Toward the control of the EP3D printed surface

La extensión de la impresión electrofotográfica (EP) al espacio de la fabricación aditiva se ha considerado un paso natural para esta tecnología; sin embargo, la naturaleza autoaislante del proceso ha impedido la creación de estructuras más allá de un número limitado de capas donde los defectos supe...

Full description

Autores:
Rojas Arciniegas, Álvaro José
Esterman, Marcos
Cockburn, Juan C.
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11895
Acceso en línea:
http://hdl.handle.net/10614/11895
Palabra clave:
Belts
Feedback
Imaging
Printing
Particulate matter
Additive manufacturing
Testing
Impresión 3D
Three-dimensional printing
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_7944e594f6a0b0f6f7e9f72ce2c67eea
oai_identifier_str oai:red.uao.edu.co:10614/11895
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Toward the control of the EP3D printed surface
title Toward the control of the EP3D printed surface
spellingShingle Toward the control of the EP3D printed surface
Belts
Feedback
Imaging
Printing
Particulate matter
Additive manufacturing
Testing
Impresión 3D
Three-dimensional printing
title_short Toward the control of the EP3D printed surface
title_full Toward the control of the EP3D printed surface
title_fullStr Toward the control of the EP3D printed surface
title_full_unstemmed Toward the control of the EP3D printed surface
title_sort Toward the control of the EP3D printed surface
dc.creator.fl_str_mv Rojas Arciniegas, Álvaro José
Esterman, Marcos
Cockburn, Juan C.
dc.contributor.author.none.fl_str_mv Rojas Arciniegas, Álvaro José
Esterman, Marcos
Cockburn, Juan C.
dc.subject.eng.fl_str_mv Belts
Feedback
Imaging
Printing
Particulate matter
Additive manufacturing
Testing
topic Belts
Feedback
Imaging
Printing
Particulate matter
Additive manufacturing
Testing
Impresión 3D
Three-dimensional printing
dc.subject.armarc.spa.fl_str_mv Impresión 3D
dc.subject.armarc.eng.fl_str_mv Three-dimensional printing
description La extensión de la impresión electrofotográfica (EP) al espacio de la fabricación aditiva se ha considerado un paso natural para esta tecnología; sin embargo, la naturaleza autoaislante del proceso ha impedido la creación de estructuras más allá de un número limitado de capas donde los defectos superficiales son evidentes. Este documento examina dos estrategias de control para la impresión tridimensional basada en EP (EP3D) que minimizan los defectos de la superficie para obtener la reproducción precisa de la geometría 3D deseada. Las estrategias no se basan en el control de la deposición del material, sino en compensar progresivamente capa tras capa las irregularidades que se forman en la superficie. Esto representa un paso importante hacia el desarrollo y la comercialización futura de la impresión EP3D.
publishDate 2015
dc.date.issued.none.fl_str_mv 2015-04
dc.date.accessioned.none.fl_str_mv 2020-02-14T14:21:27Z
dc.date.available.none.fl_str_mv 2020-02-14T14:21:27Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.eng.fl_str_mv Rojas Arciniegas, A. J.; Esterman, M.; Cockburn, J. C. (2015).Toward the control of the EP3D printed surface. Journal of manufacturing science and engineering. 137( 2), 10. https://doi.org/10.1115/1.4029184
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11895
dc.identifier.doi.eng.fl_str_mv 10.1115/1.4029184
identifier_str_mv Rojas Arciniegas, A. J.; Esterman, M.; Cockburn, J. C. (2015).Toward the control of the EP3D printed surface. Journal of manufacturing science and engineering. 137( 2), 10. https://doi.org/10.1115/1.4029184
10.1115/1.4029184
url http://hdl.handle.net/10614/11895
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.eng.fl_str_mv Journal of manufacturing science and engineering. Volumen 137, número 2, (abril 2015); 10 páginas
dc.relation.citationissue.none.fl_str_mv 2
dc.relation.citationvolume.none.fl_str_mv 137
dc.relation.ispartofjournal.eng.fl_str_mv Journal of manufacturing science and engineering
dc.relation.references.none.fl_str_mv Bourell, D. L., Leu, M. C., and Rosen, D. W., 2009, “Roadmap for Additive Manufacturing Identifying the Future of Freeform Processing,” The University of Texas at Austin, Austin, TX.
Jones, J. B., Wimpenny, D. I., Gibbons, G. J., and Sutcliffe, C., 2010, “Additive Manufacturing by Electrophotography: Challenges and Successes,” International Conference on Digital Printing Technologies, Austin, TX, pp. 549–553.
Rojas Arciniegas, A. J., and Esterman, M., 2014, “Exploring Surface Defects on EP-Based 3D Printed Structures,” J. Imaging Sci. Technol., 58(2), p. 20506.
Rojas Arciniegas, A. J., and Esterman, M., 2015, “Characterization and Modeling of Surface Defects in EP3D Printing,” Rapid Prototyping J. (accepted).
Cooke, A. L., and Moylan, S. P., 2011, “Process Intermittent Measurement for Powder-Bed Based Additive Manufacturing,” Proceedings of the 22nd International SFF Symposium-An Additive Manufacturing Conference, NIST, Austin, TX, Aug. 8–10, p. 18.
Gatto, M., and Harris, R. A., 2011, “Non-Destructive Analysis (NDA) of External and Internal Structures in 3DP,” Rapid Prototyping J., 17(2), pp. 128–137.
Kumar, A. V., and Dutta, A., 2004, “Electrophotographic Layered Manufacturing,” ASME J. Manuf. Sci. Eng., 126(3), pp. 571–576.
Rao, P., Bukkapatnam, S., Beyca, O., Kong, Z., and Komanduri, R., 2014, “Real-Time Identification of Incipient Surface Morphology Variations in Ultraprecision Machining Process,” ASME J. Manuf. Sci. Eng., 136(2), p. 021008.
Liu, F., Chiu, G. T., Hamby, E. S., and Eun, Y., 2011, “Modeling and Control of a Hybrid Two-Component Development Process for Xerography,” IEEE Trans. Control Syst. Technol., 19(3), pp. 531–544.
Gross, E., and Ramesh, P., 2009, “Xerographic Printing System Performance Optimization by Toner Throughput Control,” J. Imaging Sci. Technol., 53(4), p. 412071.
Ramesh, P., 2009, “Modeling and Control of Toner Material State in Two Component Development Systems,” J. Imaging Sci. Technol., 53(4), p. 412061.
Rojas Arciniegas, A. J., 2013, “Towards the Control of Electrophotographic-Based 3-Dimensional Printing: Image-Based Sensing and Modeling of Surface Defects,” Imaging Science Ph.D. dissertation., Rochester Institute of Technology, Rochester, NY.
Arimoto, S., Kawamura, S., and Miyazaki, F., 1984, “Bettering Operation of Robots by Learning,” J. Rob. Syst., 1(2), pp. 123–140.
Bristow, D. A., Tharayil, M., and Alleyne, A. G., 2006, “A Survey of Iterative Learning Control,” IEEE Control Syst., 26(3), pp. 96–114.
Wang, Y., Gao, F., and Doyle, F. J., III, 2009, “Survey on Iterative Learning Control, Repetitive Control, and Run-to-Run Control,” J. Process Control, 19(10), pp. 1589–1600.
Xu, J.-X., Chen, Y., Lee, T. H., and Yamamoto, S., 1999, “Terminal Iterative Learning Control With an Application to RTPCVD Thickness Control,” Automatica, 35(9), pp. 1535–1542.
Gauthier, G., and Boulet, B., 2009, “Terminal Iterative Learning Control Design With Singular Value Decomposition Decoupling for Thermoforming Ovens,” Proceedings of the 2009 American Control Conference (ACC), St. Louis, MO, June 10–12, pp. 1640–1645.
Tong Duy, S., and Hyo-Sung, A., 2011, “Terminal Iterative Learning Control With Multiple Intermediate Pass Points,” Proceedings of the 2011 American Control Conference (ACC), San Francisco, CA, June 29–July 1, pp. 3651–3656.
Horn, B. K. P., 1970, “Shape From Shading: A Method for Obtaining the Shape of a Smooth Opaque Object from One View,” MIT Artificial Intelligence Laboratory, Technical Report No. 232.
Prados, E., and Faugeras, O., 2006, Handbook of Mathematical Models in Computer Vision, Springer, NY, Chap. 23.
Chen, T., Goesele, M., and Seidel, H.-P., 2006, “Mesostructure From Specularity,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, June 17–22, Vol. 2, pp. 1825–1832.
Healey, G., and Binford, T. O., 1988, “Local Shape From Specularity,” Comput. Vision Graphics Image Process., 42(1), pp. 62–86.
Nayar, S. K., 1989, “Shape From Focus,” The Robotics Institute, Carnigie Mellon University, Pittsburgh, PA, Technical Report No. CMU-RI-TR-89-27.
Shim, S.-O., Malik, A. S., and Choi, T.-S., 2009, “Accurate Shape From Focus Based on Focus Adjustment in Optical Microscopy,” Microsc. Res. Tech., 72(5), pp. 362–370.
Johnson, M. K., Cole, F., Raj, A., and Adelson, E. H., 2011, “Microgeometry Capture Using an Elastomeric Sensor,” ACM Trans. Graphics, 30(4), pp. 1–8.
Cultural_Heritage_Imaging, 2012, “Reflectance Transformation Imaging (RTI),” Last accessed Jan. 1, 2013, http://culturalheritageimaging.org/Technologies/RTI/
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 10 páginas
dc.publisher.eng.fl_str_mv ASME
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/80909b29-05a2-499e-b716-a2e6bb6058d5/download
https://red.uao.edu.co/bitstreams/fd94b9f6-9325-48de-879f-d8f0c37ed364/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259786741448704
spelling Rojas Arciniegas, Álvaro Josévirtual::4457-1Esterman, Marcos27359dc65546ce5136c4eb1fce3890d5Cockburn, Juan C.4a997043a9b73525da2a56e0c8ea06222020-02-14T14:21:27Z2020-02-14T14:21:27Z2015-04Rojas Arciniegas, A. J.; Esterman, M.; Cockburn, J. C. (2015).Toward the control of the EP3D printed surface. Journal of manufacturing science and engineering. 137( 2), 10. https://doi.org/10.1115/1.4029184http://hdl.handle.net/10614/1189510.1115/1.4029184La extensión de la impresión electrofotográfica (EP) al espacio de la fabricación aditiva se ha considerado un paso natural para esta tecnología; sin embargo, la naturaleza autoaislante del proceso ha impedido la creación de estructuras más allá de un número limitado de capas donde los defectos superficiales son evidentes. Este documento examina dos estrategias de control para la impresión tridimensional basada en EP (EP3D) que minimizan los defectos de la superficie para obtener la reproducción precisa de la geometría 3D deseada. Las estrategias no se basan en el control de la deposición del material, sino en compensar progresivamente capa tras capa las irregularidades que se forman en la superficie. Esto representa un paso importante hacia el desarrollo y la comercialización futura de la impresión EP3D.The extension of electrophotographic (EP) printing into the additive manufacturing space has been seen as a natural step for this technology; however, the self-insulating nature of the process has prevented the creation of structures beyond a limited number of layers where surface defects are evident. This paper examines two control strategies for EP-based three-dimensional (EP3D) printing that minimize the surface defects to obtain the accurate reproduction of the intended 3D geometry. The strategies rely not on material deposition control but rather on progressively compensating layer after layer for irregularities forming on the surface. This represents an important step toward the development and future commercialization of EP3D printingapplication/pdf10 páginasengASMEJournal of manufacturing science and engineering. Volumen 137, número 2, (abril 2015); 10 páginas2137Journal of manufacturing science and engineeringBourell, D. L., Leu, M. C., and Rosen, D. W., 2009, “Roadmap for Additive Manufacturing Identifying the Future of Freeform Processing,” The University of Texas at Austin, Austin, TX.Jones, J. B., Wimpenny, D. I., Gibbons, G. J., and Sutcliffe, C., 2010, “Additive Manufacturing by Electrophotography: Challenges and Successes,” International Conference on Digital Printing Technologies, Austin, TX, pp. 549–553.Rojas Arciniegas, A. J., and Esterman, M., 2014, “Exploring Surface Defects on EP-Based 3D Printed Structures,” J. Imaging Sci. Technol., 58(2), p. 20506.Rojas Arciniegas, A. J., and Esterman, M., 2015, “Characterization and Modeling of Surface Defects in EP3D Printing,” Rapid Prototyping J. (accepted).Cooke, A. L., and Moylan, S. P., 2011, “Process Intermittent Measurement for Powder-Bed Based Additive Manufacturing,” Proceedings of the 22nd International SFF Symposium-An Additive Manufacturing Conference, NIST, Austin, TX, Aug. 8–10, p. 18.Gatto, M., and Harris, R. A., 2011, “Non-Destructive Analysis (NDA) of External and Internal Structures in 3DP,” Rapid Prototyping J., 17(2), pp. 128–137.Kumar, A. V., and Dutta, A., 2004, “Electrophotographic Layered Manufacturing,” ASME J. Manuf. Sci. Eng., 126(3), pp. 571–576.Rao, P., Bukkapatnam, S., Beyca, O., Kong, Z., and Komanduri, R., 2014, “Real-Time Identification of Incipient Surface Morphology Variations in Ultraprecision Machining Process,” ASME J. Manuf. Sci. Eng., 136(2), p. 021008.Liu, F., Chiu, G. T., Hamby, E. S., and Eun, Y., 2011, “Modeling and Control of a Hybrid Two-Component Development Process for Xerography,” IEEE Trans. Control Syst. Technol., 19(3), pp. 531–544.Gross, E., and Ramesh, P., 2009, “Xerographic Printing System Performance Optimization by Toner Throughput Control,” J. Imaging Sci. Technol., 53(4), p. 412071.Ramesh, P., 2009, “Modeling and Control of Toner Material State in Two Component Development Systems,” J. Imaging Sci. Technol., 53(4), p. 412061.Rojas Arciniegas, A. J., 2013, “Towards the Control of Electrophotographic-Based 3-Dimensional Printing: Image-Based Sensing and Modeling of Surface Defects,” Imaging Science Ph.D. dissertation., Rochester Institute of Technology, Rochester, NY.Arimoto, S., Kawamura, S., and Miyazaki, F., 1984, “Bettering Operation of Robots by Learning,” J. Rob. Syst., 1(2), pp. 123–140.Bristow, D. A., Tharayil, M., and Alleyne, A. G., 2006, “A Survey of Iterative Learning Control,” IEEE Control Syst., 26(3), pp. 96–114.Wang, Y., Gao, F., and Doyle, F. J., III, 2009, “Survey on Iterative Learning Control, Repetitive Control, and Run-to-Run Control,” J. Process Control, 19(10), pp. 1589–1600.Xu, J.-X., Chen, Y., Lee, T. H., and Yamamoto, S., 1999, “Terminal Iterative Learning Control With an Application to RTPCVD Thickness Control,” Automatica, 35(9), pp. 1535–1542.Gauthier, G., and Boulet, B., 2009, “Terminal Iterative Learning Control Design With Singular Value Decomposition Decoupling for Thermoforming Ovens,” Proceedings of the 2009 American Control Conference (ACC), St. Louis, MO, June 10–12, pp. 1640–1645.Tong Duy, S., and Hyo-Sung, A., 2011, “Terminal Iterative Learning Control With Multiple Intermediate Pass Points,” Proceedings of the 2011 American Control Conference (ACC), San Francisco, CA, June 29–July 1, pp. 3651–3656.Horn, B. K. P., 1970, “Shape From Shading: A Method for Obtaining the Shape of a Smooth Opaque Object from One View,” MIT Artificial Intelligence Laboratory, Technical Report No. 232.Prados, E., and Faugeras, O., 2006, Handbook of Mathematical Models in Computer Vision, Springer, NY, Chap. 23.Chen, T., Goesele, M., and Seidel, H.-P., 2006, “Mesostructure From Specularity,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, June 17–22, Vol. 2, pp. 1825–1832.Healey, G., and Binford, T. O., 1988, “Local Shape From Specularity,” Comput. Vision Graphics Image Process., 42(1), pp. 62–86.Nayar, S. K., 1989, “Shape From Focus,” The Robotics Institute, Carnigie Mellon University, Pittsburgh, PA, Technical Report No. CMU-RI-TR-89-27.Shim, S.-O., Malik, A. S., and Choi, T.-S., 2009, “Accurate Shape From Focus Based on Focus Adjustment in Optical Microscopy,” Microsc. Res. Tech., 72(5), pp. 362–370.Johnson, M. K., Cole, F., Raj, A., and Adelson, E. H., 2011, “Microgeometry Capture Using an Elastomeric Sensor,” ACM Trans. Graphics, 30(4), pp. 1–8.Cultural_Heritage_Imaging, 2012, “Reflectance Transformation Imaging (RTI),” Last accessed Jan. 1, 2013, http://culturalheritageimaging.org/Technologies/RTI/Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2BeltsFeedbackImagingPrintingParticulate matterAdditive manufacturingTestingImpresión 3DThree-dimensional printingToward the control of the EP3D printed surfaceArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Publication5d4f6e65-758a-44ee-be02-f12af232a478virtual::4457-15d4f6e65-758a-44ee-be02-f12af232a478virtual::4457-1https://scholar.google.com/citations?user=Jk__bOIAAAAJ&hl=envirtual::4457-10000-0001-9242-799Xvirtual::4457-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000657956virtual::4457-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/80909b29-05a2-499e-b716-a2e6bb6058d5/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/fd94b9f6-9325-48de-879f-d8f0c37ed364/download20b5ba22b1117f71589c7318baa2c560MD5310614/11895oai:red.uao.edu.co:10614/118952024-03-14 10:20:07.937https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K