turbines. Energy Procedia 2014, 61, 258–261.
Makkonen, L.; Zhang, J.; Karlsson, T.; Tiihonen, M. Modelling the growth of large rime ice accretions. Cold Reg. Sci. Technol. 2018, 151, 133–137
Taborda Ceballos, M.A. Simulación Tridimensional Transitoria de Flujo Turbulento en Configuraciones de Interés Industrial. Master’s Thesis, Universidad Autónoma de Occidente, Cali, Colombia
Villalpando, F.; Reggio, M.; Ilinca, A. Assessment of Turbulence Models for Flow Simulation around a Wind Turbine Airfoil. Model. Simul. Eng. 2011, 2011, 71414
Menter, F. Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. In Proceedings of the 23rd Fluid Dynamics Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993.
Sagol, E.; Reggio, M.; Ilinca, A. Assessment of Two-Equation Turbulence Models and Validation of the Performance Characteristics of an Experimental Wind Turbine by CFD. ISRN Mech. Eng. 2012, 2012, 428671
Virk, M.; Homola, M.; Nicklasson, P.J. Atmospheric icing on large wind turbine blades. Int. J. Energy Environ. 2012, 3, 1–8.
van Wachem, B.G.M.; Almstedt, A.E. Methods for multiphase computational fluid dynamics. Chem. Eng. J. 2003, 96, 81–98.
dc.rights.spa.fl_str_mv Derechos reservados - MDPI, 2022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - MDPI, 2022
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 26 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/11fa6f46-6624-49b6-8b9d-4f96492654c0/download
https://red.uao.edu.co/bitstreams/2af3e169-7592-4b32-8d06-b45863763dd9/download
https://red.uao.edu.co/bitstreams/7849ab6b-0b29-4a75-b71b-16b17984ea37/download
https://red.uao.edu.co/bitstreams/ebcc6051-7e2d-4455-9089-7098012f04ba/download
bitstream.checksum.fl_str_mv bfb01a0be207432b5839d6d407566a8c
20b5ba22b1117f71589c7318baa2c560
719418051c18f450ac7ae49c3b1ba84a
063bdddf24ea43fe3b62aae87ba06f7b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1808478991319826432
spelling Contreras Montoya, Leidy Tatianaa9646bffbcc08ad25222afa2be038c2bIlinca, Adriand1298ac38d0870860402185a725de603Laín Beatove, Santiagovirtual::2574-12023-05-03T20:41:38Z2023-05-03T20:41:38Z2022-0219961073https://hdl.handle.net/10614/14694Universidad Autónoma de OccidenteRepositorio Educativo Digital UAOhttps://red.uao.edu.co/The objective of this article is to review the methodologies used in the last 15 years to estimate the power loss in wind turbines due to their exposure to adverse meteorological conditions. Among the methods, the use of computational fluid dynamics (CFD) for the three-dimensional numerical simulation of wind turbines is highlighted, as well as the use of two dimensional CFD simulation in conjunction with the blade element momentum theory (BEM). In addition, a brief review of other methodologies such as image analysis, deep learning, and forecasting models is also presented. This review constitutes a baseline for new investigations of the icing effects on wind turbines’ power outputs. Furthermore, it contributes to a continuous improvement in powerloss prediction and the better response of icing protection systems. 26 páginasapplication/pdfspaMDPIDerechos reservados - MDPI, 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2A review on the estimation of power loss due to icing in wind turbinesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Turbinas de aireWind turbineIcing conditionsPower lossCFDBEM261083115Contreras Montoya, L. T.; Lain, S.; Ilinca A. (2022). A Review on the Estimation of Power Loss Due to Icing in Wind Turbines. Energies. 15 (1083),1-26. https://hdl.handle.net/10614/14694EnergiesIEA Wind TCP TASK. Task 19 Report 2020: Wind Energy in Cold Climates; VTT Technical Research Centre: Espoo, Finland, 2020Pedersen, M.C.; Sørensen, H. Towards a CFD Model for Prediction of Wind Turbine Power Losses due to Icing in Cold Climate. In Proceedings of the 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, USA, 10–15 April 2016; p. 6Makkonen, L.; Laakso, T.; Marjaniemi, M.; Finstad, K.J. Modelling and Prevention of Ice Accretion on Wind Turbines. Wind Eng. 2001, 25, 3–21.Fu, P.; Farzaneh, M. A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine. J. Wind Eng. Ind. Aerodyn. 2010, 98, 181–188Makkonen, L. Models for the growth of rime, glaze, icicles and wet snow on structures. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2000, 358, 2913–2939Virk, M.; Mughal, U.; Hu, Q.; Jiang, X. Multiphysics Based Numerical Study of Atmospheric Ice Accretion on a Full Scale Horizontal Axis Wind Turbine Blade. Int. J. Multiphysics 2016, 10, 237–246. [Abbadi, M.; Mussa, I.; Lin, Y.; Wang, J. Preliminary Analysis of Ice Accretion Prediction on Wind Turbine Blades. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020Pedersen, M.C.; Yin, C. Preliminary Modelling Study of Ice Accretion on Wind Turbines. Energy Procedia 2014, 61, 258–261.Makkonen, L.; Zhang, J.; Karlsson, T.; Tiihonen, M. Modelling the growth of large rime ice accretions. Cold Reg. Sci. Technol. 2018, 151, 133–137Taborda Ceballos, M.A. Simulación Tridimensional Transitoria de Flujo Turbulento en Configuraciones de Interés Industrial. Master’s Thesis, Universidad Autónoma de Occidente, Cali, ColombiaVillalpando, F.; Reggio, M.; Ilinca, A. Assessment of Turbulence Models for Flow Simulation around a Wind Turbine Airfoil. Model. Simul. Eng. 2011, 2011, 71414Menter, F. Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. In Proceedings of the 23rd Fluid Dynamics Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993.Sagol, E.; Reggio, M.; Ilinca, A. Assessment of Two-Equation Turbulence Models and Validation of the Performance Characteristics of an Experimental Wind Turbine by CFD. ISRN Mech. Eng. 2012, 2012, 428671Virk, M.; Homola, M.; Nicklasson, P.J. Atmospheric icing on large wind turbine blades. Int. J. Energy Environ. 2012, 3, 1–8.van Wachem, B.G.M.; Almstedt, A.E. Methods for multiphase computational fluid dynamics. Chem. Eng. J. 2003, 96, 81–98.Comunidad universitaria en generalPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2574-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2574-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2574-10000-0002-0269-2608virtual::2574-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2574-1ORIGINALA_Review_on_the_Estimation_of Power_Loss_Due_to_Icing_in_Wind_Turbines.pdfA_Review_on_the_Estimation_of Power_Loss_Due_to_Icing_in_Wind_Turbines.pdftexto completo del artículoapplication/pdf1412801https://red.uao.edu.co/bitstreams/11fa6f46-6624-49b6-8b9d-4f96492654c0/downloadbfb01a0be207432b5839d6d407566a8cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/2af3e169-7592-4b32-8d06-b45863763dd9/download20b5ba22b1117f71589c7318baa2c560MD52TEXTA_Review_on_the_Estimation_of Power_Loss_Due_to_Icing_in_Wind_Turbines.pdf.txtA_Review_on_the_Estimation_of Power_Loss_Due_to_Icing_in_Wind_Turbines.pdf.txtExtracted texttext/plain104844https://red.uao.edu.co/bitstreams/7849ab6b-0b29-4a75-b71b-16b17984ea37/download719418051c18f450ac7ae49c3b1ba84aMD53THUMBNAILA_Review_on_the_Estimation_of Power_Loss_Due_to_Icing_in_Wind_Turbines.pdf.jpgA_Review_on_the_Estimation_of Power_Loss_Due_to_Icing_in_Wind_Turbines.pdf.jpgGenerated Thumbnailimage/jpeg16120https://red.uao.edu.co/bitstreams/ebcc6051-7e2d-4455-9089-7098012f04ba/download063bdddf24ea43fe3b62aae87ba06f7bMD5410614/14694oai:red.uao.edu.co:10614/146942024-04-01 10:12:54.512https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2022open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K