Diseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos
Este trabajo muestra el desarrollo de un montaje experimental para estudiar el efecto de las burbujas sobre el espectro de Fourier de ondas ultrasónicas. Fueron diseñadas y construidas dos columnas de agua con la finalidad de generar un flujo bifásico agua-burbujas, además fueron instrumentadas con...
- Autores:
-
Henao Santa, Sebastián
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/11743
- Acceso en línea:
- http://red.uao.edu.co//handle/10614/11743
- Palabra clave:
- Ingeniería Mecatrónica
Ultrasonido
Flujo bifásico
Burbujas
Espectro de atenuación
Espectro de velocidad
Ultrasonido
Two-phase flow
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_7719414ca2f01ef96a671f3482589f37 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11743 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Diseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos |
title |
Diseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos |
spellingShingle |
Diseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos Ingeniería Mecatrónica Ultrasonido Flujo bifásico Burbujas Espectro de atenuación Espectro de velocidad Ultrasonido Two-phase flow |
title_short |
Diseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos |
title_full |
Diseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos |
title_fullStr |
Diseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos |
title_full_unstemmed |
Diseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos |
title_sort |
Diseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos |
dc.creator.fl_str_mv |
Henao Santa, Sebastián |
dc.contributor.advisor.none.fl_str_mv |
Franco Guzmán, Ediguer Enrique |
dc.contributor.author.spa.fl_str_mv |
Henao Santa, Sebastián |
dc.subject.spa.fl_str_mv |
Ingeniería Mecatrónica Ultrasonido Flujo bifásico Burbujas Espectro de atenuación Espectro de velocidad |
topic |
Ingeniería Mecatrónica Ultrasonido Flujo bifásico Burbujas Espectro de atenuación Espectro de velocidad Ultrasonido Two-phase flow |
dc.subject.eng.fl_str_mv |
Ultrasonido Two-phase flow |
description |
Este trabajo muestra el desarrollo de un montaje experimental para estudiar el efecto de las burbujas sobre el espectro de Fourier de ondas ultrasónicas. Fueron diseñadas y construidas dos columnas de agua con la finalidad de generar un flujo bifásico agua-burbujas, además fueron instrumentadas con transductores ultrasónicos para realizar mediciones en los modos pulso-eco, transmisión-recepción y retrodispersión. Los transductores fueron caracterizados, seleccionando aquellos que tenían mejor respuesta en frecuencia. Los experimentos fueron realizados en el rangos de 0;5 a 5;0 MHZ. A partir de las señales ultrasónicas se calculó un coeficiente de pérdida que modela la caída de amplitud de las ondas como consecuencia de la presencia de las burbujas, con respecto al caso sin burbujas. El coeficiente de pérdida permitió calcular los espectros de velocidad y atenuación. También fueron aplicadas técnicas de procesamiento de imágenes para estimar el radio y el numero de burbujas, en función de la cantidad de aire inyectado, teniendo en cuenta el campo acústico generado por cada uno de los transductores. Los resultados mostraron que los cambios obtenidos en los parámetros acústicos de las ondas permiten inferir la cantidad de burbujas |
publishDate |
2019 |
dc.date.accessioned.spa.fl_str_mv |
2019-12-16T21:58:29Z |
dc.date.available.spa.fl_str_mv |
2019-12-16T21:58:29Z |
dc.date.issued.spa.fl_str_mv |
2019-11-20 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.uri.spa.fl_str_mv |
http://red.uao.edu.co//handle/10614/11743 |
url |
http://red.uao.edu.co//handle/10614/11743 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.spa.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
77 páginas |
dc.coverage.spatial.spa.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Mecatrónica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Automática y Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.source.spa.fl_str_mv |
instname:Universidad Autónoma de Occidente reponame:Repositorio Institucional UAO |
instname_str |
Universidad Autónoma de Occidente |
institution |
Universidad Autónoma de Occidente |
reponame_str |
Repositorio Institucional UAO |
collection |
Repositorio Institucional UAO |
dc.source.bibliographiccitation.spa.fl_str_mv |
[1] D. B. Baroni, J. S. C. Filho, C. A. Lamy, M. S. Q. Bittencourt, C. M. N. A. Pereira, and M. S. Motta, “Determination of size distribution of bubbles in a bubbly co-lumn two-phase flow by ultrasound and neural networks,” in Proceedings of the 2011 International Nuclear Atlantic Conference - INAC 2011. Belo Horizon-te,MG, Brazil, October 24-28, 2011: Associação Brasileira de Energia Nuclear - ABEN, 2011. [2] D. Barnea, O. Shoham, and Y. Taitel, “Flow pattern characterization in two phase flow by electrical conductance probe,” International Journal of Multiphase Flow, vol. 6, no. 5, pp. 387 – 397, 1980. [en linea]. Disponible en : http://www.sciencedirect.com/science/article/ pii/0301932280900014 [3] P. Andreussi, A. D. Donfrancesco, and M. Messia, “An impedance method for the measurement of liquid hold-up in two-phase flow,” International Journal of Multiphase Flow, vol. 14, no. 6, pp. 777 – 785, 1988. [en linea]. Disponible en http://www.sciencedirect.com/science/article/ pii/0301932288900742 [4] J. S. Chang, Y. Ichikawa, G. A. Irons, E. C. Morala, and P. T. Wan, “Void fraction measurement by an ultrasonic transmission technique in bubbly gas-liquid twophase flow,” in Measuring Techniques in Gas-Liquid Two-Phase Flows, J. M. Delhaye and G. Cognet, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984, pp. 319–335. [5] J. S. Chang and E. Morala, “Determination of two-phase interfacial areas by an ultrasonic technique,” Nuclear Engineering and Design, vol. 122, no. 1, pp. 143 – 156, 1990. [en linea]. Disponible en : http://www.sciencedirect.com/ science/article/pii/002954939090203A [6] B. M. Wrobel, “Ultrasonic measurement and characterization of liquid-particle flow,” Ph.D. dissertation, University of Stavanger, Norway, 2012. [7] R. T. Higuti, E. Bacaneli, C. M. Furukawa, and J. C. Adamowski, “Ultrasonic characterization of emulsions: milk and water in oil,” in 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027), vol. 1, Oct 1999, pp. 779–782 vol.1[8] G. S. Kino, Acoustic waves: devices, imaging and analog signal processing. Englewood Cliff: Prentice-Hall, 1987. [9] R. T. Higuti, C. M. Furukawa, and J. C. Adamowski, “Characterization of Lubricating Oil Using Ultrasound,” Journal of the Brazilian Society of Mechanical Sciences, vol. 23, pp. 453 – 461, 00 2001. [10] D. McClements, M. Povey, M. Jury, and E. Betsanis, “Ultrasonic characterization of a food emulsion,” Ultrasonics, vol. 28, no. 4, pp. 266 – 272, 1990. [en linea]. Disponible en : http://www.sciencedirect.com/science/article/ pii/0041624X90900934 [11] W. P. Mason, W. O. Baker, J. M. McSkimin, and J. H. Heiss, “Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies,” Physical Review, vol. 75, no. 6, pp. 936–946, 1949. [12] E. E. Franco, J. C. Adamowski, R. T. Higuti, and F. Buiochi, “Viscosity measurement of newtonian liquids using the complex reflection coefficient,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 55, no. 10, pp. 2247–2253, 2008. [13] R. Saggin and J. N. Coupland, “Rheology of xanthan/sucrose mixtures at ultrasonic frequencies,” Journal of Food Engineering, vol. 65, no. 1, pp. 49–53, November 2004. [14] E. E. Franco, J. C. Adamowski, and F. Buiochi, “Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 57, no. 5, pp. 1133–1139, 2010. [15] A. Rabbani and D. R. Schmitt, “Ultrasonic shear wave reflectometry applied to the determination of the shear moduli and viscosity of a viscoelastic bitumen,” Fuel, vol. 232, pp. 506 – 518, 2018. [en linea. Disponible en : http://www.sciencedirect.com/science/article/pii/ S0016236118310202 [16] Y. S. Lee, S. L. Golub, and G. H. Brown, “Ultrasonic shear wave study of the mechanical properties of a nematic liquid crystal,” The Journal of Physical Chemistry, vol. 76, no. 17, pp. 2409–2417, 1972.[17] K. Balasubramaniam, V. Shah, R. D. Costley, G. Bourdreaux, and J. P. Singh, “High temperature ultrasonic sensor for the simultaneous measurement of viscosity and temperature of melts,” Review of Scientific Instruments, vol. 70, no. 12, pp. 4618–4623, 1999. [18] E. E. Franco and F. Buiochi, “Ultrasonic measurement of viscosity: Signal processing methodologies,” Ultrasonics, vol. 91, pp. 213 – 219, 2019. [Online]. Disponible en : http://www.sciencedirect.com/science/ article/pii/S0041624X17308016 [19] A. L., “Ultrasonic spectroscopy,” in The Evaluation of Materials and Structures by Quantitative Ultrasonics. Vienna: CISM International Centre for Mechanical Sciences, Springer, 1993. [20] Y. Soong, I. K. Gamwo, A. G. Blackwell, F. W. Harke, and E. P. Ladner, “Ultrasonic characterizations of slurries in a bubble column reactor,” Industrial & Engineering Chemistry Research, vol. 38, no. 5, pp. 2137–2143, 1999. [en linea]. Disponible en : https://doi.org/10.1021/ie970932k [21] G. T. Yim and T. G. Leighton, “Real-time on-line ultrasonic monitoring for bubbles in ceramic ‘slip’ in pottery pipelines,” Ultrasonics, vol. 50, no. 1, pp. 60 – 67, 2010. [en linea]. Disponible en : http://www.sciencedirect.com/science/ article/pii/S0041624X09000845 [22] B. L. Johnson, M. R. Holland, J. G. Miller, and J. I. Katz, “Ultrasonic attenuation and speed of sound of cornstarch suspensions,” The Journal of the Acoustical Society of America, vol. 133, no. 3, pp. 1399–1403, 2013. [en linea]. Disponible en : https://doi.org/10.1121/1.4789926 [23] B. M. Wrobel and R. W. Time, “Improved pulsed broadband ultrasonic spectroscopy for analysis of liquid-particle flow,” Applied Acoustics, vol. 72, no. 6, pp. 324 – 335, 2011. [en linea]. Disponible en : http:// www.sciencedirect.com/science/article/pii/S0003682X10002689 [24] H. Mori, T. Norisuye, H. Nakanishi, and Q. Tran-Cong-Miyata, “Ultrasound attenuation and phase velocity of micrometer-sized particle suspensions with viscous and thermal losses,” Ultrasonics, vol. 83, pp. 171 – 178, 2018, ultrasonic advances applied to materials science. [en linea]. Disponible en :http://www.sciencedirect.com/science/article/pii/S0041624X16304346[25] K. Kubo, T. Norisuye, T. N. Tran, D. Shibata, H. Nakanishi, and Q. Tran- Cong-Miyata, “Sound velocity and attenuation coefficient of hard and hollow microparticle suspensions observed by ultrasound spectroscopy,” Ultrasonics, vol. 62, pp. 186 – 194, 2015. [en linea]. Disponible: http: //www.sciencedirect.com/science/article/pii/S0041624X15001353 [26] A. Strybulevych, V. Leroy, M. G. Scanlon, and J. H. Page, “Characterizing a model food gel containing bubbles and solid inclusions using ultrasound,” Soft Matter, vol. 3, pp. 1388–1394, 2007. [en linea]. Disponible: http:// dx.doi.org/10. 1039/B706886G [27] M. Ribeiro, C. Gonçalves, P. Regueiras, M. Guimarães, and J. Cruz Pinto, “Measurements of toluene–water dispersions hold-up using a non-invasive ultrasonic technique,” Chemical Engineering Journal, vol. 118, pp. 47–54, 05 2006. [28] M. M. M. R. Luís M. R. Brás, Elsa F. Gomes and M. M. L. Guimarães, ““drop distribution determination in a liquid-liquid dispersion by image processing,” International Journal of Chemical Engineering, 2009. [29] T. G. Leighton, “What is ultrasound? (review),” Progress in Biophysics and Molecular Biology, vol. 93, pp. 3–83, 2007. [30] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics. Wiley, 1999. [31] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Señales y sistemas, 2nd ed. New Jersey: Prentice Hall & IBD, 1998. [32] A. Brown, “Materials testing by ultrasonic spectroscopy,” Ultrasonics, vol. 11, no. 5, pp. 202 – 210, 1973. [en linea]. Disponible: http:// www.sciencedirect.com/science/article/pii/0041624X7390231X [33] A. H. G. Cents, “Mass transfer and hydrodynamics in stirred gas-liquid-liquid contactors,” Ph.D. dissertation, Universiteit Twente, 7 2003. |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/6d575b55-03ea-46c8-b2d7-5b36a9f94276/download https://red.uao.edu.co/bitstreams/f6b0a2c0-1caf-4f28-b31a-4dfbc106ae60/download https://red.uao.edu.co/bitstreams/ce177195-56a5-4c03-bfbb-549b1a2206b7/download https://red.uao.edu.co/bitstreams/dfb28f77-151c-4890-bb55-ac47e258d963/download https://red.uao.edu.co/bitstreams/058b55b1-8320-4fe9-80a1-dc0a97cb8550/download https://red.uao.edu.co/bitstreams/1702f201-c4b7-438c-8f8b-c248f4bb1edc/download https://red.uao.edu.co/bitstreams/b8a68ac7-80f1-4a75-9e78-b41536da2ee8/download https://red.uao.edu.co/bitstreams/e7027a76-0ea1-440d-ac80-a305be69f71a/download |
bitstream.checksum.fl_str_mv |
1f0d5e01ed5282015de858a790033b65 0275431bea02a36310fa33fb53439d79 281417656503777c3d04c64d96f28d05 d4ae6b311afaed50ee9f7dbee72c6f86 4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 7a74a1ae6b6bb355a5531022127e0d9a 3f85c861e8b0b53fe6feb11810d970b8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260180231127040 |
spelling |
Franco Guzmán, Ediguer Enriquevirtual::1814-1Henao Santa, Sebastián9e3955d021c35eb6e91f526823bc95a5-1Ingeniero MecatrónicoUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-12-16T21:58:29Z2019-12-16T21:58:29Z2019-11-20http://red.uao.edu.co//handle/10614/11743Este trabajo muestra el desarrollo de un montaje experimental para estudiar el efecto de las burbujas sobre el espectro de Fourier de ondas ultrasónicas. Fueron diseñadas y construidas dos columnas de agua con la finalidad de generar un flujo bifásico agua-burbujas, además fueron instrumentadas con transductores ultrasónicos para realizar mediciones en los modos pulso-eco, transmisión-recepción y retrodispersión. Los transductores fueron caracterizados, seleccionando aquellos que tenían mejor respuesta en frecuencia. Los experimentos fueron realizados en el rangos de 0;5 a 5;0 MHZ. A partir de las señales ultrasónicas se calculó un coeficiente de pérdida que modela la caída de amplitud de las ondas como consecuencia de la presencia de las burbujas, con respecto al caso sin burbujas. El coeficiente de pérdida permitió calcular los espectros de velocidad y atenuación. También fueron aplicadas técnicas de procesamiento de imágenes para estimar el radio y el numero de burbujas, en función de la cantidad de aire inyectado, teniendo en cuenta el campo acústico generado por cada uno de los transductores. Los resultados mostraron que los cambios obtenidos en los parámetros acústicos de las ondas permiten inferir la cantidad de burbujasThis work shows the development of an experimental setup to study the effect of bubbles on the Fourier spectrum of ultrasonic waves. 262/5000 Two water columns were designed and built in order to generate a two-phase water-bubble flow, and they were also instrumented with ultrasonic transducers to perform measurements in pulse-echo, transmission-reception and backscattering modes. The transducers were characterized, selecting those with the best frequency response. Experiments were performed in the range between 0;5 and 5;0 MHZ. From the ultrasonic signals a loss coefficient was calculated. This coefficient models the drop in amplitude of the waves as a result of the presence of the bubbles, with respect to the a reference case without bubbles. The loss coefficient allowed the calculation of the velocity and attenuation spectra. In order to estimate the radius and number of bubbles, as a function of the amount of air injected, image processing techniques were applied. This was made taking into account the acoustic field generated by each transducer. The results showed that the changes obtained in the acoustic parameters of the waves allow to infere of the amount of bubblesProyecto de grado (Ingeniero Mecatrónico)-- Universidad Autónoma de Occidente, 2019PregradoIngeniero(a) Mecatrónico(a)application/pdf77 páginasspaUniversidad Autónoma de OccidenteIngeniería MecatrónicaDepartamento de Automática y ElectrónicaFacultad de IngenieríaDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2instname:Universidad Autónoma de Occidentereponame:Repositorio Institucional UAO[1] D. B. Baroni, J. S. C. Filho, C. A. Lamy, M. S. Q. Bittencourt, C. M. N. A. Pereira, and M. S. Motta, “Determination of size distribution of bubbles in a bubbly co-lumn two-phase flow by ultrasound and neural networks,” in Proceedings of the 2011 International Nuclear Atlantic Conference - INAC 2011. Belo Horizon-te,MG, Brazil, October 24-28, 2011: Associação Brasileira de Energia Nuclear - ABEN, 2011. [2] D. Barnea, O. Shoham, and Y. Taitel, “Flow pattern characterization in two phase flow by electrical conductance probe,” International Journal of Multiphase Flow, vol. 6, no. 5, pp. 387 – 397, 1980. [en linea]. Disponible en : http://www.sciencedirect.com/science/article/ pii/0301932280900014 [3] P. Andreussi, A. D. Donfrancesco, and M. Messia, “An impedance method for the measurement of liquid hold-up in two-phase flow,” International Journal of Multiphase Flow, vol. 14, no. 6, pp. 777 – 785, 1988. [en linea]. Disponible en http://www.sciencedirect.com/science/article/ pii/0301932288900742 [4] J. S. Chang, Y. Ichikawa, G. A. Irons, E. C. Morala, and P. T. Wan, “Void fraction measurement by an ultrasonic transmission technique in bubbly gas-liquid twophase flow,” in Measuring Techniques in Gas-Liquid Two-Phase Flows, J. M. Delhaye and G. Cognet, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984, pp. 319–335. [5] J. S. Chang and E. Morala, “Determination of two-phase interfacial areas by an ultrasonic technique,” Nuclear Engineering and Design, vol. 122, no. 1, pp. 143 – 156, 1990. [en linea]. Disponible en : http://www.sciencedirect.com/ science/article/pii/002954939090203A [6] B. M. Wrobel, “Ultrasonic measurement and characterization of liquid-particle flow,” Ph.D. dissertation, University of Stavanger, Norway, 2012. [7] R. T. Higuti, E. Bacaneli, C. M. Furukawa, and J. C. Adamowski, “Ultrasonic characterization of emulsions: milk and water in oil,” in 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027), vol. 1, Oct 1999, pp. 779–782 vol.1[8] G. S. Kino, Acoustic waves: devices, imaging and analog signal processing. Englewood Cliff: Prentice-Hall, 1987. [9] R. T. Higuti, C. M. Furukawa, and J. C. Adamowski, “Characterization of Lubricating Oil Using Ultrasound,” Journal of the Brazilian Society of Mechanical Sciences, vol. 23, pp. 453 – 461, 00 2001. [10] D. McClements, M. Povey, M. Jury, and E. Betsanis, “Ultrasonic characterization of a food emulsion,” Ultrasonics, vol. 28, no. 4, pp. 266 – 272, 1990. [en linea]. Disponible en : http://www.sciencedirect.com/science/article/ pii/0041624X90900934 [11] W. P. Mason, W. O. Baker, J. M. McSkimin, and J. H. Heiss, “Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies,” Physical Review, vol. 75, no. 6, pp. 936–946, 1949. [12] E. E. Franco, J. C. Adamowski, R. T. Higuti, and F. Buiochi, “Viscosity measurement of newtonian liquids using the complex reflection coefficient,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 55, no. 10, pp. 2247–2253, 2008. [13] R. Saggin and J. N. Coupland, “Rheology of xanthan/sucrose mixtures at ultrasonic frequencies,” Journal of Food Engineering, vol. 65, no. 1, pp. 49–53, November 2004. [14] E. E. Franco, J. C. Adamowski, and F. Buiochi, “Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 57, no. 5, pp. 1133–1139, 2010. [15] A. Rabbani and D. R. Schmitt, “Ultrasonic shear wave reflectometry applied to the determination of the shear moduli and viscosity of a viscoelastic bitumen,” Fuel, vol. 232, pp. 506 – 518, 2018. [en linea. Disponible en : http://www.sciencedirect.com/science/article/pii/ S0016236118310202 [16] Y. S. Lee, S. L. Golub, and G. H. Brown, “Ultrasonic shear wave study of the mechanical properties of a nematic liquid crystal,” The Journal of Physical Chemistry, vol. 76, no. 17, pp. 2409–2417, 1972.[17] K. Balasubramaniam, V. Shah, R. D. Costley, G. Bourdreaux, and J. P. Singh, “High temperature ultrasonic sensor for the simultaneous measurement of viscosity and temperature of melts,” Review of Scientific Instruments, vol. 70, no. 12, pp. 4618–4623, 1999. [18] E. E. Franco and F. Buiochi, “Ultrasonic measurement of viscosity: Signal processing methodologies,” Ultrasonics, vol. 91, pp. 213 – 219, 2019. [Online]. Disponible en : http://www.sciencedirect.com/science/ article/pii/S0041624X17308016 [19] A. L., “Ultrasonic spectroscopy,” in The Evaluation of Materials and Structures by Quantitative Ultrasonics. Vienna: CISM International Centre for Mechanical Sciences, Springer, 1993. [20] Y. Soong, I. K. Gamwo, A. G. Blackwell, F. W. Harke, and E. P. Ladner, “Ultrasonic characterizations of slurries in a bubble column reactor,” Industrial & Engineering Chemistry Research, vol. 38, no. 5, pp. 2137–2143, 1999. [en linea]. Disponible en : https://doi.org/10.1021/ie970932k [21] G. T. Yim and T. G. Leighton, “Real-time on-line ultrasonic monitoring for bubbles in ceramic ‘slip’ in pottery pipelines,” Ultrasonics, vol. 50, no. 1, pp. 60 – 67, 2010. [en linea]. Disponible en : http://www.sciencedirect.com/science/ article/pii/S0041624X09000845 [22] B. L. Johnson, M. R. Holland, J. G. Miller, and J. I. Katz, “Ultrasonic attenuation and speed of sound of cornstarch suspensions,” The Journal of the Acoustical Society of America, vol. 133, no. 3, pp. 1399–1403, 2013. [en linea]. Disponible en : https://doi.org/10.1121/1.4789926 [23] B. M. Wrobel and R. W. Time, “Improved pulsed broadband ultrasonic spectroscopy for analysis of liquid-particle flow,” Applied Acoustics, vol. 72, no. 6, pp. 324 – 335, 2011. [en linea]. Disponible en : http:// www.sciencedirect.com/science/article/pii/S0003682X10002689 [24] H. Mori, T. Norisuye, H. Nakanishi, and Q. Tran-Cong-Miyata, “Ultrasound attenuation and phase velocity of micrometer-sized particle suspensions with viscous and thermal losses,” Ultrasonics, vol. 83, pp. 171 – 178, 2018, ultrasonic advances applied to materials science. [en linea]. Disponible en :http://www.sciencedirect.com/science/article/pii/S0041624X16304346[25] K. Kubo, T. Norisuye, T. N. Tran, D. Shibata, H. Nakanishi, and Q. Tran- Cong-Miyata, “Sound velocity and attenuation coefficient of hard and hollow microparticle suspensions observed by ultrasound spectroscopy,” Ultrasonics, vol. 62, pp. 186 – 194, 2015. [en linea]. Disponible: http: //www.sciencedirect.com/science/article/pii/S0041624X15001353 [26] A. Strybulevych, V. Leroy, M. G. Scanlon, and J. H. Page, “Characterizing a model food gel containing bubbles and solid inclusions using ultrasound,” Soft Matter, vol. 3, pp. 1388–1394, 2007. [en linea]. Disponible: http:// dx.doi.org/10. 1039/B706886G [27] M. Ribeiro, C. Gonçalves, P. Regueiras, M. Guimarães, and J. Cruz Pinto, “Measurements of toluene–water dispersions hold-up using a non-invasive ultrasonic technique,” Chemical Engineering Journal, vol. 118, pp. 47–54, 05 2006. [28] M. M. M. R. Luís M. R. Brás, Elsa F. Gomes and M. M. L. Guimarães, ““drop distribution determination in a liquid-liquid dispersion by image processing,” International Journal of Chemical Engineering, 2009. [29] T. G. Leighton, “What is ultrasound? (review),” Progress in Biophysics and Molecular Biology, vol. 93, pp. 3–83, 2007. [30] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics. Wiley, 1999. [31] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Señales y sistemas, 2nd ed. New Jersey: Prentice Hall & IBD, 1998. [32] A. Brown, “Materials testing by ultrasonic spectroscopy,” Ultrasonics, vol. 11, no. 5, pp. 202 – 210, 1973. [en linea]. Disponible: http:// www.sciencedirect.com/science/article/pii/0041624X7390231X [33] A. H. G. Cents, “Mass transfer and hydrodynamics in stirred gas-liquid-liquid contactors,” Ph.D. dissertation, Universiteit Twente, 7 2003.Ingeniería MecatrónicaUltrasonidoFlujo bifásicoBurbujasEspectro de atenuaciónEspectro de velocidadUltrasonidoTwo-phase flowDiseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicosTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Publicationhttps://scholar.google.com/citations?user=4paPIoAAAAAJ&hl=esvirtual::1814-10000-0001-7518-704Xvirtual::1814-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001243730virtual::1814-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::1814-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::1814-1TEXTT08982.pdf.txtT08982.pdf.txtExtracted texttext/plain116540https://red.uao.edu.co/bitstreams/6d575b55-03ea-46c8-b2d7-5b36a9f94276/download1f0d5e01ed5282015de858a790033b65MD57TA8982.pdf.txtTA8982.pdf.txtExtracted texttext/plain4159https://red.uao.edu.co/bitstreams/f6b0a2c0-1caf-4f28-b31a-4dfbc106ae60/download0275431bea02a36310fa33fb53439d79MD59THUMBNAILT08982.pdf.jpgT08982.pdf.jpgGenerated Thumbnailimage/jpeg7440https://red.uao.edu.co/bitstreams/ce177195-56a5-4c03-bfbb-549b1a2206b7/download281417656503777c3d04c64d96f28d05MD58TA8982.pdf.jpgTA8982.pdf.jpgGenerated Thumbnailimage/jpeg12944https://red.uao.edu.co/bitstreams/dfb28f77-151c-4890-bb55-ac47e258d963/downloadd4ae6b311afaed50ee9f7dbee72c6f86MD510CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/058b55b1-8320-4fe9-80a1-dc0a97cb8550/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/1702f201-c4b7-438c-8f8b-c248f4bb1edc/download20b5ba22b1117f71589c7318baa2c560MD54ORIGINALT08982.pdfT08982.pdfapplication/pdf19046494https://red.uao.edu.co/bitstreams/b8a68ac7-80f1-4a75-9e78-b41536da2ee8/download7a74a1ae6b6bb355a5531022127e0d9aMD55TA8982.pdfTA8982.pdfapplication/pdf121930https://red.uao.edu.co/bitstreams/e7027a76-0ea1-440d-ac80-a305be69f71a/download3f85c861e8b0b53fe6feb11810d970b8MD5610614/11743oai:red.uao.edu.co:10614/117432024-03-05 10:55:26.545https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |