Neutron density calculation using the generalised adams-bashforth-moulton method
Este artículo presenta una solución numérica a las ecuaciones de cinética puntual para reactores de energía nuclear, un conjunto de siete ecuaciones diferenciales acopladas que describen la variación temporal de la densidad de neutrones y la concentración de precursores de neutrones retardados. Debi...
- Autores:
-
Suescún-Díaz, Daniel
Rasero, Diego
Lozano Parada, Jaime Humberto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13432
- Acceso en línea:
- https://hdl.handle.net/10614/13432
- Palabra clave:
- Reacciones nucleares
Ecuaciones diferenciales con retardo - Soluciones numéricas
Nuclear reactions
Delay differential equations - Numerical solutions
Nuclear reactor power
Nuclear density
Point kinetics equations
Numerical methods
Densidade nuclear
Potência do reator nuclear
Métodos numéricos
Equações da cinetica pontual
- Rights
- openAccess
- License
- Derechos reservado - Editorial Pontificia Universidad Javeriana
id |
REPOUAO2_78c4477f39292ae105a086b707587352 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13432 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Neutron density calculation using the generalised adams-bashforth-moulton method |
dc.title.alternative.por.fl_str_mv |
Cálculo da densidade de nêutrons usando o método generalizado de Adams-Bashforth-Moulton |
dc.title.alternative.spa.fl_str_mv |
Cálculo de densidad de neutrones utilizando el método generalizado de Adams-Bashforth-Moulton |
title |
Neutron density calculation using the generalised adams-bashforth-moulton method |
spellingShingle |
Neutron density calculation using the generalised adams-bashforth-moulton method Reacciones nucleares Ecuaciones diferenciales con retardo - Soluciones numéricas Nuclear reactions Delay differential equations - Numerical solutions Nuclear reactor power Nuclear density Point kinetics equations Numerical methods Densidade nuclear Potência do reator nuclear Métodos numéricos Equações da cinetica pontual |
title_short |
Neutron density calculation using the generalised adams-bashforth-moulton method |
title_full |
Neutron density calculation using the generalised adams-bashforth-moulton method |
title_fullStr |
Neutron density calculation using the generalised adams-bashforth-moulton method |
title_full_unstemmed |
Neutron density calculation using the generalised adams-bashforth-moulton method |
title_sort |
Neutron density calculation using the generalised adams-bashforth-moulton method |
dc.creator.fl_str_mv |
Suescún-Díaz, Daniel Rasero, Diego Lozano Parada, Jaime Humberto |
dc.contributor.author.spa.fl_str_mv |
Suescún-Díaz, Daniel Rasero, Diego Lozano Parada, Jaime Humberto |
dc.subject.armarc.spa.fl_str_mv |
Reacciones nucleares Ecuaciones diferenciales con retardo - Soluciones numéricas |
topic |
Reacciones nucleares Ecuaciones diferenciales con retardo - Soluciones numéricas Nuclear reactions Delay differential equations - Numerical solutions Nuclear reactor power Nuclear density Point kinetics equations Numerical methods Densidade nuclear Potência do reator nuclear Métodos numéricos Equações da cinetica pontual |
dc.subject.armarc.eng.fl_str_mv |
Nuclear reactions Delay differential equations - Numerical solutions |
dc.subject.proposal.eng.fl_str_mv |
Nuclear reactor power Nuclear density Point kinetics equations Numerical methods |
dc.subject.proposal.por.fl_str_mv |
Densidade nuclear Potência do reator nuclear Métodos numéricos Equações da cinetica pontual |
description |
Este artículo presenta una solución numérica a las ecuaciones de cinética puntual para reactores de energía nuclear, un conjunto de siete ecuaciones diferenciales acopladas que describen la variación temporal de la densidad de neutrones y la concentración de precursores de neutrones retardados. Debido a la naturaleza del sistema, proponemos resolver numéricamente las ecuaciones de cinética de puntos mediante la implementación de los métodos de Adams-Bashforth y de Adams-Moulton, que son esquemas predictores-correctores con sus respectivos modificadores para aumentar la precisión. El método propuesto se probó computacionalmente para diferentes formas de reactividad con hasta seis grupos de precursores de neutrones retardados. Este método se utilizó en una publicación reciente para resolver el problema inverso de encontrar la reactividad. Adicionalmente, se muestra que también se puede utilizar para el cálculo de la energía nuclear, que es simple y fácil de implementar, y que produce buenos resultados en comparación con los de la literatura para la densidad de población de neutrones y la concentración de precursores de neutrones retardados |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-11-20 |
dc.date.accessioned.none.fl_str_mv |
2021-11-11T15:27:17Z |
dc.date.available.none.fl_str_mv |
2021-11-11T15:27:17Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1227483 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13432 |
identifier_str_mv |
1227483 |
url |
https://hdl.handle.net/10614/13432 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Volumen 24, número 3 (2019) |
dc.relation.citationendpage.spa.fl_str_mv |
563 |
dc.relation.citationissue.spa.fl_str_mv |
3 |
dc.relation.citationstartpage.spa.fl_str_mv |
543 |
dc.relation.citationvolume.spa.fl_str_mv |
24 |
dc.relation.cites.eng.fl_str_mv |
Suescún Díaz, D., Rasero Causil, D.A., Lozano Parada, J.H. (2019). Neutron Density Calculation Using the Generalised Adams-Bashforth-Moulton Method. Universitas Scientiarum. Pontificia Universidad Javeriana. (Vol. 24 (3), pp. 543-563, 2019. doi: 10.11144/Javeriana.SC24-3.ndcu |
dc.relation.ispartofjournal.eng.fl_str_mv |
Universitas Scientiarum |
dc.relation.references.none.fl_str_mv |
[1] Chao YA, Attard A. A resolution of the stiffness problem of reactor kinetics, Nuclear Science and Engineering, 90(1):40-46, 1985. doi: 10.13182/NSE85-A17429 [2] Sánchez J. On the numerical solution of the point reactor kinetics equations by generalized Runge-Kutta methods, Nuclear Science and Engineering, 103: 94-99, 1989. doi: 10.13182/NSE89-A23663 [3] Aboanber AE, Nahla AA. Solution of the point kinetics equations in the presence of Newtonian temperature feedback by Padé approximation via the analytical inversion method, Journal of Physics A: Mathematical and General, 35(45):9609-9627, 2002b. doi: 10.1088/0305-4470/35/45/309 [4] Aboanber AE, Nahla AA. Generalization of the analytical inverse method for the solution of point kinetics equations, Journal of Physics A: Mathematical and General, 35(14): 3245-3263, 2002a. doi: 10.1088/0305-4470/35/14/307 [5] Aboanber AE. Analytical solution of the point kinetics equations by exponential mode analysis, Progress in Nuclear Energy, 42(2): 179-197, 2003. doi: 10.1016/s0140-6701(03)82201-4 [6] Kinard, M.; Allen, E. J.: Efficient numerical solution of the point kinetics equations in nuclear reactor dynamics, Annals of Nuclear Energy, 31(9): 1039-1051, 2004. doi: 10.1016/j.anucene.2003.12.008 [7] Quintero LB. CORE: a numerical algorithm to solve the point kinetics equations, Annals of Nuclear Energy, 35(11): 2136-2138, 2008. doi: 10.1016/j.anucene.2008.07.002 [8] Li H, Chen W, Luo L, Zhu Q. A new integral method for solving the point reactor neutron kinetics equations, Annals of Nuclear Energy, 36(4): 427-432, 2009. doi: 10.1016/j.anucene.2008.11.033 [9] Nahla, A. A.: Taylor series method for solving the nonlinear point kinetics equations, Nuclear Engineering and Design, 241(5): 1592-1595, 2011. doi: 10.1016/j.nucengdes.2011.02.016 [10] Hamada, Y. M.: Generalized power series method with step size control for neutron kinetics equations, Nuclear Engineering and Design, 241(8): 3032-3041, 2011. doi: 10.1016/j.nucengdes.2011.05.006 [11] Hamada YM. Confirmation of accuracy of generalized power series method for the solution of point kinetics equations with feedback, Annals of Nuclear Energy, 55: 184-193, 2013. doi: 10.1016/j.anucene.2012.12.013 [12] Ganapol BD. A highly accurate algorithm for the solution of the point kinetics equations, Annals of Nuclear Energy, 62: 564- 571, 2013. doi: 10.1016/j.anucene.2012.06.007 [13] Picca P, Furfaro R, Ganapol B. A highly accurate technique for the solution of the non-linear point kinetics equations, Annals of Nuclear Energy, 58: 43-53, 2013. doi: 10.1016/j.anucene.2013.03.004 [14] Salah A. Hassan SA. Samia.: The Analytical Algorithm for the Differential Transform Method to Solution of the Reactor Point kinetics Equations, World Applied Sciences Journal, 27(3):367-370, 2013. doi: 10.5829/idosi.wasj.2013.27.03.1601 [15] Kim HT, Park Y, Kazantzis N, Parlos A, Vista IV F, Chong KT. A numerical solution to the point kinetic equations using Taylor-Lie series combined with a scaling and squaring technique, Nuclear Engineering and Design, 272: 1-10, 2014. doi: 10.1016/j.nucengdes.2013.12.066 [16] Patra A, Ray SS. A numerical approach based on Haar wavelet operational method to solve neutron point kinetics equation involving imposed reactivity insertions, Annals of Nuclear Energy, 68: 112-117, 2014. doi: 10.1016/j.anucene.2014.01.008 [17] Leite QB, Palma AP, Vilhena MT, Bodmann EJ. Analytical representation of the solution of the point reactor kinetics equations with adaptive time step, Progress in Nuclear Energy, 70: 112-118, 2014. doi: 10.1016/j.pnucene.2013.07.008 [18] Hamada YM. Trigonometric Fourier-series solutions of the point reactor kinetics equations. Nuclear Engineering and Design, 281: 142-153, 2015. doi: 10.1016/j.nucengdes.2014.11.017 [19] Razak MA, Devan K, Sathiyasheela T. The modified exponential time differencing (ETD) method for solving the reactor point kinetics equations, Annals of Nuclear Energy, 76: 193-199, 2015. doi: 10.1016/j.anucene.2014.09.020 [20] Nahla AA. Numerical treatment for the point reactor kinetics equations using theta method, eigenvalues and eigenvectors, Progress in Nuclear Energy, 85: 756-763, 2015. doi: 10.1016/j.pnucene.2015.09.008 [21] Suescún DD, Narváez PM, Lozano PH. Calculation of Nuclear Reactivity Using the Generalised Adams Bashforth-Moulton Predictor-Corrector Method, Kerntechnik, 81(1): 86-93, 2016. doi: 10.3139/124.110591 [22] Yun C, Xingjie P, Qing L, Kan W. A numerical solution to the nonlinear point kinetics equations using Magnus expansion, Annals of Nuclear Energy, 89: 84-89, 2016. doi: 10.1016/j.anucene.2015.11.021 [23] Duderstadt JJ, Hamilton LJ. Nuclear Reactor Analysis, second ed. John Wiley & Sons Inc., New York, 1976 |
dc.rights.spa.fl_str_mv |
Derechos reservado - Editorial Pontificia Universidad Javeriana |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservado - Editorial Pontificia Universidad Javeriana https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
21 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Programa Editorial Pontificia Universidad Javeriana |
dc.publisher.place.spa.fl_str_mv |
Bogotá |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://dspace7-uao.metacatalogo.com/bitstreams/2124e239-8a1e-4d4b-94fc-05f91516533b/download https://dspace7-uao.metacatalogo.com/bitstreams/029476fd-7bb3-431c-8b19-2ee461d724f6/download https://dspace7-uao.metacatalogo.com/bitstreams/4b9c983c-f177-46ef-b029-5aafe457da9f/download https://dspace7-uao.metacatalogo.com/bitstreams/8615ecb8-9057-44d3-bf5c-74e98635a012/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 36132d200eadba792aef23731dbcf7ae 8682ec1e971ae662d0ddfc360680a20e a4aaaa181b0ef40fd00fe6961ffc1b00 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UAO |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259739523022848 |
spelling |
Suescún-Díaz, Daniel29eca95d98db655eeb1ef3f95c2c66e9Rasero, Diego86c039a30c118baf0a30fff759f3096eLozano Parada, Jaime Humberto5e37d5ded4625c6929b3fb6a8753c3502021-11-11T15:27:17Z2021-11-11T15:27:17Z2019-11-201227483https://hdl.handle.net/10614/13432Este artículo presenta una solución numérica a las ecuaciones de cinética puntual para reactores de energía nuclear, un conjunto de siete ecuaciones diferenciales acopladas que describen la variación temporal de la densidad de neutrones y la concentración de precursores de neutrones retardados. Debido a la naturaleza del sistema, proponemos resolver numéricamente las ecuaciones de cinética de puntos mediante la implementación de los métodos de Adams-Bashforth y de Adams-Moulton, que son esquemas predictores-correctores con sus respectivos modificadores para aumentar la precisión. El método propuesto se probó computacionalmente para diferentes formas de reactividad con hasta seis grupos de precursores de neutrones retardados. Este método se utilizó en una publicación reciente para resolver el problema inverso de encontrar la reactividad. Adicionalmente, se muestra que también se puede utilizar para el cálculo de la energía nuclear, que es simple y fácil de implementar, y que produce buenos resultados en comparación con los de la literatura para la densidad de población de neutrones y la concentración de precursores de neutrones retardadosThis paper presents a numerical solution to the equations of point kinetics for nuclear power reactors, a set of seven coupled differential equations that describe the temporal variation of neutron density and the concentration of delayed neutron precursors. Due to the nature of the system, we propose to numerically solve the point kinetics equations by implementing the Adams-Bashforth and Adams-Moulton methods, which are predictor-corrector schemes with their respective modifiers to increase precision. The proposed method was tested computationally for different forms of reactivity with up to six groups of delayed neutron precursors. This method was used in a recent publication to solve the inverse problem of finding the reactivity. In this work, it is shown that it can also be used for the calculation of nuclear power, that it is simple and easy to implement, and that it produces good results when compared with those in the literature for neutron population density and concentration of delayed neutron precursorsEste artigo apresenta uma solução numérica para as equações da cinética pontual para reatores de energia nuclear, um conjunto de sete equações diferenciais acopladas que descrevem a variação temporal da densidade de nêutrons e concentração de precursores de nêutrons atrasados. Devido à natureza do sistema, propomos resolver numericamente as equações da cinética pontual implementando os métodos de Adams-Bashforth e de Adams-Moulton, que são esquemas preditores-corretores com seus respectivos modificadores para aumentar a precisão. O método proposto foi testado computacionalmente para diferentes formas da reatividade com até seis grupos de precursores de nêutrons atrasados. Este método foi usado em uma publicação recente para resolver o problema inverso de encontrar a reatividade. Além disso, mostra-se que também pode ser utilizado para o cálculo da potência nuclear, que é simples e fácil de implementar e que produz bons resultados quando comparado com os da literatura para densidade populacional de nêutrons e concentração de precursores de nêutrons atrasados21 páginasapplication/pdfengPrograma Editorial Pontificia Universidad JaverianaBogotáDerechos reservado - Editorial Pontificia Universidad Javerianahttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Neutron density calculation using the generalised adams-bashforth-moulton methodCálculo da densidade de nêutrons usando o método generalizado de Adams-Bashforth-MoultonCálculo de densidad de neutrones utilizando el método generalizado de Adams-Bashforth-MoultonArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Reacciones nuclearesEcuaciones diferenciales con retardo - Soluciones numéricasNuclear reactionsDelay differential equations - Numerical solutionsNuclear reactor powerNuclear densityPoint kinetics equationsNumerical methodsDensidade nuclearPotência do reator nuclearMétodos numéricosEquações da cinetica pontualVolumen 24, número 3 (2019)563354324Suescún Díaz, D., Rasero Causil, D.A., Lozano Parada, J.H. (2019). Neutron Density Calculation Using the Generalised Adams-Bashforth-Moulton Method. Universitas Scientiarum. Pontificia Universidad Javeriana. (Vol. 24 (3), pp. 543-563, 2019. doi: 10.11144/Javeriana.SC24-3.ndcuUniversitas Scientiarum[1] Chao YA, Attard A. A resolution of the stiffness problem of reactor kinetics, Nuclear Science and Engineering, 90(1):40-46, 1985. doi: 10.13182/NSE85-A17429[2] Sánchez J. On the numerical solution of the point reactor kinetics equations by generalized Runge-Kutta methods, Nuclear Science and Engineering, 103: 94-99, 1989. doi: 10.13182/NSE89-A23663[3] Aboanber AE, Nahla AA. Solution of the point kinetics equations in the presence of Newtonian temperature feedback by Padé approximation via the analytical inversion method, Journal of Physics A: Mathematical and General, 35(45):9609-9627, 2002b. doi: 10.1088/0305-4470/35/45/309[4] Aboanber AE, Nahla AA. Generalization of the analytical inverse method for the solution of point kinetics equations, Journal of Physics A: Mathematical and General, 35(14): 3245-3263, 2002a. doi: 10.1088/0305-4470/35/14/307[5] Aboanber AE. Analytical solution of the point kinetics equations by exponential mode analysis, Progress in Nuclear Energy, 42(2): 179-197, 2003. doi: 10.1016/s0140-6701(03)82201-4[6] Kinard, M.; Allen, E. J.: Efficient numerical solution of the point kinetics equations in nuclear reactor dynamics, Annals of Nuclear Energy, 31(9): 1039-1051, 2004. doi: 10.1016/j.anucene.2003.12.008[7] Quintero LB. CORE: a numerical algorithm to solve the point kinetics equations, Annals of Nuclear Energy, 35(11): 2136-2138, 2008. doi: 10.1016/j.anucene.2008.07.002[8] Li H, Chen W, Luo L, Zhu Q. A new integral method for solving the point reactor neutron kinetics equations, Annals of Nuclear Energy, 36(4): 427-432, 2009. doi: 10.1016/j.anucene.2008.11.033[9] Nahla, A. A.: Taylor series method for solving the nonlinear point kinetics equations, Nuclear Engineering and Design, 241(5): 1592-1595, 2011. doi: 10.1016/j.nucengdes.2011.02.016[10] Hamada, Y. M.: Generalized power series method with step size control for neutron kinetics equations, Nuclear Engineering and Design, 241(8): 3032-3041, 2011. doi: 10.1016/j.nucengdes.2011.05.006[11] Hamada YM. Confirmation of accuracy of generalized power series method for the solution of point kinetics equations with feedback, Annals of Nuclear Energy, 55: 184-193, 2013. doi: 10.1016/j.anucene.2012.12.013[12] Ganapol BD. A highly accurate algorithm for the solution of the point kinetics equations, Annals of Nuclear Energy, 62: 564- 571, 2013. doi: 10.1016/j.anucene.2012.06.007[13] Picca P, Furfaro R, Ganapol B. A highly accurate technique for the solution of the non-linear point kinetics equations, Annals of Nuclear Energy, 58: 43-53, 2013. doi: 10.1016/j.anucene.2013.03.004[14] Salah A. Hassan SA. Samia.: The Analytical Algorithm for the Differential Transform Method to Solution of the Reactor Point kinetics Equations, World Applied Sciences Journal, 27(3):367-370, 2013. doi: 10.5829/idosi.wasj.2013.27.03.1601[15] Kim HT, Park Y, Kazantzis N, Parlos A, Vista IV F, Chong KT. A numerical solution to the point kinetic equations using Taylor-Lie series combined with a scaling and squaring technique, Nuclear Engineering and Design, 272: 1-10, 2014. doi: 10.1016/j.nucengdes.2013.12.066[16] Patra A, Ray SS. A numerical approach based on Haar wavelet operational method to solve neutron point kinetics equation involving imposed reactivity insertions, Annals of Nuclear Energy, 68: 112-117, 2014. doi: 10.1016/j.anucene.2014.01.008[17] Leite QB, Palma AP, Vilhena MT, Bodmann EJ. Analytical representation of the solution of the point reactor kinetics equations with adaptive time step, Progress in Nuclear Energy, 70: 112-118, 2014. doi: 10.1016/j.pnucene.2013.07.008[18] Hamada YM. Trigonometric Fourier-series solutions of the point reactor kinetics equations. Nuclear Engineering and Design, 281: 142-153, 2015. doi: 10.1016/j.nucengdes.2014.11.017[19] Razak MA, Devan K, Sathiyasheela T. The modified exponential time differencing (ETD) method for solving the reactor point kinetics equations, Annals of Nuclear Energy, 76: 193-199, 2015. doi: 10.1016/j.anucene.2014.09.020[20] Nahla AA. Numerical treatment for the point reactor kinetics equations using theta method, eigenvalues and eigenvectors, Progress in Nuclear Energy, 85: 756-763, 2015. doi: 10.1016/j.pnucene.2015.09.008[21] Suescún DD, Narváez PM, Lozano PH. Calculation of Nuclear Reactivity Using the Generalised Adams Bashforth-Moulton Predictor-Corrector Method, Kerntechnik, 81(1): 86-93, 2016. doi: 10.3139/124.110591[22] Yun C, Xingjie P, Qing L, Kan W. A numerical solution to the nonlinear point kinetics equations using Magnus expansion, Annals of Nuclear Energy, 89: 84-89, 2016. doi: 10.1016/j.anucene.2015.11.021[23] Duderstadt JJ, Hamilton LJ. Nuclear Reactor Analysis, second ed. John Wiley & Sons Inc., New York, 1976GeneralPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/2124e239-8a1e-4d4b-94fc-05f91516533b/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALNeutron density calculation using the generalised Adams-Bashforth-Moulton method.pdfNeutron density calculation using the generalised Adams-Bashforth-Moulton method.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf660708https://dspace7-uao.metacatalogo.com/bitstreams/029476fd-7bb3-431c-8b19-2ee461d724f6/download36132d200eadba792aef23731dbcf7aeMD53TEXTNeutron density calculation using the generalised Adams-Bashforth-Moulton method.pdf.txtNeutron density calculation using the generalised Adams-Bashforth-Moulton method.pdf.txtExtracted texttext/plain36101https://dspace7-uao.metacatalogo.com/bitstreams/4b9c983c-f177-46ef-b029-5aafe457da9f/download8682ec1e971ae662d0ddfc360680a20eMD54THUMBNAILNeutron density calculation using the generalised Adams-Bashforth-Moulton method.pdf.jpgNeutron density calculation using the generalised Adams-Bashforth-Moulton method.pdf.jpgGenerated Thumbnailimage/jpeg13458https://dspace7-uao.metacatalogo.com/bitstreams/8615ecb8-9057-44d3-bf5c-74e98635a012/downloada4aaaa181b0ef40fd00fe6961ffc1b00MD5510614/13432oai:dspace7-uao.metacatalogo.com:10614/134322024-01-19 15:23:54.254https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservado - Editorial Pontificia Universidad Javerianaopen.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |