Toward the control of the EP3D printed surface
La extensión de la impresión electrofotográfica (EP) al espacio de la fabricación aditiva se ha considerado un paso natural para esta tecnología; sin embargo, la naturaleza autoaislante del proceso ha impedido la creación de estructuras más allá de un número limitado de capas donde los defectos supe...
- Autores:
-
Rojas Arciniegas, Álvaro José
Esterman, Marcos
Cockburn, Juan C.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2015
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11895
- Acceso en línea:
- http://hdl.handle.net/10614/11895
- Palabra clave:
- Belts
Feedback
Imaging
Printing
Particulate matter
Additive manufacturing
Testing
Impresión 3D
Three-dimensional printing
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_7944e594f6a0b0f6f7e9f72ce2c67eea |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11895 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Toward the control of the EP3D printed surface |
title |
Toward the control of the EP3D printed surface |
spellingShingle |
Toward the control of the EP3D printed surface Belts Feedback Imaging Printing Particulate matter Additive manufacturing Testing Impresión 3D Three-dimensional printing |
title_short |
Toward the control of the EP3D printed surface |
title_full |
Toward the control of the EP3D printed surface |
title_fullStr |
Toward the control of the EP3D printed surface |
title_full_unstemmed |
Toward the control of the EP3D printed surface |
title_sort |
Toward the control of the EP3D printed surface |
dc.creator.fl_str_mv |
Rojas Arciniegas, Álvaro José Esterman, Marcos Cockburn, Juan C. |
dc.contributor.author.none.fl_str_mv |
Rojas Arciniegas, Álvaro José Esterman, Marcos Cockburn, Juan C. |
dc.subject.eng.fl_str_mv |
Belts Feedback Imaging Printing Particulate matter Additive manufacturing Testing |
topic |
Belts Feedback Imaging Printing Particulate matter Additive manufacturing Testing Impresión 3D Three-dimensional printing |
dc.subject.armarc.spa.fl_str_mv |
Impresión 3D |
dc.subject.armarc.eng.fl_str_mv |
Three-dimensional printing |
description |
La extensión de la impresión electrofotográfica (EP) al espacio de la fabricación aditiva se ha considerado un paso natural para esta tecnología; sin embargo, la naturaleza autoaislante del proceso ha impedido la creación de estructuras más allá de un número limitado de capas donde los defectos superficiales son evidentes. Este documento examina dos estrategias de control para la impresión tridimensional basada en EP (EP3D) que minimizan los defectos de la superficie para obtener la reproducción precisa de la geometría 3D deseada. Las estrategias no se basan en el control de la deposición del material, sino en compensar progresivamente capa tras capa las irregularidades que se forman en la superficie. Esto representa un paso importante hacia el desarrollo y la comercialización futura de la impresión EP3D. |
publishDate |
2015 |
dc.date.issued.none.fl_str_mv |
2015-04 |
dc.date.accessioned.none.fl_str_mv |
2020-02-14T14:21:27Z |
dc.date.available.none.fl_str_mv |
2020-02-14T14:21:27Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.eng.fl_str_mv |
Rojas Arciniegas, A. J.; Esterman, M.; Cockburn, J. C. (2015).Toward the control of the EP3D printed surface. Journal of manufacturing science and engineering. 137( 2), 10. https://doi.org/10.1115/1.4029184 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/11895 |
dc.identifier.doi.eng.fl_str_mv |
10.1115/1.4029184 |
identifier_str_mv |
Rojas Arciniegas, A. J.; Esterman, M.; Cockburn, J. C. (2015).Toward the control of the EP3D printed surface. Journal of manufacturing science and engineering. 137( 2), 10. https://doi.org/10.1115/1.4029184 10.1115/1.4029184 |
url |
http://hdl.handle.net/10614/11895 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.eng.fl_str_mv |
Journal of manufacturing science and engineering. Volumen 137, número 2, (abril 2015); 10 páginas |
dc.relation.citationissue.none.fl_str_mv |
2 |
dc.relation.citationvolume.none.fl_str_mv |
137 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Journal of manufacturing science and engineering |
dc.relation.references.none.fl_str_mv |
Bourell, D. L., Leu, M. C., and Rosen, D. W., 2009, “Roadmap for Additive Manufacturing Identifying the Future of Freeform Processing,” The University of Texas at Austin, Austin, TX. Jones, J. B., Wimpenny, D. I., Gibbons, G. J., and Sutcliffe, C., 2010, “Additive Manufacturing by Electrophotography: Challenges and Successes,” International Conference on Digital Printing Technologies, Austin, TX, pp. 549–553. Rojas Arciniegas, A. J., and Esterman, M., 2014, “Exploring Surface Defects on EP-Based 3D Printed Structures,” J. Imaging Sci. Technol., 58(2), p. 20506. Rojas Arciniegas, A. J., and Esterman, M., 2015, “Characterization and Modeling of Surface Defects in EP3D Printing,” Rapid Prototyping J. (accepted). Cooke, A. L., and Moylan, S. P., 2011, “Process Intermittent Measurement for Powder-Bed Based Additive Manufacturing,” Proceedings of the 22nd International SFF Symposium-An Additive Manufacturing Conference, NIST, Austin, TX, Aug. 8–10, p. 18. Gatto, M., and Harris, R. A., 2011, “Non-Destructive Analysis (NDA) of External and Internal Structures in 3DP,” Rapid Prototyping J., 17(2), pp. 128–137. Kumar, A. V., and Dutta, A., 2004, “Electrophotographic Layered Manufacturing,” ASME J. Manuf. Sci. Eng., 126(3), pp. 571–576. Rao, P., Bukkapatnam, S., Beyca, O., Kong, Z., and Komanduri, R., 2014, “Real-Time Identification of Incipient Surface Morphology Variations in Ultraprecision Machining Process,” ASME J. Manuf. Sci. Eng., 136(2), p. 021008. Liu, F., Chiu, G. T., Hamby, E. S., and Eun, Y., 2011, “Modeling and Control of a Hybrid Two-Component Development Process for Xerography,” IEEE Trans. Control Syst. Technol., 19(3), pp. 531–544. Gross, E., and Ramesh, P., 2009, “Xerographic Printing System Performance Optimization by Toner Throughput Control,” J. Imaging Sci. Technol., 53(4), p. 412071. Ramesh, P., 2009, “Modeling and Control of Toner Material State in Two Component Development Systems,” J. Imaging Sci. Technol., 53(4), p. 412061. Rojas Arciniegas, A. J., 2013, “Towards the Control of Electrophotographic-Based 3-Dimensional Printing: Image-Based Sensing and Modeling of Surface Defects,” Imaging Science Ph.D. dissertation., Rochester Institute of Technology, Rochester, NY. Arimoto, S., Kawamura, S., and Miyazaki, F., 1984, “Bettering Operation of Robots by Learning,” J. Rob. Syst., 1(2), pp. 123–140. Bristow, D. A., Tharayil, M., and Alleyne, A. G., 2006, “A Survey of Iterative Learning Control,” IEEE Control Syst., 26(3), pp. 96–114. Wang, Y., Gao, F., and Doyle, F. J., III, 2009, “Survey on Iterative Learning Control, Repetitive Control, and Run-to-Run Control,” J. Process Control, 19(10), pp. 1589–1600. Xu, J.-X., Chen, Y., Lee, T. H., and Yamamoto, S., 1999, “Terminal Iterative Learning Control With an Application to RTPCVD Thickness Control,” Automatica, 35(9), pp. 1535–1542. Gauthier, G., and Boulet, B., 2009, “Terminal Iterative Learning Control Design With Singular Value Decomposition Decoupling for Thermoforming Ovens,” Proceedings of the 2009 American Control Conference (ACC), St. Louis, MO, June 10–12, pp. 1640–1645. Tong Duy, S., and Hyo-Sung, A., 2011, “Terminal Iterative Learning Control With Multiple Intermediate Pass Points,” Proceedings of the 2011 American Control Conference (ACC), San Francisco, CA, June 29–July 1, pp. 3651–3656. Horn, B. K. P., 1970, “Shape From Shading: A Method for Obtaining the Shape of a Smooth Opaque Object from One View,” MIT Artificial Intelligence Laboratory, Technical Report No. 232. Prados, E., and Faugeras, O., 2006, Handbook of Mathematical Models in Computer Vision, Springer, NY, Chap. 23. Chen, T., Goesele, M., and Seidel, H.-P., 2006, “Mesostructure From Specularity,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, June 17–22, Vol. 2, pp. 1825–1832. Healey, G., and Binford, T. O., 1988, “Local Shape From Specularity,” Comput. Vision Graphics Image Process., 42(1), pp. 62–86. Nayar, S. K., 1989, “Shape From Focus,” The Robotics Institute, Carnigie Mellon University, Pittsburgh, PA, Technical Report No. CMU-RI-TR-89-27. Shim, S.-O., Malik, A. S., and Choi, T.-S., 2009, “Accurate Shape From Focus Based on Focus Adjustment in Optical Microscopy,” Microsc. Res. Tech., 72(5), pp. 362–370. Johnson, M. K., Cole, F., Raj, A., and Adelson, E. H., 2011, “Microgeometry Capture Using an Elastomeric Sensor,” ACM Trans. Graphics, 30(4), pp. 1–8. Cultural_Heritage_Imaging, 2012, “Reflectance Transformation Imaging (RTI),” Last accessed Jan. 1, 2013, http://culturalheritageimaging.org/Technologies/RTI/ |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
10 páginas |
dc.publisher.eng.fl_str_mv |
ASME |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/80909b29-05a2-499e-b716-a2e6bb6058d5/download https://red.uao.edu.co/bitstreams/fd94b9f6-9325-48de-879f-d8f0c37ed364/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259786741448704 |
spelling |
Rojas Arciniegas, Álvaro Josévirtual::4457-1Esterman, Marcos27359dc65546ce5136c4eb1fce3890d5Cockburn, Juan C.4a997043a9b73525da2a56e0c8ea06222020-02-14T14:21:27Z2020-02-14T14:21:27Z2015-04Rojas Arciniegas, A. J.; Esterman, M.; Cockburn, J. C. (2015).Toward the control of the EP3D printed surface. Journal of manufacturing science and engineering. 137( 2), 10. https://doi.org/10.1115/1.4029184http://hdl.handle.net/10614/1189510.1115/1.4029184La extensión de la impresión electrofotográfica (EP) al espacio de la fabricación aditiva se ha considerado un paso natural para esta tecnología; sin embargo, la naturaleza autoaislante del proceso ha impedido la creación de estructuras más allá de un número limitado de capas donde los defectos superficiales son evidentes. Este documento examina dos estrategias de control para la impresión tridimensional basada en EP (EP3D) que minimizan los defectos de la superficie para obtener la reproducción precisa de la geometría 3D deseada. Las estrategias no se basan en el control de la deposición del material, sino en compensar progresivamente capa tras capa las irregularidades que se forman en la superficie. Esto representa un paso importante hacia el desarrollo y la comercialización futura de la impresión EP3D.The extension of electrophotographic (EP) printing into the additive manufacturing space has been seen as a natural step for this technology; however, the self-insulating nature of the process has prevented the creation of structures beyond a limited number of layers where surface defects are evident. This paper examines two control strategies for EP-based three-dimensional (EP3D) printing that minimize the surface defects to obtain the accurate reproduction of the intended 3D geometry. The strategies rely not on material deposition control but rather on progressively compensating layer after layer for irregularities forming on the surface. This represents an important step toward the development and future commercialization of EP3D printingapplication/pdf10 páginasengASMEJournal of manufacturing science and engineering. Volumen 137, número 2, (abril 2015); 10 páginas2137Journal of manufacturing science and engineeringBourell, D. L., Leu, M. C., and Rosen, D. W., 2009, “Roadmap for Additive Manufacturing Identifying the Future of Freeform Processing,” The University of Texas at Austin, Austin, TX.Jones, J. B., Wimpenny, D. I., Gibbons, G. J., and Sutcliffe, C., 2010, “Additive Manufacturing by Electrophotography: Challenges and Successes,” International Conference on Digital Printing Technologies, Austin, TX, pp. 549–553.Rojas Arciniegas, A. J., and Esterman, M., 2014, “Exploring Surface Defects on EP-Based 3D Printed Structures,” J. Imaging Sci. Technol., 58(2), p. 20506.Rojas Arciniegas, A. J., and Esterman, M., 2015, “Characterization and Modeling of Surface Defects in EP3D Printing,” Rapid Prototyping J. (accepted).Cooke, A. L., and Moylan, S. P., 2011, “Process Intermittent Measurement for Powder-Bed Based Additive Manufacturing,” Proceedings of the 22nd International SFF Symposium-An Additive Manufacturing Conference, NIST, Austin, TX, Aug. 8–10, p. 18.Gatto, M., and Harris, R. A., 2011, “Non-Destructive Analysis (NDA) of External and Internal Structures in 3DP,” Rapid Prototyping J., 17(2), pp. 128–137.Kumar, A. V., and Dutta, A., 2004, “Electrophotographic Layered Manufacturing,” ASME J. Manuf. Sci. Eng., 126(3), pp. 571–576.Rao, P., Bukkapatnam, S., Beyca, O., Kong, Z., and Komanduri, R., 2014, “Real-Time Identification of Incipient Surface Morphology Variations in Ultraprecision Machining Process,” ASME J. Manuf. Sci. Eng., 136(2), p. 021008.Liu, F., Chiu, G. T., Hamby, E. S., and Eun, Y., 2011, “Modeling and Control of a Hybrid Two-Component Development Process for Xerography,” IEEE Trans. Control Syst. Technol., 19(3), pp. 531–544.Gross, E., and Ramesh, P., 2009, “Xerographic Printing System Performance Optimization by Toner Throughput Control,” J. Imaging Sci. Technol., 53(4), p. 412071.Ramesh, P., 2009, “Modeling and Control of Toner Material State in Two Component Development Systems,” J. Imaging Sci. Technol., 53(4), p. 412061.Rojas Arciniegas, A. J., 2013, “Towards the Control of Electrophotographic-Based 3-Dimensional Printing: Image-Based Sensing and Modeling of Surface Defects,” Imaging Science Ph.D. dissertation., Rochester Institute of Technology, Rochester, NY.Arimoto, S., Kawamura, S., and Miyazaki, F., 1984, “Bettering Operation of Robots by Learning,” J. Rob. Syst., 1(2), pp. 123–140.Bristow, D. A., Tharayil, M., and Alleyne, A. G., 2006, “A Survey of Iterative Learning Control,” IEEE Control Syst., 26(3), pp. 96–114.Wang, Y., Gao, F., and Doyle, F. J., III, 2009, “Survey on Iterative Learning Control, Repetitive Control, and Run-to-Run Control,” J. Process Control, 19(10), pp. 1589–1600.Xu, J.-X., Chen, Y., Lee, T. H., and Yamamoto, S., 1999, “Terminal Iterative Learning Control With an Application to RTPCVD Thickness Control,” Automatica, 35(9), pp. 1535–1542.Gauthier, G., and Boulet, B., 2009, “Terminal Iterative Learning Control Design With Singular Value Decomposition Decoupling for Thermoforming Ovens,” Proceedings of the 2009 American Control Conference (ACC), St. Louis, MO, June 10–12, pp. 1640–1645.Tong Duy, S., and Hyo-Sung, A., 2011, “Terminal Iterative Learning Control With Multiple Intermediate Pass Points,” Proceedings of the 2011 American Control Conference (ACC), San Francisco, CA, June 29–July 1, pp. 3651–3656.Horn, B. K. P., 1970, “Shape From Shading: A Method for Obtaining the Shape of a Smooth Opaque Object from One View,” MIT Artificial Intelligence Laboratory, Technical Report No. 232.Prados, E., and Faugeras, O., 2006, Handbook of Mathematical Models in Computer Vision, Springer, NY, Chap. 23.Chen, T., Goesele, M., and Seidel, H.-P., 2006, “Mesostructure From Specularity,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, June 17–22, Vol. 2, pp. 1825–1832.Healey, G., and Binford, T. O., 1988, “Local Shape From Specularity,” Comput. Vision Graphics Image Process., 42(1), pp. 62–86.Nayar, S. K., 1989, “Shape From Focus,” The Robotics Institute, Carnigie Mellon University, Pittsburgh, PA, Technical Report No. CMU-RI-TR-89-27.Shim, S.-O., Malik, A. S., and Choi, T.-S., 2009, “Accurate Shape From Focus Based on Focus Adjustment in Optical Microscopy,” Microsc. Res. Tech., 72(5), pp. 362–370.Johnson, M. K., Cole, F., Raj, A., and Adelson, E. H., 2011, “Microgeometry Capture Using an Elastomeric Sensor,” ACM Trans. Graphics, 30(4), pp. 1–8.Cultural_Heritage_Imaging, 2012, “Reflectance Transformation Imaging (RTI),” Last accessed Jan. 1, 2013, http://culturalheritageimaging.org/Technologies/RTI/Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2BeltsFeedbackImagingPrintingParticulate matterAdditive manufacturingTestingImpresión 3DThree-dimensional printingToward the control of the EP3D printed surfaceArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Publication5d4f6e65-758a-44ee-be02-f12af232a478virtual::4457-15d4f6e65-758a-44ee-be02-f12af232a478virtual::4457-1https://scholar.google.com/citations?user=Jk__bOIAAAAJ&hl=envirtual::4457-10000-0001-9242-799Xvirtual::4457-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000657956virtual::4457-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/80909b29-05a2-499e-b716-a2e6bb6058d5/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/fd94b9f6-9325-48de-879f-d8f0c37ed364/download20b5ba22b1117f71589c7318baa2c560MD5310614/11895oai:red.uao.edu.co:10614/118952024-03-14 10:20:07.937https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |