Angular velocity analysis boosted by machine learning for helping in the differential diagnosis of parkinson’s disease and essential tremor

Recent research has shown that smartphones/smartwatches have a high potential to help physicians to identify and differentiate between different movement disorders. This work aims to develop Machine Learning models to improve the differential diagnosis between patients with Parkinson’s Disease and E...

Full description

Autores:
Sanchez Egea, Antonio J.
Reeb, Theresa
González, Hernán Alberto
Loaiza Duque, Julián David
González Vargas, Andrés Mauricio
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13381
Acceso en línea:
https://hdl.handle.net/10614/13381
Palabra clave:
Diagnóstico diferencial
Giroscopios
Redes de área corporal (Electrónica)
Body area networks
Differential diagnosis
Parkinson’s disease
Essential tremor
gyroscope
Kinematic analysis
Machine learning
Rights
openAccess
License
Derechos reservados - IEEE, 2020
id REPOUAO2_75b07bc41d65d8a33e23f502805a0aba
oai_identifier_str oai:red.uao.edu.co:10614/13381
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Angular velocity analysis boosted by machine learning for helping in the differential diagnosis of parkinson’s disease and essential tremor
title Angular velocity analysis boosted by machine learning for helping in the differential diagnosis of parkinson’s disease and essential tremor
spellingShingle Angular velocity analysis boosted by machine learning for helping in the differential diagnosis of parkinson’s disease and essential tremor
Diagnóstico diferencial
Giroscopios
Redes de área corporal (Electrónica)
Body area networks
Differential diagnosis
Parkinson’s disease
Essential tremor
gyroscope
Kinematic analysis
Machine learning
title_short Angular velocity analysis boosted by machine learning for helping in the differential diagnosis of parkinson’s disease and essential tremor
title_full Angular velocity analysis boosted by machine learning for helping in the differential diagnosis of parkinson’s disease and essential tremor
title_fullStr Angular velocity analysis boosted by machine learning for helping in the differential diagnosis of parkinson’s disease and essential tremor
title_full_unstemmed Angular velocity analysis boosted by machine learning for helping in the differential diagnosis of parkinson’s disease and essential tremor
title_sort Angular velocity analysis boosted by machine learning for helping in the differential diagnosis of parkinson’s disease and essential tremor
dc.creator.fl_str_mv Sanchez Egea, Antonio J.
Reeb, Theresa
González, Hernán Alberto
Loaiza Duque, Julián David
González Vargas, Andrés Mauricio
dc.contributor.author.spa.fl_str_mv Sanchez Egea, Antonio J.
Reeb, Theresa
González, Hernán Alberto
Loaiza Duque, Julián David
dc.contributor.author.none.fl_str_mv González Vargas, Andrés Mauricio
dc.contributor.corporatename.spa.fl_str_mv IEEE Access
dc.subject.armarc.spa.fl_str_mv Diagnóstico diferencial
Giroscopios
Redes de área corporal (Electrónica)
topic Diagnóstico diferencial
Giroscopios
Redes de área corporal (Electrónica)
Body area networks
Differential diagnosis
Parkinson’s disease
Essential tremor
gyroscope
Kinematic analysis
Machine learning
dc.subject.armarc.eng.fl_str_mv Body area networks
dc.subject.proposal.eng.fl_str_mv Differential diagnosis
Parkinson’s disease
Essential tremor
gyroscope
Kinematic analysis
Machine learning
description Recent research has shown that smartphones/smartwatches have a high potential to help physicians to identify and differentiate between different movement disorders. This work aims to develop Machine Learning models to improve the differential diagnosis between patients with Parkinson’s Disease and Essential Tremor. For this purpose, we use a mobile phone’s built-in gyroscope to record the angular velocity signals of two different arm positions during the patient’s follow-up, more precisely, in rest and posture positions. To develop and to find the best classification models, diverse factors were considered, such as the frequency range, the training and testing divisions, the kinematic features, and the classification method. We performed a two-stage kinematic analysis, first to differentiate between healthy and trembling subjects and then between patients with Parkinson’s Disease and Essential Tremor. The models developed reached an average accuracy of 97.2 ± 3.7% (98.5% Sensitivity, 93.3% Specificity) to differentiate between Healthy and Trembling subjects and an average accuracy of 77.8 ± 9.9% (75.7% Sensitivity, 80.0% Specificity) to discriminate between Parkinson’s Disease and Essential Tremor patients. Therefore, we conclude, that the angular velocity signal can be used to develop Machine Learning models for the differential diagnosis of Parkinson’s disease and Essential Tremor
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-05-11
dc.date.accessioned.none.fl_str_mv 2021-10-29T16:01:03Z
dc.date.available.none.fl_str_mv 2021-10-29T16:01:03Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 21693536
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13381
dc.identifier.doi.none.fl_str_mv 10.1109/ACCESS.2020.2993647
identifier_str_mv 21693536
10.1109/ACCESS.2020.2993647
url https://hdl.handle.net/10614/13381
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Volumen 8 (2020)
dc.relation.citationendpage.spa.fl_str_mv 88875
dc.relation.citationstartpage.spa.fl_str_mv 88866
dc.relation.citationvolume.spa.fl_str_mv 8
dc.relation.cites.eng.fl_str_mv Loaiza Duque, J.D., Sánchez Egea, A. J., Reeb, T., González Rojas, H.A., González Vargas, A. M. (2020). Angular velocity analysis boosted by machine learning for helping in the differential diagnosis of parkinson’s disease and essential tremor. IEEE Access. (Vol. 8, pp. 88866–88875 doi: 10.1109/ACCESS.2020.2993647
dc.relation.ispartofjournal.spa.fl_str_mv IEEE Xplore
dc.relation.references.none.fl_str_mv [1] K. P. Bhatia, P. Bain, N. Bajaj, R. J. Elble, M. Hallett, E. D. Louis, J. Raethjen, M. Stamelou, C. M. Testa, and G. Deuschl, ``Consensus statement on the classi cation of tremors. From the task force on tremor of the international parkinson and movement disorder society,'' Move- ment Disorders, vol. 33, no. 1, pp. 75 87, Jan. 2018, doi: 10.1002/mds. 27121.
[2] C. Bhavana, J. Gopal, P. Raghavendra, K. M. Vanitha, and V. Talasila, ``Techniques of measurement for Parkinson's tremor highlighting advantages of embedded IMU over EMG,'' in Proc. Int. Conf. Recent Trends Inf. Technol. (ICRTIT), Apr. 2016, pp. 1 5, doi: 10.1109/ICRTIT.2016. 7569560.
[3] A. M. Woods, M. Nowostawski, E. A. Franz, and M. Purvis, ``Parkinson's disease and essential tremor classi cation on mobile device,'' Per- vas. Mobile Comput., vol. 13, pp. 1 12, Aug. 2014, doi: 10.1016/j.pmcj. 2013.10.002.
[4] S. Barrantes, A. J. Sánchez Egea, H. A. González Rojas, M. J. Martí, Y. Compta, F. Valldeoriola, E. S. Mezquita, E. Tolosa, and J. Valls-Solè, ``Differential diagnosis between Parkinson's disease and essential tremor using the smartphone's accelerometer,'' PLoS ONE, vol. 12, no. 8, Aug. 2017, Art. no. e0183843, doi: 10.1371/journal.pone.0183843.
[5] P. Locatelli and D. Alimonti, ``Differentiating essential tremor and Parkinson's disease using a wearable sensor A pilot study,'' in Proc. 7th IEEE Int. Workshop Adv. Sensors Interfaces (IWASI), Jun. 2017, pp. 213 218, doi: 10.1109/IWASI.2017.7974254.
[6] D. B. Miller and J. P. O'Callaghan, ``Biomarkers of Parkinson's disease: Present and future,'' Metabolism, vol. 64, no. 3, pp. S40 S46, Mar. 2015, doi: 10.1016/j.metabol.2014.10.030.
[7] S. K. Nanda, W.-Y. Lin, M.-Y. Lee, and R.-S. Chen, ``A quantitative classi cation of essential and Parkinson's tremor using wavelet transform and arti cial neural network on sEMG and accelerometer signals,'' in Proc. IEEE 12th Int. Conf. Netw., Sens. Control, Apr. 2015, pp. 399 404, doi: 10.1109/ICNSC.2015.7116070.
[8] D. Surangsrirat, C. Thanawattano, R. Pongthornseri, S. Dumnin, C. Anan, and R. Bhidayasiri, ``Support vector machine classi cation of Parkinson's disease and essential tremor subjects based on temporal uctuation,'' in Proc. 38th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug. 2016, pp. 6389 6392, doi: 10.1109/EMBC.2016.7592190.
[9] F. Papengut, J. Raethjen, A. Binder, and G. Deuschl, ``Rest tremor suppression may separate essential from parkinsonian rest tremor,'' Parkin- sonism Rel. Disorders, vol. 19, no. 7, pp. 693 697, Jul. 2013, doi: 10.1016/j.parkreldis.2013.03.013.
[10] K. Uchida, M. Hirayama, F. Yamashita, N. Hori, T. Nakamura, and G. Sobue, ``Tremor is attenuated during walking in essential tremor with resting tremor but not parkinsonian tremor,'' J. Clin. Neurosci., vol. 18, no. 9, pp. 1224 1228, Sep. 2011, doi: 10.1016/j.jocn.2010.12.053.
[11] M. Algarni and A. Fasano, ``The overlap between essential tremor and parkinson disease,'' Parkinsonism Rel. Disorders, vol. 46, pp. S101 S104, Jan. 2018, doi: 10.1016/j.parkreldis.2017.07.006.
[12] E. Nikfekr, K. Kerr, S. Att eld, and E. D. Playford, ``Trunk movement in Parkinson's disease during rising from seated position,'' Movement Disor- ders, vol. 17, no. 2, pp. 274 282, Mar. 2002, doi: 10.1002/mds.10073.
[13] G. Serrancolí, J. M. Font-Llagunes, and A. Barjau, ``A weighted cost function to deal with the muscle force sharing problem in injured subjects: A single case study,'' Proc. Inst. Mech. Eng., K, J. Multi-body Dyn., vol. 228, no. 3, pp. 241 251, Sep. 2014, doi: 10.1177/1464419314530110.
[14] F. P. Bernhard, J. Sartor, K. Bettecken, M. A. Hobert, C. Arnold, Y. G. Weber, S. Poli, N. G. Margraf, C. Schlenstedt, C. Hansen, and W. Maetzler, ``Wearables for gait and balance assessment in the neurological ward study design and rst results of a prospective cross-sectional feasibility study with 384 inpatients,'' BMC Neurol., vol. 18, no. 1, p. 114, Dec. 2018, doi: 10.1186/s12883-018-1111-7.
[15] D. J. Wile, R. Ranawaya, and Z. H. T. Kiss, ``Smart watch accelerometry for analysis and diagnosis of tremor,'' J. Neurosci. Methods, vol. 230, pp. 1 4, Jun. 2014, doi: 10.1016/j.jneumeth.2014.04.021.
[16] G. Kramer, A. M. M. Van der Stouwe, N. M. Maurits, M. A. J. Tijssen, and J.W. J. Elting, ``Wavelet coherence analysis:Anewapproach to distinguish organic and functional tremor types,'' Clin. Neurophysiol., vol. 129, no. 1, pp. 13 20, Jan. 2018, doi: 10.1016/j.clinph.2017.10.002.
[17] M. A. Raza, Q. Chaudry, S. M. T. Zaidi, and M. B. Khan, ``Clinical decision support system for Parkinson's disease and related movement disorders,'' in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2017, pp. 1108 1112, doi: 10.1109/ICASSP.2017.7952328.
[18] H. A. González Rojas, P. C. Cuevas, E. E. Zayas Figueras, S. C. Foix, and A. J. Sánchez Egea, ``Time measurement characterization of standto- sit and sit-to-stand transitions by using a smartphone,'' Med. Biol. Eng. Comput., vol. 56, no. 5, pp. 879 888, May 2018, doi: 10.1007/s11517-017- 1728-5.
[19] J. D. Loaiza Duque, A. M. González-Vargas, A. J. Sánchez Egea, and H. A. González Rojas, ``Using machine learning and accelerometry data for differential diagnosis of parkinson's disease and essential tremor,'' in Applied Computer Sciences in Engineering (Communications in Computer and Information Science), vol. 1052. Springer, 2019, pp. 368 378.
[20] Sensorlog (Version 1.9.4) Mobile Application Software. Accessed: 2017. [Online]. Available: http://itunes.apple.com
[21] S. Padma G, S. Umesh, U. Asokan, and T. Srinivas, ``Parkinsonian hand tremor measurement device based on ber Bragg grating sensor,'' in Proc. Int. Conf. Smart Sensors Syst. (IC-SSS), Dec. 2015, pp. 3 5, doi: 10.1109/ SMARTSENS.2015.7873611.
[22] F. Hopfner and R. C. Helmich, ``The etiology of essential tremor: Genes versus environment,'' Parkinsonism Rel. Disorders, vol. 46, pp. S92 S96, Jan. 2018, doi: 10.1016/j.parkreldis.2017.07.014.
[23] T. Novak and K. M. Newell, ``Physiological tremor (8 12 Hz component) in isometric force control,'' Neurosci. Lett., vol. 641, pp. 87 93, Feb. 2017, doi: 10.1016/j.neulet.2017.01.034.
[24] E. D. Louis, ``Essential tremor then and now: How views of the most common tremor diathesis have changed over time,'' Parkinsonism Rel. Disorders, vol. 46, pp. S70 S74, Jan. 2018, doi: 10.1016/j.parkreldis.2017. 07.010.
[25] O. Martinez Manzanera, J. W. Elting, J. H. van der Hoeven, and N. M. Maurits, ``Tremor detection using parametric and non-parametric spectral estimation methods: A comparison with clinical assessment,'' PLoS ONE, vol. 11, no. 6, Jun. 2016, Art. no. e0156822, doi: 10.1371/journal. pone.0156822.
[26] I. Guyon and A. Elisseeff, ``An introduction to variable and feature selection,'' J. Mach. Learn. Res., vol. 3, pp. 1157 1182, Jan. 2003, doi: 10.1162/153244303322753616.
[27] N. Kostikis, D. Hristu-Varsakelis, M. Arnaoutoglou, and C. Kotsavasiloglou, ``A smartphone-based tool for assessing parkinsonian hand tremor,'' IEEE J. Biomed. Health Informat., vol. 19, no. 6, pp. 1835 1842, Nov. 2015, doi: 10.1109/JBHI.2015.2471093.
[28] I. S. Thaseen and C. A. Kumar, ``Intrusion detection model using fusion of chi-square feature selection and multi class SVM,'' J. King Saud Univ. Comput. Inf. Sci., vol. 29, no. 4, pp. 462 472, Oct. 2017, doi: 10.1016/j.jksuci.2015.12.004.
[29] L. M. Gil, T. P. Nunes, F. H. S. Silva, A. C. D. Faria, and P. L. Melo, ``Analysis of human tremor in patients with parkinson disease using entropy measures of signal complexity,'' in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol., Aug. 2010, pp. 2786 2789, doi: 10.1109/IEMBS.2010. 5626365.
[30] B. Zhang, F. Huang, J. Liu, and D. Zhang, ``A novel posture for better differentiation between Parkinson's tremor and essential tremor,'' Frontiers Neurosci., vol. 12, p. 317, May 2018, doi: 10.3389/fnins.2018.00317.
[31] J. Marjama-Lyons and W. Koller, ``Tremor-predominant parkinson's disease,'' Drugs Aging, vol. 16, no. 4, pp. 273 278, Apr. 2000, doi: 10.2165/ 00002512-200016040-00003.
[32] A. P. Duker and A. J. Espay, ``Surgical treatment of parkinson disease,'' Neurologic Clinics, vol. 31, no. 3, pp. 799 808, Aug. 2013, doi: 10.1016/ j.ncl.2013.03.007.
dc.rights.spa.fl_str_mv Derechos reservados - IEEE, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - IEEE, 2020
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 10 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IEEE
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/56abebc5-42e2-4d7b-8e39-aecf074810bd/download
https://red.uao.edu.co/bitstreams/b2f9986d-eb36-4c63-bbe1-eec173db478f/download
https://red.uao.edu.co/bitstreams/3e9905f4-2aab-4190-965c-0a63899e852e/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
63dab57faee0dc597d1ba15dde61e7db
ebf40fed42881decef5e0875197d3ede
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260151913283584
spelling Sanchez Egea, Antonio J.8d1203677ed9f9fe4208a50977068d17Reeb, Theresa434ef56abbc04b5f0daae9ce35b9b5baGonzález, Hernán Alberto96fe37656e36ae65ae4ec3ee77efe45cLoaiza Duque, Julián Davide08298c86a6f5b7fe934bdc7695a8fdcGonzález Vargas, Andrés Mauriciovirtual::2068-1IEEE Access2021-10-29T16:01:03Z2021-10-29T16:01:03Z2020-05-1121693536https://hdl.handle.net/10614/1338110.1109/ACCESS.2020.2993647Recent research has shown that smartphones/smartwatches have a high potential to help physicians to identify and differentiate between different movement disorders. This work aims to develop Machine Learning models to improve the differential diagnosis between patients with Parkinson’s Disease and Essential Tremor. For this purpose, we use a mobile phone’s built-in gyroscope to record the angular velocity signals of two different arm positions during the patient’s follow-up, more precisely, in rest and posture positions. To develop and to find the best classification models, diverse factors were considered, such as the frequency range, the training and testing divisions, the kinematic features, and the classification method. We performed a two-stage kinematic analysis, first to differentiate between healthy and trembling subjects and then between patients with Parkinson’s Disease and Essential Tremor. The models developed reached an average accuracy of 97.2 ± 3.7% (98.5% Sensitivity, 93.3% Specificity) to differentiate between Healthy and Trembling subjects and an average accuracy of 77.8 ± 9.9% (75.7% Sensitivity, 80.0% Specificity) to discriminate between Parkinson’s Disease and Essential Tremor patients. Therefore, we conclude, that the angular velocity signal can be used to develop Machine Learning models for the differential diagnosis of Parkinson’s disease and Essential Tremor10 páginasapplication/pdfengIEEEDerechos reservados - IEEE, 2020https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Angular velocity analysis boosted by machine learning for helping in the differential diagnosis of parkinson’s disease and essential tremorArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Diagnóstico diferencialGiroscopiosRedes de área corporal (Electrónica)Body area networksDifferential diagnosisParkinson’s diseaseEssential tremorgyroscopeKinematic analysisMachine learningVolumen 8 (2020)88875888668Loaiza Duque, J.D., Sánchez Egea, A. J., Reeb, T., González Rojas, H.A., González Vargas, A. M. (2020). Angular velocity analysis boosted by machine learning for helping in the differential diagnosis of parkinson’s disease and essential tremor. IEEE Access. (Vol. 8, pp. 88866–88875 doi: 10.1109/ACCESS.2020.2993647IEEE Xplore[1] K. P. Bhatia, P. Bain, N. Bajaj, R. J. Elble, M. Hallett, E. D. Louis, J. Raethjen, M. Stamelou, C. M. Testa, and G. Deuschl, ``Consensus statement on the classi cation of tremors. From the task force on tremor of the international parkinson and movement disorder society,'' Move- ment Disorders, vol. 33, no. 1, pp. 75 87, Jan. 2018, doi: 10.1002/mds. 27121.[2] C. Bhavana, J. Gopal, P. Raghavendra, K. M. Vanitha, and V. Talasila, ``Techniques of measurement for Parkinson's tremor highlighting advantages of embedded IMU over EMG,'' in Proc. Int. Conf. Recent Trends Inf. Technol. (ICRTIT), Apr. 2016, pp. 1 5, doi: 10.1109/ICRTIT.2016. 7569560.[3] A. M. Woods, M. Nowostawski, E. A. Franz, and M. Purvis, ``Parkinson's disease and essential tremor classi cation on mobile device,'' Per- vas. Mobile Comput., vol. 13, pp. 1 12, Aug. 2014, doi: 10.1016/j.pmcj. 2013.10.002.[4] S. Barrantes, A. J. Sánchez Egea, H. A. González Rojas, M. J. Martí, Y. Compta, F. Valldeoriola, E. S. Mezquita, E. Tolosa, and J. Valls-Solè, ``Differential diagnosis between Parkinson's disease and essential tremor using the smartphone's accelerometer,'' PLoS ONE, vol. 12, no. 8, Aug. 2017, Art. no. e0183843, doi: 10.1371/journal.pone.0183843.[5] P. Locatelli and D. Alimonti, ``Differentiating essential tremor and Parkinson's disease using a wearable sensor A pilot study,'' in Proc. 7th IEEE Int. Workshop Adv. Sensors Interfaces (IWASI), Jun. 2017, pp. 213 218, doi: 10.1109/IWASI.2017.7974254.[6] D. B. Miller and J. P. O'Callaghan, ``Biomarkers of Parkinson's disease: Present and future,'' Metabolism, vol. 64, no. 3, pp. S40 S46, Mar. 2015, doi: 10.1016/j.metabol.2014.10.030.[7] S. K. Nanda, W.-Y. Lin, M.-Y. Lee, and R.-S. Chen, ``A quantitative classi cation of essential and Parkinson's tremor using wavelet transform and arti cial neural network on sEMG and accelerometer signals,'' in Proc. IEEE 12th Int. Conf. Netw., Sens. Control, Apr. 2015, pp. 399 404, doi: 10.1109/ICNSC.2015.7116070.[8] D. Surangsrirat, C. Thanawattano, R. Pongthornseri, S. Dumnin, C. Anan, and R. Bhidayasiri, ``Support vector machine classi cation of Parkinson's disease and essential tremor subjects based on temporal uctuation,'' in Proc. 38th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug. 2016, pp. 6389 6392, doi: 10.1109/EMBC.2016.7592190.[9] F. Papengut, J. Raethjen, A. Binder, and G. Deuschl, ``Rest tremor suppression may separate essential from parkinsonian rest tremor,'' Parkin- sonism Rel. Disorders, vol. 19, no. 7, pp. 693 697, Jul. 2013, doi: 10.1016/j.parkreldis.2013.03.013.[10] K. Uchida, M. Hirayama, F. Yamashita, N. Hori, T. Nakamura, and G. Sobue, ``Tremor is attenuated during walking in essential tremor with resting tremor but not parkinsonian tremor,'' J. Clin. Neurosci., vol. 18, no. 9, pp. 1224 1228, Sep. 2011, doi: 10.1016/j.jocn.2010.12.053.[11] M. Algarni and A. Fasano, ``The overlap between essential tremor and parkinson disease,'' Parkinsonism Rel. Disorders, vol. 46, pp. S101 S104, Jan. 2018, doi: 10.1016/j.parkreldis.2017.07.006.[12] E. Nikfekr, K. Kerr, S. Att eld, and E. D. Playford, ``Trunk movement in Parkinson's disease during rising from seated position,'' Movement Disor- ders, vol. 17, no. 2, pp. 274 282, Mar. 2002, doi: 10.1002/mds.10073.[13] G. Serrancolí, J. M. Font-Llagunes, and A. Barjau, ``A weighted cost function to deal with the muscle force sharing problem in injured subjects: A single case study,'' Proc. Inst. Mech. Eng., K, J. Multi-body Dyn., vol. 228, no. 3, pp. 241 251, Sep. 2014, doi: 10.1177/1464419314530110.[14] F. P. Bernhard, J. Sartor, K. Bettecken, M. A. Hobert, C. Arnold, Y. G. Weber, S. Poli, N. G. Margraf, C. Schlenstedt, C. Hansen, and W. Maetzler, ``Wearables for gait and balance assessment in the neurological ward study design and rst results of a prospective cross-sectional feasibility study with 384 inpatients,'' BMC Neurol., vol. 18, no. 1, p. 114, Dec. 2018, doi: 10.1186/s12883-018-1111-7.[15] D. J. Wile, R. Ranawaya, and Z. H. T. Kiss, ``Smart watch accelerometry for analysis and diagnosis of tremor,'' J. Neurosci. Methods, vol. 230, pp. 1 4, Jun. 2014, doi: 10.1016/j.jneumeth.2014.04.021.[16] G. Kramer, A. M. M. Van der Stouwe, N. M. Maurits, M. A. J. Tijssen, and J.W. J. Elting, ``Wavelet coherence analysis:Anewapproach to distinguish organic and functional tremor types,'' Clin. Neurophysiol., vol. 129, no. 1, pp. 13 20, Jan. 2018, doi: 10.1016/j.clinph.2017.10.002.[17] M. A. Raza, Q. Chaudry, S. M. T. Zaidi, and M. B. Khan, ``Clinical decision support system for Parkinson's disease and related movement disorders,'' in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2017, pp. 1108 1112, doi: 10.1109/ICASSP.2017.7952328.[18] H. A. González Rojas, P. C. Cuevas, E. E. Zayas Figueras, S. C. Foix, and A. J. Sánchez Egea, ``Time measurement characterization of standto- sit and sit-to-stand transitions by using a smartphone,'' Med. Biol. Eng. Comput., vol. 56, no. 5, pp. 879 888, May 2018, doi: 10.1007/s11517-017- 1728-5.[19] J. D. Loaiza Duque, A. M. González-Vargas, A. J. Sánchez Egea, and H. A. González Rojas, ``Using machine learning and accelerometry data for differential diagnosis of parkinson's disease and essential tremor,'' in Applied Computer Sciences in Engineering (Communications in Computer and Information Science), vol. 1052. Springer, 2019, pp. 368 378.[20] Sensorlog (Version 1.9.4) Mobile Application Software. Accessed: 2017. [Online]. Available: http://itunes.apple.com[21] S. Padma G, S. Umesh, U. Asokan, and T. Srinivas, ``Parkinsonian hand tremor measurement device based on ber Bragg grating sensor,'' in Proc. Int. Conf. Smart Sensors Syst. (IC-SSS), Dec. 2015, pp. 3 5, doi: 10.1109/ SMARTSENS.2015.7873611.[22] F. Hopfner and R. C. Helmich, ``The etiology of essential tremor: Genes versus environment,'' Parkinsonism Rel. Disorders, vol. 46, pp. S92 S96, Jan. 2018, doi: 10.1016/j.parkreldis.2017.07.014.[23] T. Novak and K. M. Newell, ``Physiological tremor (8 12 Hz component) in isometric force control,'' Neurosci. Lett., vol. 641, pp. 87 93, Feb. 2017, doi: 10.1016/j.neulet.2017.01.034.[24] E. D. Louis, ``Essential tremor then and now: How views of the most common tremor diathesis have changed over time,'' Parkinsonism Rel. Disorders, vol. 46, pp. S70 S74, Jan. 2018, doi: 10.1016/j.parkreldis.2017. 07.010.[25] O. Martinez Manzanera, J. W. Elting, J. H. van der Hoeven, and N. M. Maurits, ``Tremor detection using parametric and non-parametric spectral estimation methods: A comparison with clinical assessment,'' PLoS ONE, vol. 11, no. 6, Jun. 2016, Art. no. e0156822, doi: 10.1371/journal. pone.0156822.[26] I. Guyon and A. Elisseeff, ``An introduction to variable and feature selection,'' J. Mach. Learn. Res., vol. 3, pp. 1157 1182, Jan. 2003, doi: 10.1162/153244303322753616.[27] N. Kostikis, D. Hristu-Varsakelis, M. Arnaoutoglou, and C. Kotsavasiloglou, ``A smartphone-based tool for assessing parkinsonian hand tremor,'' IEEE J. Biomed. Health Informat., vol. 19, no. 6, pp. 1835 1842, Nov. 2015, doi: 10.1109/JBHI.2015.2471093.[28] I. S. Thaseen and C. A. Kumar, ``Intrusion detection model using fusion of chi-square feature selection and multi class SVM,'' J. King Saud Univ. Comput. Inf. Sci., vol. 29, no. 4, pp. 462 472, Oct. 2017, doi: 10.1016/j.jksuci.2015.12.004.[29] L. M. Gil, T. P. Nunes, F. H. S. Silva, A. C. D. Faria, and P. L. Melo, ``Analysis of human tremor in patients with parkinson disease using entropy measures of signal complexity,'' in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol., Aug. 2010, pp. 2786 2789, doi: 10.1109/IEMBS.2010. 5626365.[30] B. Zhang, F. Huang, J. Liu, and D. Zhang, ``A novel posture for better differentiation between Parkinson's tremor and essential tremor,'' Frontiers Neurosci., vol. 12, p. 317, May 2018, doi: 10.3389/fnins.2018.00317.[31] J. Marjama-Lyons and W. Koller, ``Tremor-predominant parkinson's disease,'' Drugs Aging, vol. 16, no. 4, pp. 273 278, Apr. 2000, doi: 10.2165/ 00002512-200016040-00003.[32] A. P. Duker and A. J. Espay, ``Surgical treatment of parkinson disease,'' Neurologic Clinics, vol. 31, no. 3, pp. 799 808, Aug. 2013, doi: 10.1016/ j.ncl.2013.03.007.GeneralPublication6053e64e-a34d-4652-8fa2-6c0440556f15virtual::2068-16053e64e-a34d-4652-8fa2-6c0440556f15virtual::2068-1https://scholar.google.com.co/citations?user=oj5Tle8AAAAJ&hl=esvirtual::2068-10000-0001-6393-7130virtual::2068-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001345355virtual::2068-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/56abebc5-42e2-4d7b-8e39-aecf074810bd/download20b5ba22b1117f71589c7318baa2c560MD52TEXTAngular velocity analysis boosted by machine learning for helping in the differential diagnosis of parkinson¿s disease and essential tremor.pdf.txtAngular velocity analysis boosted by machine learning for helping in the differential diagnosis of parkinson¿s disease and essential tremor.pdf.txtExtracted texttext/plain45787https://red.uao.edu.co/bitstreams/b2f9986d-eb36-4c63-bbe1-eec173db478f/download63dab57faee0dc597d1ba15dde61e7dbMD54THUMBNAILAngular velocity analysis boosted by machine learning for helping in the differential diagnosis of parkinson¿s disease and essential tremor.pdf.jpgAngular velocity analysis boosted by machine learning for helping in the differential diagnosis of parkinson¿s disease and essential tremor.pdf.jpgGenerated Thumbnailimage/jpeg17549https://red.uao.edu.co/bitstreams/3e9905f4-2aab-4190-965c-0a63899e852e/downloadebf40fed42881decef5e0875197d3edeMD5510614/13381oai:red.uao.edu.co:10614/133812024-03-06 09:36:46.012https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - IEEE, 2020metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K