Surface damage caused by the interaction of particles and a spark-generated bubble near a solid wall

Machine components operating in a fluid under conditions of cavitation and hard particle erosion can be severely affected by wear, which may reduce the lifespans of the components. To understand this synergic behaviour, in this work, experimental and numerical approximations of the damage caused by...

Full description

Autores:
Teran, Leonel A.
Rodríguez, Sara A.
Laín Beatove, Santiago
Jung, Sunghwan
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/13396
Acceso en línea:
https://hdl.handle.net/10614/13396
https://doi.org/10.1016/j.wear.2019.203076
Palabra clave:
Dinámica de fluidos
Máquinas hidráulicas
Fluid dynamics
Hydraulic machinery
Hard particle
Spark-generated bubble
CFD
Explicit FEA
Surface damage
Rights
openAccess
License
Derechos reservados Revista Elsevier
id REPOUAO2_78e731528916f73c290c4c79f50664e0
oai_identifier_str oai:red.uao.edu.co:10614/13396
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Surface damage caused by the interaction of particles and a spark-generated bubble near a solid wall
title Surface damage caused by the interaction of particles and a spark-generated bubble near a solid wall
spellingShingle Surface damage caused by the interaction of particles and a spark-generated bubble near a solid wall
Dinámica de fluidos
Máquinas hidráulicas
Fluid dynamics
Hydraulic machinery
Hard particle
Spark-generated bubble
CFD
Explicit FEA
Surface damage
title_short Surface damage caused by the interaction of particles and a spark-generated bubble near a solid wall
title_full Surface damage caused by the interaction of particles and a spark-generated bubble near a solid wall
title_fullStr Surface damage caused by the interaction of particles and a spark-generated bubble near a solid wall
title_full_unstemmed Surface damage caused by the interaction of particles and a spark-generated bubble near a solid wall
title_sort Surface damage caused by the interaction of particles and a spark-generated bubble near a solid wall
dc.creator.fl_str_mv Teran, Leonel A.
Rodríguez, Sara A.
Laín Beatove, Santiago
Jung, Sunghwan
dc.contributor.author.none.fl_str_mv Teran, Leonel A.
Rodríguez, Sara A.
Laín Beatove, Santiago
Jung, Sunghwan
dc.subject.armarc.spa.fl_str_mv Dinámica de fluidos
Máquinas hidráulicas
topic Dinámica de fluidos
Máquinas hidráulicas
Fluid dynamics
Hydraulic machinery
Hard particle
Spark-generated bubble
CFD
Explicit FEA
Surface damage
dc.subject.armarc.eng.fl_str_mv Fluid dynamics
Hydraulic machinery
dc.subject.proposal.eng.fl_str_mv Hard particle
Spark-generated bubble
CFD
Explicit FEA
Surface damage
description Machine components operating in a fluid under conditions of cavitation and hard particle erosion can be severely affected by wear, which may reduce the lifespans of the components. To understand this synergic behaviour, in this work, experimental and numerical approximations of the damage caused by a particle interacting with a spark-generated bubble were developed. The effects of particle size, particle material, bubble position, surface material and bubble size on the damage of a surface impacted by a particle propelled by the spark-generated bubble were evaluated. The experimental results show that under the tested conditions, the heaviest particles and larger bubbles caused more considerable damage, while the initial position of the bubble did not exert a significant influence. It was found that the relationship between the increase in the bubble size and the increase in damage was quadratic. Numerical simulations involving computational fluid dynamics (CFD) and explicit finite element analysis (FEA) of a particle interacting with bubble of several sizes were conducted. The findings exhibited good correlation with the experimental data which validated the proposed numerical models. Additionally, the simulation indicated that the damage on the surface was linearly related to the kinetic energy of a particle. Furthermore, it was identified that particles closer to the bubble nucleation point had higher velocities and could thus lead to more considerable damage to the surface; however, when the pressure inside the initial bubble was high (which produced larger bubbles), the bubble interface moved faster than the particle, and the particle was trapped by the bubble, which decelerated the particle and reduced the velocity of impact on the surface. The obtained results could help to explain the mechanism of interaction between the particle and the bubble and its correlation with solid surface damage
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-11-15
dc.date.accessioned.none.fl_str_mv 2021-11-03T20:32:02Z
dc.date.available.none.fl_str_mv 2021-11-03T20:32:02Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 00431648
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13396
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.wear.2019.203076
identifier_str_mv 00431648
url https://hdl.handle.net/10614/13396
https://doi.org/10.1016/j.wear.2019.203076
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.citationendpage.spa.fl_str_mv 12
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 438-439
dc.relation.cites.none.fl_str_mv Teran, L. A., Rodríguez, S. A., Lain Beatove, S., Jung, S. (2019). Surface damage caused by the interaction of particles and a spark-generated bubble near a solid Wall. Wear. Editorial Elsevier. (Vol. 438-439) pp. 1-12. https://doi.org/10.1016/j.wear.2019.203076
dc.relation.ispartofjournal.spa.fl_str_mv Wear
dc.relation.references.none.fl_str_mv F. Avellan Introduction to cavitation in hydraulic machinery The 6th International Conference on Hydraulic Machinery and Hydrodynamics, Timisoara, Romania (2004)
U. Dorji, R. Ghomashchi Hydro turbine failure mechanisms: an overview Eng. Fail. Anal., 44 (2014), pp. 136-147
H.P. Neopane Sediment erosion in hydraulic turbines Glob. J. Res. Eng. Mech. Mech. Eng., 11 (2011)
A. Philipp, W. Lauterborn Cavitation erosion by single laser-produced bubbles J. Fluid Mech., 361 (1998), pp. 75-116
R. Brown, S. Kosco, E. Jun The effect of particle shape and size on erosion of aluminum alloy 1100 at 90 impact angles Wear, 88 (1983), pp. 181-193
G.R. Desale, B.K. Gandhi, S. Jain Effect of erodent properties on erosion wear of ductile type materials Wear, 261 (2006), pp. 914-921
O. Zambrano, D. García, S. Rodríguez, J. Coronado The mild-severe wear transition in erosion wear Tribol. Lett., 66 (2018), p. 95
H. Amarendra, G. Chaudhari, S. Nath Synergy of cavitation and slurry erosion in the slurry pot tester Wear, 290 (2012), pp. 25-31
Z. Tao, C. Cichang, L. Dongli, L. Dan Mechanism of silt abrasion enhanced by cavitation in silt laden water flow J. Drain. Irrig. Mach. Eng., 4 (2011), p. 007
H. Hu, Y. Zheng The effect of sand particle concentrations on the vibratory cavitation erosion Wear, 384 (2017), pp. 95-105
D. Yan, J. Wang, F. Liu Inhibition of the ultrasonic microjet-pits on the carbon steel in the particles-water mixtures AIP Adv., 5 (2015), Article 077159
C. Haosheng, W. Jiadao, C. Darong Cavitation damages on solid surfaces in suspensions containing spherical and irregular microparticles Wear, 266 (2009), pp. 345-348
. Romero, L. Teran, J. Coronado, J. Ladino, S. Rodríguez Synergy between cavitation and solid particle erosion in an ultrasonic tribometer Wear, 428 (2019), pp. 395-403
W. Soh, B. Willis A flow visualization study on the movements of solid particles propelled by a collapsing cavitation bubble Exp. Therm. Fluid Sci., 27 (2003), pp. 537-544
L.A. Teran, S.A. Rodríguez, S. Laín, S. Jung Interaction of particles with a cavitation bubble near a solid wall Phys. Fluids, 30 (2018), p. 123304
I. Hutchings The behaviour of metals under ballistic impact at sub-ordnance velocities Material Behavior under High Stress and Ultrahigh Loading Rates, Springer (1983), pp. 161-196
S.A. Rodríguez, J. Alcalá, R. Martins Souza Effects of elastic indenter deformation on spherical instrumented indentation tests: the reduced elastic modulus Philos. Mag., 91 (2011), pp. 1370-1386
F. Guiberteau, N.P. Padture, H. Cai, B.R. Lawn Indentation fatigue. A simple cyclic Hertzian test for measuring damage accumulation in polycrystalline ceramics Philos. Mag. A, 68 (1993), pp. 1003-1016
dc.rights.spa.fl_str_mv Derechos reservados Revista Elsevier
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados Revista Elsevier
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S004316481930910X?via%3Dihub
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/028dbb1b-9b83-4a19-bede-45694e039b8b/download
https://red.uao.edu.co/bitstreams/83905496-4209-473d-aff2-b5f71f8b5d1a/download
https://red.uao.edu.co/bitstreams/e63f16d4-12db-4d85-8bd2-ea66b43d937a/download
https://red.uao.edu.co/bitstreams/058824c9-5c75-4bf4-a20a-5bbe7a26e812/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
5b19750406f7e2f48862e9b49cb1b9bc
a7c5521eb000e6b126f7d5ca2b6e8ec5
8588eef11f68ae22dd5126673be7213b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259853242138624
spelling Teran, Leonel A.bb6453b379b3aeca44276245b0dd2741Rodríguez, Sara A.cc51eaa9cc961e0cc9391d3148429cabLaín Beatove, Santiagovirtual::2533-1Jung, Sunghwand3071ff374fccf0049bcaf9363f7e65a2021-11-03T20:32:02Z2021-11-03T20:32:02Z2019-11-1500431648https://hdl.handle.net/10614/13396https://doi.org/10.1016/j.wear.2019.203076Machine components operating in a fluid under conditions of cavitation and hard particle erosion can be severely affected by wear, which may reduce the lifespans of the components. To understand this synergic behaviour, in this work, experimental and numerical approximations of the damage caused by a particle interacting with a spark-generated bubble were developed. The effects of particle size, particle material, bubble position, surface material and bubble size on the damage of a surface impacted by a particle propelled by the spark-generated bubble were evaluated. The experimental results show that under the tested conditions, the heaviest particles and larger bubbles caused more considerable damage, while the initial position of the bubble did not exert a significant influence. It was found that the relationship between the increase in the bubble size and the increase in damage was quadratic. Numerical simulations involving computational fluid dynamics (CFD) and explicit finite element analysis (FEA) of a particle interacting with bubble of several sizes were conducted. The findings exhibited good correlation with the experimental data which validated the proposed numerical models. Additionally, the simulation indicated that the damage on the surface was linearly related to the kinetic energy of a particle. Furthermore, it was identified that particles closer to the bubble nucleation point had higher velocities and could thus lead to more considerable damage to the surface; however, when the pressure inside the initial bubble was high (which produced larger bubbles), the bubble interface moved faster than the particle, and the particle was trapped by the bubble, which decelerated the particle and reduced the velocity of impact on the surface. The obtained results could help to explain the mechanism of interaction between the particle and the bubble and its correlation with solid surface damage12 páginasapplication/pdfspaElsevierDerechos reservados Revista Elsevierhttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S004316481930910X?via%3DihubSurface damage caused by the interaction of particles and a spark-generated bubble near a solid wallArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Dinámica de fluidosMáquinas hidráulicasFluid dynamicsHydraulic machineryHard particleSpark-generated bubbleCFDExplicit FEASurface damage121438-439Teran, L. A., Rodríguez, S. A., Lain Beatove, S., Jung, S. (2019). Surface damage caused by the interaction of particles and a spark-generated bubble near a solid Wall. Wear. Editorial Elsevier. (Vol. 438-439) pp. 1-12. https://doi.org/10.1016/j.wear.2019.203076WearF. Avellan Introduction to cavitation in hydraulic machinery The 6th International Conference on Hydraulic Machinery and Hydrodynamics, Timisoara, Romania (2004)U. Dorji, R. Ghomashchi Hydro turbine failure mechanisms: an overview Eng. Fail. Anal., 44 (2014), pp. 136-147H.P. Neopane Sediment erosion in hydraulic turbines Glob. J. Res. Eng. Mech. Mech. Eng., 11 (2011)A. Philipp, W. Lauterborn Cavitation erosion by single laser-produced bubbles J. Fluid Mech., 361 (1998), pp. 75-116R. Brown, S. Kosco, E. Jun The effect of particle shape and size on erosion of aluminum alloy 1100 at 90 impact angles Wear, 88 (1983), pp. 181-193G.R. Desale, B.K. Gandhi, S. Jain Effect of erodent properties on erosion wear of ductile type materials Wear, 261 (2006), pp. 914-921O. Zambrano, D. García, S. Rodríguez, J. Coronado The mild-severe wear transition in erosion wear Tribol. Lett., 66 (2018), p. 95H. Amarendra, G. Chaudhari, S. Nath Synergy of cavitation and slurry erosion in the slurry pot tester Wear, 290 (2012), pp. 25-31Z. Tao, C. Cichang, L. Dongli, L. Dan Mechanism of silt abrasion enhanced by cavitation in silt laden water flow J. Drain. Irrig. Mach. Eng., 4 (2011), p. 007H. Hu, Y. Zheng The effect of sand particle concentrations on the vibratory cavitation erosion Wear, 384 (2017), pp. 95-105D. Yan, J. Wang, F. Liu Inhibition of the ultrasonic microjet-pits on the carbon steel in the particles-water mixtures AIP Adv., 5 (2015), Article 077159C. Haosheng, W. Jiadao, C. Darong Cavitation damages on solid surfaces in suspensions containing spherical and irregular microparticles Wear, 266 (2009), pp. 345-348. Romero, L. Teran, J. Coronado, J. Ladino, S. Rodríguez Synergy between cavitation and solid particle erosion in an ultrasonic tribometer Wear, 428 (2019), pp. 395-403W. Soh, B. Willis A flow visualization study on the movements of solid particles propelled by a collapsing cavitation bubble Exp. Therm. Fluid Sci., 27 (2003), pp. 537-544L.A. Teran, S.A. Rodríguez, S. Laín, S. Jung Interaction of particles with a cavitation bubble near a solid wall Phys. Fluids, 30 (2018), p. 123304I. Hutchings The behaviour of metals under ballistic impact at sub-ordnance velocities Material Behavior under High Stress and Ultrahigh Loading Rates, Springer (1983), pp. 161-196S.A. Rodríguez, J. Alcalá, R. Martins Souza Effects of elastic indenter deformation on spherical instrumented indentation tests: the reduced elastic modulus Philos. Mag., 91 (2011), pp. 1370-1386F. Guiberteau, N.P. Padture, H. Cai, B.R. Lawn Indentation fatigue. A simple cyclic Hertzian test for measuring damage accumulation in polycrystalline ceramics Philos. Mag. A, 68 (1993), pp. 1003-1016Comunidad universitaria en generalPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2533-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2533-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2533-10000-0002-0269-2608virtual::2533-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2533-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/028dbb1b-9b83-4a19-bede-45694e039b8b/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALSurface_damage_caused_by_the_interaction_of_particles.pdfSurface_damage_caused_by_the_interaction_of_particles.pdfTexto completo del artículoapplication/pdf825087https://red.uao.edu.co/bitstreams/83905496-4209-473d-aff2-b5f71f8b5d1a/download5b19750406f7e2f48862e9b49cb1b9bcMD53TEXTSurface_damage_caused_by_the_interaction_of_particles.pdf.txtSurface_damage_caused_by_the_interaction_of_particles.pdf.txtExtracted texttext/plain58725https://red.uao.edu.co/bitstreams/e63f16d4-12db-4d85-8bd2-ea66b43d937a/downloada7c5521eb000e6b126f7d5ca2b6e8ec5MD54THUMBNAILSurface_damage_caused_by_the_interaction_of_particles.pdf.jpgSurface_damage_caused_by_the_interaction_of_particles.pdf.jpgGenerated Thumbnailimage/jpeg6656https://red.uao.edu.co/bitstreams/058824c9-5c75-4bf4-a20a-5bbe7a26e812/download8588eef11f68ae22dd5126673be7213bMD5510614/13396oai:red.uao.edu.co:10614/133962024-03-06 16:03:13.158https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados Revista Elsevieropen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K