Diseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos

Este trabajo muestra el desarrollo de un montaje experimental para estudiar el efecto de las burbujas sobre el espectro de Fourier de ondas ultrasónicas. Fueron diseñadas y construidas dos columnas de agua con la finalidad de generar un flujo bifásico agua-burbujas, además fueron instrumentadas con...

Full description

Autores:
Henao Santa, Sebastián
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/11743
Acceso en línea:
http://red.uao.edu.co//handle/10614/11743
Palabra clave:
Ingeniería Mecatrónica
Ultrasonido
Flujo bifásico
Burbujas
Espectro de atenuación
Espectro de velocidad
Ultrasonido
Two-phase flow
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_7719414ca2f01ef96a671f3482589f37
oai_identifier_str oai:red.uao.edu.co:10614/11743
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.spa.fl_str_mv Diseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos
title Diseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos
spellingShingle Diseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos
Ingeniería Mecatrónica
Ultrasonido
Flujo bifásico
Burbujas
Espectro de atenuación
Espectro de velocidad
Ultrasonido
Two-phase flow
title_short Diseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos
title_full Diseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos
title_fullStr Diseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos
title_full_unstemmed Diseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos
title_sort Diseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos
dc.creator.fl_str_mv Henao Santa, Sebastián
dc.contributor.advisor.none.fl_str_mv Franco Guzmán, Ediguer Enrique
dc.contributor.author.spa.fl_str_mv Henao Santa, Sebastián
dc.subject.spa.fl_str_mv Ingeniería Mecatrónica
Ultrasonido
Flujo bifásico
Burbujas
Espectro de atenuación
Espectro de velocidad
topic Ingeniería Mecatrónica
Ultrasonido
Flujo bifásico
Burbujas
Espectro de atenuación
Espectro de velocidad
Ultrasonido
Two-phase flow
dc.subject.eng.fl_str_mv Ultrasonido
Two-phase flow
description Este trabajo muestra el desarrollo de un montaje experimental para estudiar el efecto de las burbujas sobre el espectro de Fourier de ondas ultrasónicas. Fueron diseñadas y construidas dos columnas de agua con la finalidad de generar un flujo bifásico agua-burbujas, además fueron instrumentadas con transductores ultrasónicos para realizar mediciones en los modos pulso-eco, transmisión-recepción y retrodispersión. Los transductores fueron caracterizados, seleccionando aquellos que tenían mejor respuesta en frecuencia. Los experimentos fueron realizados en el rangos de 0;5 a 5;0 MHZ. A partir de las señales ultrasónicas se calculó un coeficiente de pérdida que modela la caída de amplitud de las ondas como consecuencia de la presencia de las burbujas, con respecto al caso sin burbujas. El coeficiente de pérdida permitió calcular los espectros de velocidad y atenuación. También fueron aplicadas técnicas de procesamiento de imágenes para estimar el radio y el numero de burbujas, en función de la cantidad de aire inyectado, teniendo en cuenta el campo acústico generado por cada uno de los transductores. Los resultados mostraron que los cambios obtenidos en los parámetros acústicos de las ondas permiten inferir la cantidad de burbujas
publishDate 2019
dc.date.accessioned.spa.fl_str_mv 2019-12-16T21:58:29Z
dc.date.available.spa.fl_str_mv 2019-12-16T21:58:29Z
dc.date.issued.spa.fl_str_mv 2019-11-20
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.uri.spa.fl_str_mv http://red.uao.edu.co//handle/10614/11743
url http://red.uao.edu.co//handle/10614/11743
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 77 páginas
dc.coverage.spatial.spa.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.spa.fl_str_mv Universidad Autónoma de Occidente
dc.publisher.program.spa.fl_str_mv Ingeniería Mecatrónica
dc.publisher.department.spa.fl_str_mv Departamento de Automática y Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.source.spa.fl_str_mv instname:Universidad Autónoma de Occidente
reponame:Repositorio Institucional UAO
instname_str Universidad Autónoma de Occidente
institution Universidad Autónoma de Occidente
reponame_str Repositorio Institucional UAO
collection Repositorio Institucional UAO
dc.source.bibliographiccitation.spa.fl_str_mv [1] D. B. Baroni, J. S. C. Filho, C. A. Lamy, M. S. Q. Bittencourt, C. M. N. A. Pereira, and M. S. Motta, “Determination of size distribution of bubbles in a bubbly co-lumn two-phase flow by ultrasound and neural networks,” in Proceedings of the 2011 International Nuclear Atlantic Conference - INAC 2011. Belo Horizon-te,MG, Brazil, October 24-28, 2011: Associação Brasileira de Energia Nuclear - ABEN, 2011. [2] D. Barnea, O. Shoham, and Y. Taitel, “Flow pattern characterization in two phase flow by electrical conductance probe,” International Journal of Multiphase Flow, vol. 6, no. 5, pp. 387 – 397, 1980. [en linea]. Disponible en : http://www.sciencedirect.com/science/article/ pii/0301932280900014 [3] P. Andreussi, A. D. Donfrancesco, and M. Messia, “An impedance method for the measurement of liquid hold-up in two-phase flow,” International Journal of Multiphase Flow, vol. 14, no. 6, pp. 777 – 785, 1988. [en linea]. Disponible en http://www.sciencedirect.com/science/article/ pii/0301932288900742 [4] J. S. Chang, Y. Ichikawa, G. A. Irons, E. C. Morala, and P. T. Wan, “Void fraction measurement by an ultrasonic transmission technique in bubbly gas-liquid twophase flow,” in Measuring Techniques in Gas-Liquid Two-Phase Flows, J. M. Delhaye and G. Cognet, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984, pp. 319–335. [5] J. S. Chang and E. Morala, “Determination of two-phase interfacial areas by an ultrasonic technique,” Nuclear Engineering and Design, vol. 122, no. 1, pp. 143 – 156, 1990. [en linea]. Disponible en : http://www.sciencedirect.com/ science/article/pii/002954939090203A [6] B. M. Wrobel, “Ultrasonic measurement and characterization of liquid-particle flow,” Ph.D. dissertation, University of Stavanger, Norway, 2012. [7] R. T. Higuti, E. Bacaneli, C. M. Furukawa, and J. C. Adamowski, “Ultrasonic characterization of emulsions: milk and water in oil,” in 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027), vol. 1, Oct 1999, pp. 779–782 vol.1[8] G. S. Kino, Acoustic waves: devices, imaging and analog signal processing. Englewood Cliff: Prentice-Hall, 1987. [9] R. T. Higuti, C. M. Furukawa, and J. C. Adamowski, “Characterization of Lubricating Oil Using Ultrasound,” Journal of the Brazilian Society of Mechanical Sciences, vol. 23, pp. 453 – 461, 00 2001. [10] D. McClements, M. Povey, M. Jury, and E. Betsanis, “Ultrasonic characterization of a food emulsion,” Ultrasonics, vol. 28, no. 4, pp. 266 – 272, 1990. [en linea]. Disponible en : http://www.sciencedirect.com/science/article/ pii/0041624X90900934 [11] W. P. Mason, W. O. Baker, J. M. McSkimin, and J. H. Heiss, “Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies,” Physical Review, vol. 75, no. 6, pp. 936–946, 1949. [12] E. E. Franco, J. C. Adamowski, R. T. Higuti, and F. Buiochi, “Viscosity measurement of newtonian liquids using the complex reflection coefficient,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 55, no. 10, pp. 2247–2253, 2008. [13] R. Saggin and J. N. Coupland, “Rheology of xanthan/sucrose mixtures at ultrasonic frequencies,” Journal of Food Engineering, vol. 65, no. 1, pp. 49–53, November 2004. [14] E. E. Franco, J. C. Adamowski, and F. Buiochi, “Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 57, no. 5, pp. 1133–1139, 2010. [15] A. Rabbani and D. R. Schmitt, “Ultrasonic shear wave reflectometry applied to the determination of the shear moduli and viscosity of a viscoelastic bitumen,” Fuel, vol. 232, pp. 506 – 518, 2018. [en linea. Disponible en : http://www.sciencedirect.com/science/article/pii/ S0016236118310202 [16] Y. S. Lee, S. L. Golub, and G. H. Brown, “Ultrasonic shear wave study of the mechanical properties of a nematic liquid crystal,” The Journal of Physical Chemistry, vol. 76, no. 17, pp. 2409–2417, 1972.[17] K. Balasubramaniam, V. Shah, R. D. Costley, G. Bourdreaux, and J. P. Singh, “High temperature ultrasonic sensor for the simultaneous measurement of viscosity and temperature of melts,” Review of Scientific Instruments, vol. 70, no. 12, pp. 4618–4623, 1999. [18] E. E. Franco and F. Buiochi, “Ultrasonic measurement of viscosity: Signal processing methodologies,” Ultrasonics, vol. 91, pp. 213 – 219, 2019. [Online]. Disponible en : http://www.sciencedirect.com/science/ article/pii/S0041624X17308016 [19] A. L., “Ultrasonic spectroscopy,” in The Evaluation of Materials and Structures by Quantitative Ultrasonics. Vienna: CISM International Centre for Mechanical Sciences, Springer, 1993. [20] Y. Soong, I. K. Gamwo, A. G. Blackwell, F. W. Harke, and E. P. Ladner, “Ultrasonic characterizations of slurries in a bubble column reactor,” Industrial & Engineering Chemistry Research, vol. 38, no. 5, pp. 2137–2143, 1999. [en linea]. Disponible en : https://doi.org/10.1021/ie970932k [21] G. T. Yim and T. G. Leighton, “Real-time on-line ultrasonic monitoring for bubbles in ceramic ‘slip’ in pottery pipelines,” Ultrasonics, vol. 50, no. 1, pp. 60 – 67, 2010. [en linea]. Disponible en : http://www.sciencedirect.com/science/ article/pii/S0041624X09000845 [22] B. L. Johnson, M. R. Holland, J. G. Miller, and J. I. Katz, “Ultrasonic attenuation and speed of sound of cornstarch suspensions,” The Journal of the Acoustical Society of America, vol. 133, no. 3, pp. 1399–1403, 2013. [en linea]. Disponible en : https://doi.org/10.1121/1.4789926 [23] B. M. Wrobel and R. W. Time, “Improved pulsed broadband ultrasonic spectroscopy for analysis of liquid-particle flow,” Applied Acoustics, vol. 72, no. 6, pp. 324 – 335, 2011. [en linea]. Disponible en : http:// www.sciencedirect.com/science/article/pii/S0003682X10002689 [24] H. Mori, T. Norisuye, H. Nakanishi, and Q. Tran-Cong-Miyata, “Ultrasound attenuation and phase velocity of micrometer-sized particle suspensions with viscous and thermal losses,” Ultrasonics, vol. 83, pp. 171 – 178, 2018, ultrasonic advances applied to materials science. [en linea]. Disponible en :http://www.sciencedirect.com/science/article/pii/S0041624X16304346[25] K. Kubo, T. Norisuye, T. N. Tran, D. Shibata, H. Nakanishi, and Q. Tran- Cong-Miyata, “Sound velocity and attenuation coefficient of hard and hollow microparticle suspensions observed by ultrasound spectroscopy,” Ultrasonics, vol. 62, pp. 186 – 194, 2015. [en linea]. Disponible: http: //www.sciencedirect.com/science/article/pii/S0041624X15001353 [26] A. Strybulevych, V. Leroy, M. G. Scanlon, and J. H. Page, “Characterizing a model food gel containing bubbles and solid inclusions using ultrasound,” Soft Matter, vol. 3, pp. 1388–1394, 2007. [en linea]. Disponible: http:// dx.doi.org/10. 1039/B706886G [27] M. Ribeiro, C. Gonçalves, P. Regueiras, M. Guimarães, and J. Cruz Pinto, “Measurements of toluene–water dispersions hold-up using a non-invasive ultrasonic technique,” Chemical Engineering Journal, vol. 118, pp. 47–54, 05 2006. [28] M. M. M. R. Luís M. R. Brás, Elsa F. Gomes and M. M. L. Guimarães, ““drop distribution determination in a liquid-liquid dispersion by image processing,” International Journal of Chemical Engineering, 2009. [29] T. G. Leighton, “What is ultrasound? (review),” Progress in Biophysics and Molecular Biology, vol. 93, pp. 3–83, 2007. [30] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics. Wiley, 1999. [31] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Señales y sistemas, 2nd ed. New Jersey: Prentice Hall & IBD, 1998. [32] A. Brown, “Materials testing by ultrasonic spectroscopy,” Ultrasonics, vol. 11, no. 5, pp. 202 – 210, 1973. [en linea]. Disponible: http:// www.sciencedirect.com/science/article/pii/0041624X7390231X [33] A. H. G. Cents, “Mass transfer and hydrodynamics in stirred gas-liquid-liquid contactors,” Ph.D. dissertation, Universiteit Twente, 7 2003.
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/6d575b55-03ea-46c8-b2d7-5b36a9f94276/download
https://red.uao.edu.co/bitstreams/f6b0a2c0-1caf-4f28-b31a-4dfbc106ae60/download
https://red.uao.edu.co/bitstreams/ce177195-56a5-4c03-bfbb-549b1a2206b7/download
https://red.uao.edu.co/bitstreams/dfb28f77-151c-4890-bb55-ac47e258d963/download
https://red.uao.edu.co/bitstreams/058b55b1-8320-4fe9-80a1-dc0a97cb8550/download
https://red.uao.edu.co/bitstreams/1702f201-c4b7-438c-8f8b-c248f4bb1edc/download
https://red.uao.edu.co/bitstreams/b8a68ac7-80f1-4a75-9e78-b41536da2ee8/download
https://red.uao.edu.co/bitstreams/e7027a76-0ea1-440d-ac80-a305be69f71a/download
bitstream.checksum.fl_str_mv 1f0d5e01ed5282015de858a790033b65
0275431bea02a36310fa33fb53439d79
281417656503777c3d04c64d96f28d05
d4ae6b311afaed50ee9f7dbee72c6f86
4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
7a74a1ae6b6bb355a5531022127e0d9a
3f85c861e8b0b53fe6feb11810d970b8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1808479002986283008
spelling Franco Guzmán, Ediguer Enriquevirtual::1814-1Henao Santa, Sebastián9e3955d021c35eb6e91f526823bc95a5-1Ingeniero MecatrónicoUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-12-16T21:58:29Z2019-12-16T21:58:29Z2019-11-20http://red.uao.edu.co//handle/10614/11743Este trabajo muestra el desarrollo de un montaje experimental para estudiar el efecto de las burbujas sobre el espectro de Fourier de ondas ultrasónicas. Fueron diseñadas y construidas dos columnas de agua con la finalidad de generar un flujo bifásico agua-burbujas, además fueron instrumentadas con transductores ultrasónicos para realizar mediciones en los modos pulso-eco, transmisión-recepción y retrodispersión. Los transductores fueron caracterizados, seleccionando aquellos que tenían mejor respuesta en frecuencia. Los experimentos fueron realizados en el rangos de 0;5 a 5;0 MHZ. A partir de las señales ultrasónicas se calculó un coeficiente de pérdida que modela la caída de amplitud de las ondas como consecuencia de la presencia de las burbujas, con respecto al caso sin burbujas. El coeficiente de pérdida permitió calcular los espectros de velocidad y atenuación. También fueron aplicadas técnicas de procesamiento de imágenes para estimar el radio y el numero de burbujas, en función de la cantidad de aire inyectado, teniendo en cuenta el campo acústico generado por cada uno de los transductores. Los resultados mostraron que los cambios obtenidos en los parámetros acústicos de las ondas permiten inferir la cantidad de burbujasThis work shows the development of an experimental setup to study the effect of bubbles on the Fourier spectrum of ultrasonic waves. 262/5000 Two water columns were designed and built in order to generate a two-phase water-bubble flow, and they were also instrumented with ultrasonic transducers to perform measurements in pulse-echo, transmission-reception and backscattering modes. The transducers were characterized, selecting those with the best frequency response. Experiments were performed in the range between 0;5 and 5;0 MHZ. From the ultrasonic signals a loss coefficient was calculated. This coefficient models the drop in amplitude of the waves as a result of the presence of the bubbles, with respect to the a reference case without bubbles. The loss coefficient allowed the calculation of the velocity and attenuation spectra. In order to estimate the radius and number of bubbles, as a function of the amount of air injected, image processing techniques were applied. This was made taking into account the acoustic field generated by each transducer. The results showed that the changes obtained in the acoustic parameters of the waves allow to infere of the amount of bubblesProyecto de grado (Ingeniero Mecatrónico)-- Universidad Autónoma de Occidente, 2019PregradoIngeniero(a) Mecatrónico(a)application/pdf77 páginasspaUniversidad Autónoma de OccidenteIngeniería MecatrónicaDepartamento de Automática y ElectrónicaFacultad de IngenieríaDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2instname:Universidad Autónoma de Occidentereponame:Repositorio Institucional UAO[1] D. B. Baroni, J. S. C. Filho, C. A. Lamy, M. S. Q. Bittencourt, C. M. N. A. Pereira, and M. S. Motta, “Determination of size distribution of bubbles in a bubbly co-lumn two-phase flow by ultrasound and neural networks,” in Proceedings of the 2011 International Nuclear Atlantic Conference - INAC 2011. Belo Horizon-te,MG, Brazil, October 24-28, 2011: Associação Brasileira de Energia Nuclear - ABEN, 2011. [2] D. Barnea, O. Shoham, and Y. Taitel, “Flow pattern characterization in two phase flow by electrical conductance probe,” International Journal of Multiphase Flow, vol. 6, no. 5, pp. 387 – 397, 1980. [en linea]. Disponible en : http://www.sciencedirect.com/science/article/ pii/0301932280900014 [3] P. Andreussi, A. D. Donfrancesco, and M. Messia, “An impedance method for the measurement of liquid hold-up in two-phase flow,” International Journal of Multiphase Flow, vol. 14, no. 6, pp. 777 – 785, 1988. [en linea]. Disponible en http://www.sciencedirect.com/science/article/ pii/0301932288900742 [4] J. S. Chang, Y. Ichikawa, G. A. Irons, E. C. Morala, and P. T. Wan, “Void fraction measurement by an ultrasonic transmission technique in bubbly gas-liquid twophase flow,” in Measuring Techniques in Gas-Liquid Two-Phase Flows, J. M. Delhaye and G. Cognet, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984, pp. 319–335. [5] J. S. Chang and E. Morala, “Determination of two-phase interfacial areas by an ultrasonic technique,” Nuclear Engineering and Design, vol. 122, no. 1, pp. 143 – 156, 1990. [en linea]. Disponible en : http://www.sciencedirect.com/ science/article/pii/002954939090203A [6] B. M. Wrobel, “Ultrasonic measurement and characterization of liquid-particle flow,” Ph.D. dissertation, University of Stavanger, Norway, 2012. [7] R. T. Higuti, E. Bacaneli, C. M. Furukawa, and J. C. Adamowski, “Ultrasonic characterization of emulsions: milk and water in oil,” in 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027), vol. 1, Oct 1999, pp. 779–782 vol.1[8] G. S. Kino, Acoustic waves: devices, imaging and analog signal processing. Englewood Cliff: Prentice-Hall, 1987. [9] R. T. Higuti, C. M. Furukawa, and J. C. Adamowski, “Characterization of Lubricating Oil Using Ultrasound,” Journal of the Brazilian Society of Mechanical Sciences, vol. 23, pp. 453 – 461, 00 2001. [10] D. McClements, M. Povey, M. Jury, and E. Betsanis, “Ultrasonic characterization of a food emulsion,” Ultrasonics, vol. 28, no. 4, pp. 266 – 272, 1990. [en linea]. Disponible en : http://www.sciencedirect.com/science/article/ pii/0041624X90900934 [11] W. P. Mason, W. O. Baker, J. M. McSkimin, and J. H. Heiss, “Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies,” Physical Review, vol. 75, no. 6, pp. 936–946, 1949. [12] E. E. Franco, J. C. Adamowski, R. T. Higuti, and F. Buiochi, “Viscosity measurement of newtonian liquids using the complex reflection coefficient,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 55, no. 10, pp. 2247–2253, 2008. [13] R. Saggin and J. N. Coupland, “Rheology of xanthan/sucrose mixtures at ultrasonic frequencies,” Journal of Food Engineering, vol. 65, no. 1, pp. 49–53, November 2004. [14] E. E. Franco, J. C. Adamowski, and F. Buiochi, “Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 57, no. 5, pp. 1133–1139, 2010. [15] A. Rabbani and D. R. Schmitt, “Ultrasonic shear wave reflectometry applied to the determination of the shear moduli and viscosity of a viscoelastic bitumen,” Fuel, vol. 232, pp. 506 – 518, 2018. [en linea. Disponible en : http://www.sciencedirect.com/science/article/pii/ S0016236118310202 [16] Y. S. Lee, S. L. Golub, and G. H. Brown, “Ultrasonic shear wave study of the mechanical properties of a nematic liquid crystal,” The Journal of Physical Chemistry, vol. 76, no. 17, pp. 2409–2417, 1972.[17] K. Balasubramaniam, V. Shah, R. D. Costley, G. Bourdreaux, and J. P. Singh, “High temperature ultrasonic sensor for the simultaneous measurement of viscosity and temperature of melts,” Review of Scientific Instruments, vol. 70, no. 12, pp. 4618–4623, 1999. [18] E. E. Franco and F. Buiochi, “Ultrasonic measurement of viscosity: Signal processing methodologies,” Ultrasonics, vol. 91, pp. 213 – 219, 2019. [Online]. Disponible en : http://www.sciencedirect.com/science/ article/pii/S0041624X17308016 [19] A. L., “Ultrasonic spectroscopy,” in The Evaluation of Materials and Structures by Quantitative Ultrasonics. Vienna: CISM International Centre for Mechanical Sciences, Springer, 1993. [20] Y. Soong, I. K. Gamwo, A. G. Blackwell, F. W. Harke, and E. P. Ladner, “Ultrasonic characterizations of slurries in a bubble column reactor,” Industrial & Engineering Chemistry Research, vol. 38, no. 5, pp. 2137–2143, 1999. [en linea]. Disponible en : https://doi.org/10.1021/ie970932k [21] G. T. Yim and T. G. Leighton, “Real-time on-line ultrasonic monitoring for bubbles in ceramic ‘slip’ in pottery pipelines,” Ultrasonics, vol. 50, no. 1, pp. 60 – 67, 2010. [en linea]. Disponible en : http://www.sciencedirect.com/science/ article/pii/S0041624X09000845 [22] B. L. Johnson, M. R. Holland, J. G. Miller, and J. I. Katz, “Ultrasonic attenuation and speed of sound of cornstarch suspensions,” The Journal of the Acoustical Society of America, vol. 133, no. 3, pp. 1399–1403, 2013. [en linea]. Disponible en : https://doi.org/10.1121/1.4789926 [23] B. M. Wrobel and R. W. Time, “Improved pulsed broadband ultrasonic spectroscopy for analysis of liquid-particle flow,” Applied Acoustics, vol. 72, no. 6, pp. 324 – 335, 2011. [en linea]. Disponible en : http:// www.sciencedirect.com/science/article/pii/S0003682X10002689 [24] H. Mori, T. Norisuye, H. Nakanishi, and Q. Tran-Cong-Miyata, “Ultrasound attenuation and phase velocity of micrometer-sized particle suspensions with viscous and thermal losses,” Ultrasonics, vol. 83, pp. 171 – 178, 2018, ultrasonic advances applied to materials science. [en linea]. Disponible en :http://www.sciencedirect.com/science/article/pii/S0041624X16304346[25] K. Kubo, T. Norisuye, T. N. Tran, D. Shibata, H. Nakanishi, and Q. Tran- Cong-Miyata, “Sound velocity and attenuation coefficient of hard and hollow microparticle suspensions observed by ultrasound spectroscopy,” Ultrasonics, vol. 62, pp. 186 – 194, 2015. [en linea]. Disponible: http: //www.sciencedirect.com/science/article/pii/S0041624X15001353 [26] A. Strybulevych, V. Leroy, M. G. Scanlon, and J. H. Page, “Characterizing a model food gel containing bubbles and solid inclusions using ultrasound,” Soft Matter, vol. 3, pp. 1388–1394, 2007. [en linea]. Disponible: http:// dx.doi.org/10. 1039/B706886G [27] M. Ribeiro, C. Gonçalves, P. Regueiras, M. Guimarães, and J. Cruz Pinto, “Measurements of toluene–water dispersions hold-up using a non-invasive ultrasonic technique,” Chemical Engineering Journal, vol. 118, pp. 47–54, 05 2006. [28] M. M. M. R. Luís M. R. Brás, Elsa F. Gomes and M. M. L. Guimarães, ““drop distribution determination in a liquid-liquid dispersion by image processing,” International Journal of Chemical Engineering, 2009. [29] T. G. Leighton, “What is ultrasound? (review),” Progress in Biophysics and Molecular Biology, vol. 93, pp. 3–83, 2007. [30] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics. Wiley, 1999. [31] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Señales y sistemas, 2nd ed. New Jersey: Prentice Hall & IBD, 1998. [32] A. Brown, “Materials testing by ultrasonic spectroscopy,” Ultrasonics, vol. 11, no. 5, pp. 202 – 210, 1973. [en linea]. Disponible: http:// www.sciencedirect.com/science/article/pii/0041624X7390231X [33] A. H. G. Cents, “Mass transfer and hydrodynamics in stirred gas-liquid-liquid contactors,” Ph.D. dissertation, Universiteit Twente, 7 2003.Ingeniería MecatrónicaUltrasonidoFlujo bifásicoBurbujasEspectro de atenuaciónEspectro de velocidadUltrasonidoTwo-phase flowDiseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicosTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Publicationhttps://scholar.google.com/citations?user=4paPIoAAAAAJ&hl=esvirtual::1814-10000-0001-7518-704Xvirtual::1814-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001243730virtual::1814-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::1814-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::1814-1TEXTT08982.pdf.txtT08982.pdf.txtExtracted texttext/plain116540https://red.uao.edu.co/bitstreams/6d575b55-03ea-46c8-b2d7-5b36a9f94276/download1f0d5e01ed5282015de858a790033b65MD57TA8982.pdf.txtTA8982.pdf.txtExtracted texttext/plain4159https://red.uao.edu.co/bitstreams/f6b0a2c0-1caf-4f28-b31a-4dfbc106ae60/download0275431bea02a36310fa33fb53439d79MD59THUMBNAILT08982.pdf.jpgT08982.pdf.jpgGenerated Thumbnailimage/jpeg7440https://red.uao.edu.co/bitstreams/ce177195-56a5-4c03-bfbb-549b1a2206b7/download281417656503777c3d04c64d96f28d05MD58TA8982.pdf.jpgTA8982.pdf.jpgGenerated Thumbnailimage/jpeg12944https://red.uao.edu.co/bitstreams/dfb28f77-151c-4890-bb55-ac47e258d963/downloadd4ae6b311afaed50ee9f7dbee72c6f86MD510CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/058b55b1-8320-4fe9-80a1-dc0a97cb8550/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/1702f201-c4b7-438c-8f8b-c248f4bb1edc/download20b5ba22b1117f71589c7318baa2c560MD54ORIGINALT08982.pdfT08982.pdfapplication/pdf19046494https://red.uao.edu.co/bitstreams/b8a68ac7-80f1-4a75-9e78-b41536da2ee8/download7a74a1ae6b6bb355a5531022127e0d9aMD55TA8982.pdfTA8982.pdfapplication/pdf121930https://red.uao.edu.co/bitstreams/e7027a76-0ea1-440d-ac80-a305be69f71a/download3f85c861e8b0b53fe6feb11810d970b8MD5610614/11743oai:red.uao.edu.co:10614/117432024-03-05 10:55:26.545https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K