Comparison of sliding and overset mesh techniques in the simulation of a vertical axis turbine for hydrokinetic applications

The application of Computational Fluid Dynamics (CFD) to energy-related problems has increased in the last decades in both renewable and conventional energy conversion processes. In recent years, the application of CFD in the study of hydraulic, marine, tidal, and hydrokinetic turbines has focused o...

Full description

Autores:
Lopez Mejia, Omar D
Mejia, Oscar E.
Escorcia, Karol
Suarez, Fabian
Laín Beatove, Santiago
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13865
Acceso en línea:
https://hdl.handle.net/10614/13865
https://red.uao.edu.co/
Palabra clave:
Dinámica de fluidos
Turbinas hidráulicas
Fluid dynamics
Hydraulic turbines
Vertical axis water turbine
Ooverset mesh
Sliding mesh
Computational fluid dynamics
Rights
openAccess
License
Derechos reservados - MDPI, 2021
id REPOUAO2_779d577b1be826f7466928bef2758bdd
oai_identifier_str oai:red.uao.edu.co:10614/13865
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Comparison of sliding and overset mesh techniques in the simulation of a vertical axis turbine for hydrokinetic applications
title Comparison of sliding and overset mesh techniques in the simulation of a vertical axis turbine for hydrokinetic applications
spellingShingle Comparison of sliding and overset mesh techniques in the simulation of a vertical axis turbine for hydrokinetic applications
Dinámica de fluidos
Turbinas hidráulicas
Fluid dynamics
Hydraulic turbines
Vertical axis water turbine
Ooverset mesh
Sliding mesh
Computational fluid dynamics
title_short Comparison of sliding and overset mesh techniques in the simulation of a vertical axis turbine for hydrokinetic applications
title_full Comparison of sliding and overset mesh techniques in the simulation of a vertical axis turbine for hydrokinetic applications
title_fullStr Comparison of sliding and overset mesh techniques in the simulation of a vertical axis turbine for hydrokinetic applications
title_full_unstemmed Comparison of sliding and overset mesh techniques in the simulation of a vertical axis turbine for hydrokinetic applications
title_sort Comparison of sliding and overset mesh techniques in the simulation of a vertical axis turbine for hydrokinetic applications
dc.creator.fl_str_mv Lopez Mejia, Omar D
Mejia, Oscar E.
Escorcia, Karol
Suarez, Fabian
Laín Beatove, Santiago
dc.contributor.author.none.fl_str_mv Lopez Mejia, Omar D
Mejia, Oscar E.
Escorcia, Karol
Suarez, Fabian
Laín Beatove, Santiago
dc.subject.armarc.spa.fl_str_mv Dinámica de fluidos
Turbinas hidráulicas
topic Dinámica de fluidos
Turbinas hidráulicas
Fluid dynamics
Hydraulic turbines
Vertical axis water turbine
Ooverset mesh
Sliding mesh
Computational fluid dynamics
dc.subject.armarc.eng.fl_str_mv Fluid dynamics
Hydraulic turbines
dc.subject.proposal.eng.fl_str_mv Vertical axis water turbine
Ooverset mesh
Sliding mesh
Computational fluid dynamics
description The application of Computational Fluid Dynamics (CFD) to energy-related problems has increased in the last decades in both renewable and conventional energy conversion processes. In recent years, the application of CFD in the study of hydraulic, marine, tidal, and hydrokinetic turbines has focused on the understanding of the details of the complex turbulent flow and also in improving the prediction of the performance of these devices. There are several complexities involved in the simulation of Vertical Axis Turbine (VAT) for hydrokinetic applications. One of them is the necessity of a dynamic mesh model. Typically, the model used in the simulation of these devices is the sliding mesh technique, but in recent years the fast development of the overset (also known as chimera) mesh technique has caught the attention of the academic community. In the present paper, a comparison between these two techniques is done in order to establish their advantages and disadvantages in the two-dimensional simulation of vertical axis turbines. The comparison was done not only for the prediction of performance parameters of the turbine but also for the capabilities of the models to capture complex flow phenomena in these devices and computational costs.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-05-12T16:42:12Z
dc.date.available.none.fl_str_mv 2022-05-12T16:42:12Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 22279717
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13865
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 22279717
Universidad Autónoma de Occidente
Repositorio Educativo Digital
url https://hdl.handle.net/10614/13865
https://red.uao.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 17
dc.relation.citationissue.spa.fl_str_mv 11
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 9
dc.relation.cites.eng.fl_str_mv Lopez Mejia, O. D., Mejia, O. E., Escorcia, K. M., Suarez, F., Laín Behatove, S. (2021). Comparison of Sliding and Overset Mesh Techniques in the Simulation of a Vertical Axis Turbine for Hydrokinetic Applications. Processes. MDPI. Vol 9 (11), pp. 1-17. https://www.mdpi.com/2227-9717/9/11/1933
dc.relation.ispartofjournal.eng.fl_str_mv Processes
dc.relation.references.none.fl_str_mv 1. Khana, M.J.; Bhuyana, G.; Iqbalb, M.T.; Quaicoe, J.E. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Appl. Energy 2009, 86, 1823–1835. [CrossRef]
2. Laws, N.D.; Epps, B.P. Hydrokinetic energy conversion: Technology, research, and outlook. Renew. Sustain. Energy Rev. 2016, 57, 1245–1259. [CrossRef]
3. Ma, Y.; Hu, C.; Li, Y.; Deng, R. Research on the Hydrodynamic Performance of a Vertical Axis Current Turbine with Forced Oscillation. Energies 2018, 11, 3349. [CrossRef]
4. Patel, V.; Eldho, T.I.; Prabhu, S.V. Performance enhancement of a Darrieus hydrokinetic turbine with the blocking of a specific flow region for optimum use of hydropower. Renew. Energy 2019, 135, 1144–1156. [CrossRef]
5. Amet, E. Simulation Numerique d’une Hydrolienne à Axe Vertical de Type Darrieus. Ph.D. Thesis, Institut Polytechnique Grenoble, Grenoble, France, 2009.
6. Hoerner, S.; Abbaszadeh, S.; Maître, T.; Cleynen, O.; Thévenin, D. Characteristics of the fluid–structure interaction within Darrieus water turbines with highly flexible blades. J. Fluids Struct. 2019, 88, 13–30. [CrossRef]
7. Birjandi, A.; Bibeau, E. Frequency analysis of the power output for a vertical axis marine turbine operating in the wake. Ocean Eng. 2016, 127, 325–344. [CrossRef]
8. Bachant, P.; Wosnik, M. Effects of Reynolds Number on the Energy Conversion and Near-Wake Dynamics of a High Solidity Vertical-Axis Cross-Flow Turbine. Energies 2016, 9, 73. [CrossRef]
9. Rawlings, G. Parametric Characterization of An Experimental Vertical Axis Hydroturbine. Master’s Thesis, University of British Columbia, Vancouver, DC, Canada, 2008.
10. Ouro, P.; Runge, S.; Stoesser, Q.T. Three-dimensionality of the wake recovery behind a vertical axis turbine. Renew. Energy 2019, 133, 1066–1077. [CrossRef]
11. Akbarn, M.; Mustafa, V. A new approach for optimization of Vertical AxisWind Turbines. J. Wind Eng. Ind. Aerodyn. 2016, 153, 34–45. [CrossRef]
12. Ma, Y.; Lam, W.-H.; Cui, Y.; Zhang, T.; Jiang, J.; Sun, C.; Guo, J.; Wang, S.; Lam, S.S.; Hamill, G. Theoretical vertical-axis tidal-current-turbine wake model using axial momentum theory with CFD corrections. Appl. Ocean Res. 2018, 79, 113–122. [CrossRef]
13. Goude, A.; Ågren, O. Simulations of a vertical axis turbine in a channel. Renew. Energy 2014, 63, 477–485. [CrossRef]
14. Epps, B.; Roesler, B.; Medvitz, R.; Choo, Y.; McEntee, J. A viscous vortex lattice method for analysis of cross-flow propellers and turbines. Renew. Energy 2019, in press. [CrossRef]
15. Chatelain, P.; Duponcheel, M.; Caprace, D.; Marichal, Y.; Winckelmans, G. Vortex particle-mesh simulations of vertical axis wind turbine flows: From the airfoil performance to the very far wake. Wind Energy Sci. 2017, 2, 317–328. [CrossRef]
16. de Tavernier, D.; Ferreira, C. An extended actuator cylinder model: Actuator-in-actuator cylinder (AC-squared) model. Wind Energy 2019, 22, 1058–1070. [CrossRef]
17. Mendoza, V. Aerodynamic Studies of Vertical Axis Wind Turbines using the Actuator Line Model. Ph.D. Thesis, Uppsala University, Upssala, Sweden, 2018.
18. Madsen, H.; Paulsen, U.; Vitae, L. Analysis of VAWT aerodynamics and design using the Actuator Cylinder flow model. J. Phys. Conf. Ser. 2014, 555, 012065. [CrossRef]
19. Balduzzi, F.; Bianchini, A.; Maleci, R.; Ferrara, G.; Ferrari, L. Critical issues in the CFD simulation of Darrieus wind turbines. Renew. Energy 2016, 85, 419–435. [CrossRef]
20. Rezaeiha, A.; Kalkman, I.; Blocken, B. CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment. Renew. Energy 2017, 107, 373–385. [CrossRef]
21. Maître, T.; Amet, E.; Pellone, C. Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments. Renew. Energy 2013, 51, 497–512. [CrossRef]
22. McNaughton, J.; Afgan, I.; Apsley, D.D.; Rolfo, S.; Stallard, T.; Stansby, P.K. A simple sliding-mesh interface procedure and its application to the CFD simulation of a tidal-stream turbine. Int. J. Numer. Methods Fluids 2014, 74, 250–269. [CrossRef]
23. Steger, L.J.; Dougherty, F.; Benek, J.A. A Chimera Grid Scheme. In Advances in Grid Generation; Ghia, K., Ghia, U., Eds.; American Society of Mechanical Engineers: Houston, TX, USA, 1983.
24. Laín, S.; Taborda, M.A.; López, O.D. Numerical study of the effect of winglets on the performance of a straight blade Darrieus water turbine. Energies 2018, 11, 297. [CrossRef]
25. López, O.D.; Quiñones, J.J.; Laín, S. RANS and Hybrid RANS-LES Simulations of an H-Type Darrieus Vertical AxisWater Turbine. Energies 2018, 11, 2348.
26. Kozak, P. Effects of Unsteady Aerodynamics on Vertical-AxisWind Turbine Performance. Master’s Thesis, Illinois Institute of Technology, Chicago, IL, USA, 2014.
27. McLean, D. Development of the Dual-Vertical-AxisWind Turbine with Active Blade Pitch Control. Master’s Thesis, Concordia University, Montreal, QC, Canada, 2017.
28. Lei, H.; Su, J.; Bao, Y.; Chen, Y.; Han, Z.; Zhou, D. Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms. Energy 2019, 166, 471–489. [CrossRef]
29. Kinsey, T.; Dumas, G. Impact of channel blockage on the performance of axial and cross-flow hydrokinetic turbines. Renew. Energy 2017, 103, 239–254. [CrossRef]
30. Gorle, J.; Chatellier, L.; Pons, F.; Ba, M. Modulated circulation control around the blades of a vertical axis hydrokinetic turbine for flow control and improved performance. Renew. Sustain. Energy Rev. 2019, 105, 363–377. [CrossRef]
31. Suarez, F. Parameter Study of a Ducted H-Darrieus Rotor in a Hydrokinetic Power Plant: Numerical Simulation. Master’s Thesis, TU Darmstadt, Darmstadt, Germany, 2015.
32. Miller, M.A.; Duvvuri, S.; Kelly,W.D.; Hultmark, M. Rotor solidity effects on the performance of vertical-axis wind turbines at high Reynolds numbers. J. Phys. Conf. Ser. 2018, 1037, 052015. [CrossRef]
33. López, O.; Meneses, D.; Quintero, B.; Laín, S. Computational study of transient flow around Darrieus type cross flow water turbines. J. Renew. Sustain. Energy 2016, 8, 014501. [CrossRef]
34. Laín, S.; Cortés, P.; López, O.D. Numerical Simulation of the Flow around a Straight Blade Darrieus Water Turbine. Energies 2020, 13, 1137. [CrossRef]
dc.rights.spa.fl_str_mv Derechos reservados - MDPI, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - MDPI, 2021
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 17 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI
dc.source.spa.fl_str_mv https://www.mdpi.com/2227-9717/9/11/1933
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/bd78167e-8561-4d35-b4f0-4950524c44ad/download
https://red.uao.edu.co/bitstreams/6ce59b91-f7ae-4a15-ac6e-5de61f2cab43/download
https://red.uao.edu.co/bitstreams/bfc88602-2ced-491d-9e53-6c914ab7c2c8/download
https://red.uao.edu.co/bitstreams/6f94309f-0f7e-4481-bbb4-6972f6633f0c/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
73d067240447375cc4419727e8d3694a
fd92f0873b93d97b431147c8c3e2518b
b0dc1208e8179c5d04301a465a97e378
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259830315024384
spelling Lopez Mejia, Omar Dcb36c6c227058b2362ba55514ecb7c77Mejia, Oscar E.96d427b0772acc3d481ce6e18071e48cEscorcia, Karold8b083a0348948fb91e5fed7f9be6b9bSuarez, Fabianb62b3ef1fc20c6430c343c437fe3fc48Laín Beatove, Santiagovirtual::2527-12022-05-12T16:42:12Z2022-05-12T16:42:12Z202122279717https://hdl.handle.net/10614/13865Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/The application of Computational Fluid Dynamics (CFD) to energy-related problems has increased in the last decades in both renewable and conventional energy conversion processes. In recent years, the application of CFD in the study of hydraulic, marine, tidal, and hydrokinetic turbines has focused on the understanding of the details of the complex turbulent flow and also in improving the prediction of the performance of these devices. There are several complexities involved in the simulation of Vertical Axis Turbine (VAT) for hydrokinetic applications. One of them is the necessity of a dynamic mesh model. Typically, the model used in the simulation of these devices is the sliding mesh technique, but in recent years the fast development of the overset (also known as chimera) mesh technique has caught the attention of the academic community. In the present paper, a comparison between these two techniques is done in order to establish their advantages and disadvantages in the two-dimensional simulation of vertical axis turbines. The comparison was done not only for the prediction of performance parameters of the turbine but also for the capabilities of the models to capture complex flow phenomena in these devices and computational costs.17 páginasapplication/pdfengMDPIDerechos reservados - MDPI, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.mdpi.com/2227-9717/9/11/1933Comparison of sliding and overset mesh techniques in the simulation of a vertical axis turbine for hydrokinetic applicationsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Dinámica de fluidosTurbinas hidráulicasFluid dynamicsHydraulic turbinesVertical axis water turbineOoverset meshSliding meshComputational fluid dynamics171119Lopez Mejia, O. D., Mejia, O. E., Escorcia, K. M., Suarez, F., Laín Behatove, S. (2021). Comparison of Sliding and Overset Mesh Techniques in the Simulation of a Vertical Axis Turbine for Hydrokinetic Applications. Processes. MDPI. Vol 9 (11), pp. 1-17. https://www.mdpi.com/2227-9717/9/11/1933Processes1. Khana, M.J.; Bhuyana, G.; Iqbalb, M.T.; Quaicoe, J.E. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Appl. Energy 2009, 86, 1823–1835. [CrossRef]2. Laws, N.D.; Epps, B.P. Hydrokinetic energy conversion: Technology, research, and outlook. Renew. Sustain. Energy Rev. 2016, 57, 1245–1259. [CrossRef]3. Ma, Y.; Hu, C.; Li, Y.; Deng, R. Research on the Hydrodynamic Performance of a Vertical Axis Current Turbine with Forced Oscillation. Energies 2018, 11, 3349. [CrossRef]4. Patel, V.; Eldho, T.I.; Prabhu, S.V. Performance enhancement of a Darrieus hydrokinetic turbine with the blocking of a specific flow region for optimum use of hydropower. Renew. Energy 2019, 135, 1144–1156. [CrossRef]5. Amet, E. Simulation Numerique d’une Hydrolienne à Axe Vertical de Type Darrieus. Ph.D. Thesis, Institut Polytechnique Grenoble, Grenoble, France, 2009.6. Hoerner, S.; Abbaszadeh, S.; Maître, T.; Cleynen, O.; Thévenin, D. Characteristics of the fluid–structure interaction within Darrieus water turbines with highly flexible blades. J. Fluids Struct. 2019, 88, 13–30. [CrossRef]7. Birjandi, A.; Bibeau, E. Frequency analysis of the power output for a vertical axis marine turbine operating in the wake. Ocean Eng. 2016, 127, 325–344. [CrossRef]8. Bachant, P.; Wosnik, M. Effects of Reynolds Number on the Energy Conversion and Near-Wake Dynamics of a High Solidity Vertical-Axis Cross-Flow Turbine. Energies 2016, 9, 73. [CrossRef]9. Rawlings, G. Parametric Characterization of An Experimental Vertical Axis Hydroturbine. Master’s Thesis, University of British Columbia, Vancouver, DC, Canada, 2008.10. Ouro, P.; Runge, S.; Stoesser, Q.T. Three-dimensionality of the wake recovery behind a vertical axis turbine. Renew. Energy 2019, 133, 1066–1077. [CrossRef]11. Akbarn, M.; Mustafa, V. A new approach for optimization of Vertical AxisWind Turbines. J. Wind Eng. Ind. Aerodyn. 2016, 153, 34–45. [CrossRef]12. Ma, Y.; Lam, W.-H.; Cui, Y.; Zhang, T.; Jiang, J.; Sun, C.; Guo, J.; Wang, S.; Lam, S.S.; Hamill, G. Theoretical vertical-axis tidal-current-turbine wake model using axial momentum theory with CFD corrections. Appl. Ocean Res. 2018, 79, 113–122. [CrossRef]13. Goude, A.; Ågren, O. Simulations of a vertical axis turbine in a channel. Renew. Energy 2014, 63, 477–485. [CrossRef]14. Epps, B.; Roesler, B.; Medvitz, R.; Choo, Y.; McEntee, J. A viscous vortex lattice method for analysis of cross-flow propellers and turbines. Renew. Energy 2019, in press. [CrossRef]15. Chatelain, P.; Duponcheel, M.; Caprace, D.; Marichal, Y.; Winckelmans, G. Vortex particle-mesh simulations of vertical axis wind turbine flows: From the airfoil performance to the very far wake. Wind Energy Sci. 2017, 2, 317–328. [CrossRef]16. de Tavernier, D.; Ferreira, C. An extended actuator cylinder model: Actuator-in-actuator cylinder (AC-squared) model. Wind Energy 2019, 22, 1058–1070. [CrossRef]17. Mendoza, V. Aerodynamic Studies of Vertical Axis Wind Turbines using the Actuator Line Model. Ph.D. Thesis, Uppsala University, Upssala, Sweden, 2018.18. Madsen, H.; Paulsen, U.; Vitae, L. Analysis of VAWT aerodynamics and design using the Actuator Cylinder flow model. J. Phys. Conf. Ser. 2014, 555, 012065. [CrossRef]19. Balduzzi, F.; Bianchini, A.; Maleci, R.; Ferrara, G.; Ferrari, L. Critical issues in the CFD simulation of Darrieus wind turbines. Renew. Energy 2016, 85, 419–435. [CrossRef]20. Rezaeiha, A.; Kalkman, I.; Blocken, B. CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment. Renew. Energy 2017, 107, 373–385. [CrossRef]21. Maître, T.; Amet, E.; Pellone, C. Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments. Renew. Energy 2013, 51, 497–512. [CrossRef]22. McNaughton, J.; Afgan, I.; Apsley, D.D.; Rolfo, S.; Stallard, T.; Stansby, P.K. A simple sliding-mesh interface procedure and its application to the CFD simulation of a tidal-stream turbine. Int. J. Numer. Methods Fluids 2014, 74, 250–269. [CrossRef]23. Steger, L.J.; Dougherty, F.; Benek, J.A. A Chimera Grid Scheme. In Advances in Grid Generation; Ghia, K., Ghia, U., Eds.; American Society of Mechanical Engineers: Houston, TX, USA, 1983.24. Laín, S.; Taborda, M.A.; López, O.D. Numerical study of the effect of winglets on the performance of a straight blade Darrieus water turbine. Energies 2018, 11, 297. [CrossRef]25. López, O.D.; Quiñones, J.J.; Laín, S. RANS and Hybrid RANS-LES Simulations of an H-Type Darrieus Vertical AxisWater Turbine. Energies 2018, 11, 2348.26. Kozak, P. Effects of Unsteady Aerodynamics on Vertical-AxisWind Turbine Performance. Master’s Thesis, Illinois Institute of Technology, Chicago, IL, USA, 2014.27. McLean, D. Development of the Dual-Vertical-AxisWind Turbine with Active Blade Pitch Control. Master’s Thesis, Concordia University, Montreal, QC, Canada, 2017.28. Lei, H.; Su, J.; Bao, Y.; Chen, Y.; Han, Z.; Zhou, D. Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms. Energy 2019, 166, 471–489. [CrossRef]29. Kinsey, T.; Dumas, G. Impact of channel blockage on the performance of axial and cross-flow hydrokinetic turbines. Renew. Energy 2017, 103, 239–254. [CrossRef]30. Gorle, J.; Chatellier, L.; Pons, F.; Ba, M. Modulated circulation control around the blades of a vertical axis hydrokinetic turbine for flow control and improved performance. Renew. Sustain. Energy Rev. 2019, 105, 363–377. [CrossRef]31. Suarez, F. Parameter Study of a Ducted H-Darrieus Rotor in a Hydrokinetic Power Plant: Numerical Simulation. Master’s Thesis, TU Darmstadt, Darmstadt, Germany, 2015.32. Miller, M.A.; Duvvuri, S.; Kelly,W.D.; Hultmark, M. Rotor solidity effects on the performance of vertical-axis wind turbines at high Reynolds numbers. J. Phys. Conf. Ser. 2018, 1037, 052015. [CrossRef]33. López, O.; Meneses, D.; Quintero, B.; Laín, S. Computational study of transient flow around Darrieus type cross flow water turbines. J. Renew. Sustain. Energy 2016, 8, 014501. [CrossRef]34. Laín, S.; Cortés, P.; López, O.D. Numerical Simulation of the Flow around a Straight Blade Darrieus Water Turbine. Energies 2020, 13, 1137. [CrossRef]Comunidad universitaria en generalPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2527-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2527-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2527-10000-0002-0269-2608virtual::2527-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2527-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/bd78167e-8561-4d35-b4f0-4950524c44ad/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALComparison of Sliding and Overset Mesh Techniques in the Simulation of a Vertical Axis Turbine for Hydrokinetic Applications.pdfComparison of Sliding and Overset Mesh Techniques in the Simulation of a Vertical Axis Turbine for Hydrokinetic Applications.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf3993402https://red.uao.edu.co/bitstreams/6ce59b91-f7ae-4a15-ac6e-5de61f2cab43/download73d067240447375cc4419727e8d3694aMD53TEXTComparison of Sliding and Overset Mesh Techniques in the Simulation of a Vertical Axis Turbine for Hydrokinetic Applications.pdf.txtComparison of Sliding and Overset Mesh Techniques in the Simulation of a Vertical Axis Turbine for Hydrokinetic Applications.pdf.txtExtracted texttext/plain57679https://red.uao.edu.co/bitstreams/bfc88602-2ced-491d-9e53-6c914ab7c2c8/downloadfd92f0873b93d97b431147c8c3e2518bMD54THUMBNAILComparison of Sliding and Overset Mesh Techniques in the Simulation of a Vertical Axis Turbine for Hydrokinetic Applications.pdf.jpgComparison of Sliding and Overset Mesh Techniques in the Simulation of a Vertical Axis Turbine for Hydrokinetic Applications.pdf.jpgGenerated Thumbnailimage/jpeg16533https://red.uao.edu.co/bitstreams/6f94309f-0f7e-4481-bbb4-6972f6633f0c/downloadb0dc1208e8179c5d04301a465a97e378MD5510614/13865oai:red.uao.edu.co:10614/138652024-03-06 15:56:06.632https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2021open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K