Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest

In the production of ethanol from agroindustrial crop residues, one of the critical stages in the process is the conversion of lignocellulosic material to simple sugars, which can be done chemically or enzymatically. In this research, the enzymatic activities of commercial enzymes were evaluated for...

Full description

Autores:
Salcedo Mendoza, Jairo Guadalupe
López Galán, Jorge Enrique
Flórez Pardo, Luz Marina
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13402
Acceso en línea:
https://hdl.handle.net/10614/13402
Palabra clave:
Hidrolisis
Hydrolysis
Tallo
Hojas
Caña de azúcar
Hemicelulasas
Celulasas
Hidrólisis enzimática
top cane
leaves
sugar cane
hemicellulose
cellulases
enzymatic hydrolysis
Rights
openAccess
License
Derechos reservados - Universidad Nacional de Colombia, Sede Medellín, 2019
id REPOUAO2_74cf9df50c1f02fc2d9e7395277ac74c
oai_identifier_str oai:red.uao.edu.co:10614/13402
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest
dc.title.alternative.spa.fl_str_mv Actividades enzimáticas significativas en la hidrólisis de residuos de la cosecha de caña de azúcar
title Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest
spellingShingle Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest
Hidrolisis
Hydrolysis
Tallo
Hojas
Caña de azúcar
Hemicelulasas
Celulasas
Hidrólisis enzimática
top cane
leaves
sugar cane
hemicellulose
cellulases
enzymatic hydrolysis
title_short Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest
title_full Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest
title_fullStr Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest
title_full_unstemmed Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest
title_sort Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest
dc.creator.fl_str_mv Salcedo Mendoza, Jairo Guadalupe
López Galán, Jorge Enrique
Flórez Pardo, Luz Marina
dc.contributor.author.spa.fl_str_mv Salcedo Mendoza, Jairo Guadalupe
López Galán, Jorge Enrique
dc.contributor.author.none.fl_str_mv Flórez Pardo, Luz Marina
dc.contributor.corporatename.spa.fl_str_mv Universidad Nacional de Colombia, Sede Medellín
dc.subject.lemb.spa.fl_str_mv Hidrolisis
topic Hidrolisis
Hydrolysis
Tallo
Hojas
Caña de azúcar
Hemicelulasas
Celulasas
Hidrólisis enzimática
top cane
leaves
sugar cane
hemicellulose
cellulases
enzymatic hydrolysis
dc.subject.lemb.eng.fl_str_mv Hydrolysis
dc.subject.proposal.spa.fl_str_mv Tallo
Hojas
Caña de azúcar
Hemicelulasas
Celulasas
Hidrólisis enzimática
dc.subject.proposal.eng.fl_str_mv top cane
leaves
sugar cane
hemicellulose
cellulases
enzymatic hydrolysis
description In the production of ethanol from agroindustrial crop residues, one of the critical stages in the process is the conversion of lignocellulosic material to simple sugars, which can be done chemically or enzymatically. In this research, the enzymatic activities of commercial enzymes were evaluated for their influence on the degradation of lignocellulosic materials from sugar cane harvest residues (leaves and top cane). Eight substrates were pretreated with different delignification methods. Likewise, five enzymatic preparations were configured. An analysis of the enzyme-substrate interactions was conducted through fuzzy system analysis. The results showed regions of maximum enzymatic activity for residues of the sugarcane harvest, between 20-30 Filter Paper Units (FPU) /mL values lower than 500 pNPG (p-Nitrofenol-α-D-Glucopyranoside) U / mL of activity beta-glucosidase and hemicellulase activity between 50 and 70 IU / mL, confirming that the use of large amounts of cellulolytic enzymes is not necessary
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-07
dc.date.accessioned.none.fl_str_mv 2021-11-04T17:04:34Z
dc.date.available.none.fl_str_mv 2021-11-04T17:04:34Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 127353
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13402
dc.identifier.doi.none.fl_str_mv 10.15446/dyna.v86n210.75286
identifier_str_mv 127353
10.15446/dyna.v86n210.75286
url https://hdl.handle.net/10614/13402
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Volumen 86, número 210 (2019)
dc.relation.citationendpage.spa.fl_str_mv 41
dc.relation.citationissue.spa.fl_str_mv 210
dc.relation.citationstartpage.spa.fl_str_mv 35
dc.relation.citationvolume.spa.fl_str_mv 86
dc.relation.cites.eng.fl_str_mv Salcedo Mendoza, J.G., Florez Pardo, L.M., López Galán, J. E. (2019). Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest. Revista DYNA, (Vol. 86 (210), pp. 35-41. https://doi.org/10.15446/dyna.v86n210.75286
dc.relation.ispartofjournal.spa.fl_str_mv DYNA
dc.relation.references.none.fl_str_mv [1] FEPA - Fondo de estabilización de los precios del azúcar, [en líena]. 2014. Disponible en: http://www.fepa.com.co
[2] CENICAÑA - Centro de Investigación de la Caña de Azúcar. Indicadores de productividad de la industria azucarera colombiana entre enero y agosto de 2006 - 2007 [en línea]. Florida, Valle del Cauca. Disponible en: http://www.cenicana. org/ web/
[3] Simas-Días, D., Acevedo-Jaramillo, L.Y., Vasconcelos, U. and Pereira, N., Characterization of glucosidases produced by Aspergillus niger Atcc 1004 in submerged fermentation from sugarcane bagasse. Revista Mexicana de Ingeniería Química. [online]. 17, pp. 365-377, 2018. Available at: http://www.rmiq.org/ojs311/index.php/rmiq/article/view/45
[4] Peña-Maravilla, M., Calixto-Romo, M.A., K. Guillén-Navarro, K., Sánchez, J.E. and Amaya-Delgado, L., Cellulases and xylanases production by Penicillium citrinum CGETCR using coffee pulp in solid-state fermentation. Revista Mexicana de Ingeniería Química, [online]. 16(3), pp. 757-769, 2017. Available at: http://www.redalyc.org/articulo.oa?id=62053304006
[5] Chylenski, P., Forsberg, Z., St Ahlberg, J., V´Arnai, A., Lersch, M., Bengtsson, O., Sæbø, S., Jarle-Horn, S. and Eijsink, V., Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass. Journal of Biotechnology, 20, pp. 16-23, 2017. DOI: 10.1016/j .jbiotec. 2017.02.009
[6] Peciulyte, A., Pisano, M., De Vries, R. and Olsson, O., Hydrolytic potential of five fungal supernatants to enhance a commercial enzyme cocktail Biotechnol Lett. 39, pp. 1403-1411, 2007. DOI: 10.1007/s 10529-017-2371-9
[7] Bhatia, L., Chandel, A.K., Singh, A.K. and Singh, O.V., Biotechnological advances in lignocellulosic ethanol production. In: Singh, O. and Chandel, A. (eds), Sustainable biotechnology- Enzymatic resources of renewable energy. Springer, Cham, 2018, pp 57-82, DOI: 10.1007/978-3-319-95480-6_3
[8] Meng, X. and Ragauskas, A.J., Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin. Biotechnol. 27, pp. 150-158, 2014. DOI: 10.1016/ j.copbio.2014.01.014
[9] Sadaf, A. and Khare, S.K., Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis. Bioresour. Technol., 153, pp. 126-130, 2014. DOI: 10.1016/j. biortech.2013 .11.058.
[10] Marembo, C, Mamphweli, S. and Okoh, O., Bioethanol production from lignocellulosic sugarcane leaves and tops, Journal of Energy in Southern Africa. 28, pp. 1-11, 2017, DOI: 10.17159/2413-3051/2017 /v28i3a2354
[11] Chapla, D., Divecha, J., Madamwar, D. and Shah, A., Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochem. Eng. J., 49, pp. 361-369, 2010. DOI: 10.1016/j.bej.2010.01.012.
[12] Hongdan, Z., Shaohua, X. and Shubin, W., Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Bioresour. Technol., 143, pp. 391-396, 2013. DOI: 10.1016 /j.biortech .2013.05.103
[13] Pensupa, N., Jin, M., Kokolski, M., Archer, D.B. and Du, C., A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw. Bioresour. Technol., 149, pp. 261-267, 2013. DOI: 10.1016/j. biortech. 2013.09.061.
[14] Bátori, V., Ferreira, J.A., Taherzadeh, M.J. and Lennartsson, P.R., Ethanol and protein from ethanol plant by-products using edible fungi Neurospora intermedia and Aspergillus oryzae. BioMed. Res. Int., 15, pp. 1-10, 2015. DOI: 10.1155/2015 /176371
[15] Nair, R.B., Lundin, M., Brandberg, T., Lennartsson, P.R. and Taherzadeh, M.J., Dilute phosphoric acid pretreatment of wheat bran for enzymatic hydrolysis and subsequent ethanol production by edible fungi Neurospora intermedia. Ind. Crops Prod., 69, pp. 314-323, 2015. DOI: 10.1016/j.indcrop. 2015. 02.038.
[16] Knawang-Chhunji, K.I., Madhao, M. and Rintu-Banerjee, R., Optimization of saccharification of enzymatically pretreated sugarcane tops by response surface methodology for ethanol production, Biofuels, 10, pp. 73-80, 2019, DOI: 10.1080/ 17597269. 2017.1409058.
[17] Mokomele, T., Da Costa Sousa, L., Balan, V., Van -Rensburg, E., Dale, D. and Görgens., J., Ethanol production potential from AFEX™ and steam-exploded sugarcane residues for sugarcane biorefiner, Biotechnol Biofuels, 11 pp. 11-17, 2018, DOI: 10.1186/s13068-018-1130-z
[18] Sanchez, O. and Cardona, C., Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 99, pp. 5270-5295, 2008. DOI: 10.1016/j.biortech. 2007.11.013
[19] Malgas, S., Chandra, R., Van- Dyk, J.S., Saddler, J.N. and Pletschke, B.I., Formulation of an optimized synergistic enzyme cocktail, HoloMix, for effective degradation of various pre-treated hardwoods, Bioresource Technology, 245, pp.46-52, 2017 DOI: 10.1016/j.biortech. 2017.08.186
[20] Eveling, D., Mandels, M., Andreotti, R. and Rocche, C., Measurement of saccharifiying cellulose. Biothecnology for biofuels. pp. 2-21, 2009. DOI: 10.1186/1754-6834-2-21
[21] Bailey, M., Biely, P. and Pountanen, K., Interlaboratory testig of methods for assay of xylanase activity. Journal of Biotechnology, 23, pp. 257-270, 1992. DOI: 10.1016/0168-1656(92)90074-J
[22] Megazyme International Ireland Limited Ltda., Assay of endo 1-4-β-D Galactanase using azo -galactan (agalp), Assay of 1-4-β- endo Mannanase using AZO- carob galactomannan, Assay of Rhamnogalacturonanase Using Azo- Rhamnogalacturonan AZRH [online]. (11/99). 2009. Available at: https://secure.megazyme.com /files/Booklet
[23] Ghose, T.K., Measure cellulose activities, Pure & Appl. Chem. [online]. 59, pp. 257-268. Avaqilable at: https://www.iupac.org/ publications. 1987
[24] Salcedo, J., Enzymatic hydrolysis of sugarcane crop residues (leaves and top cane) for the production of ethanol. Thesis PhD in Engineering. Escuela de Ingeniería Química, Universidad del Valle, Colombia. 2011.
[25] Van-Soest, P., Use of detergents in the analysis of fibrous feeds. I. Preparation of fiber residues of low nitrogen content, Journal of the AOAC, 46, pp. 829-835, 1987.
[26] Xiaolu, W., Bin, Y. and Su, X., Linking enzymatic oxidative degradation of lignin to organics detoxification. Int. J. Mol. Sci., 19, pp. 2-17, 2018, DOI: 10.3390/ijms19113373
[27] Jong-Rok, J., Murugesan, K., Kim, Y., Kim, E. and Chang, Y., Synergistic effect of laccase mediators on entachlorophenol removal by Ganoderma lucidum laccase. Appl Microbiol Biotechnol., 81, pp. 783-790, 2008. DOI: 10.1007/s00253-008-1753-2
[28] Mutis, D., Delignification of sugar cane residues (leaves and top cane) with chemical processes, Thesis. Escuela de Ingeniería Química, Universidad del Valle, Colombia. 2009.
[29] Bhattacharya, D., Germinario, L. and Winter, W., Isolation, preparation and characterization of cellulose microfibers obtained from bagasse, Carbohydrate Polymers, 73, pp. 371-377, 2008. DOI: 10.1016/j.carbpol. 2007.12.005
[30] Miller, G., Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical chemistry, 31, pp. 426- 426, 1959. DOI: 10.1021/ ac60147a030
[31] Patel, H., Chapla, D., Divecha, J. and Shah, A., Improved yield of α- l - arabinofuranosidase by newly isolated Aspergillus niger ADH-11 and synergistic effect of crude enzyme on saccharification of maize stover. Bioresour Bioproces, 2, pp. 2-14, 2015. DOI: 10.1186/s40643-015-0039-7
[32] Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D. and Osborne, J., A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol., 98, pp. 3000-3011, 2007. DOI: 10.1016/j .biortech. 2006.10.022
[33] Kubicek, C.P. and Penttilä, M.E., Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. In: Harman, G.E. and Kubicek, C.P. (Eds.), Trichoderma and Gliocladium: enzymes, Biological Control and Commercial Applications, 2, pp. 49-72, 1998.
[34] Gasparotto, J.M., Werle, L.B., Foletto, E.L., Kuhn, R.C., Jahn, S.L. and Mazutti, M.A., Production of cellulolytic enzymes and application of crude enzymatic extract for sacchar- ification of lignocellulosic biomass. Appl Biochem Biotechnol., 72, pp. 175-560, 2005. DOI: 10.1007/s12010- 014- 1297-0
[35] Zhang, L., Liu, Y., Niu, X., Liu, Y. and Liao, W., Effects of acid and alkali treated lignocellulosic materials on cellulase/xylanase production by Trichoderma ree- sei Rut C-30 and corresponding enzymatic hydrolysis. Biomass Bioenergy, 37, pp. 16-24, 2012. DOI: 10.1016/j.biombioe. 2011.12.044
[36] Adsula, MG., Ghuleb, J., Shaikhb, H., Singhb, R., Bastawdea, K.B., Gokhalea, D.V. and Varma, A.J., Enzymatic hydrolysis of delignified bagasse polysaccharides, Carbohydrate Polymers, 62, pp. 6-10, 2005. DOI: 10.1016/j.carbpol. 2005. 07.010
[37] Millett, M., Effland, M. and Caulfield, D., Influence of fine grinding on the hydrolysis of cellulosic materials—Acid Vs. Enzymatic. Advances in Chemistry, 181, pp. 71-89, 1979. DOI: 10.1021/ba-1979-0181.ch004
[38] Mais, U., Esteghlalian, A., Saddler, J. and Mansfield, S., Enhancingthe enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Applied Biochemistry and Biotechnology - Part A. Enzyme Engineering and Biotechnology, 98, pp. 815-832, 2002. DOI: 10.1385/ABAB:98- 100:1-9:815
[39] Wyman, C., Handbook on Bioethanol: production and utilization. Taylor & Francis, Washinnton, DC, USA, 1996.
[40] Galbe, M. and Zacchi, G., A review of the production of ethanol from softwood. Appl. Microbial Biotechnol, 5, pp. 618-628, 2002. DOI: 10.1007 /s00253-002-1058-9
[41] Mosier, N., Hall, P., Ladisch, C. and Ladisch, M., Reacction kinetics, molecular action and mechanisms of cellulolytic proteins. Adv Biochem Eng Biotechnol., 65, pp. 23-40, 1999. DOI: 10.1007/3-540-49194-5-2
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia, Sede Medellín, 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Universidad Nacional de Colombia, Sede Medellín, 2019
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 7 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia, Sede Medellín
dc.publisher.place.spa.fl_str_mv Medellìn
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/219ca4a4-a0ba-4aa6-8fa8-96ce559939ff/download
https://red.uao.edu.co/bitstreams/03d0d7e3-b859-420b-874f-4ac9f29d1833/download
https://red.uao.edu.co/bitstreams/ac0a67a6-0ed7-4619-b0a7-21af046ba95b/download
https://red.uao.edu.co/bitstreams/a8dabf08-4730-492a-aa7d-a5b2ac0f1e40/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
07dc89b7362790b64c8bb56b169b6057
ceb63270e30a3b5eb68a4be957cc081e
daab1bc6d5c626524f7e3b71e6fd45aa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260010379640832
spelling Salcedo Mendoza, Jairo Guadalupe8c7535331f5d5f90d3cb2028b22f6fa2López Galán, Jorge Enriquec28f842fdc151536a90f2149d7bd6b1fFlórez Pardo, Luz Marinavirtual::1694-1Universidad Nacional de Colombia, Sede Medellín2021-11-04T17:04:34Z2021-11-04T17:04:34Z2019-07127353https://hdl.handle.net/10614/1340210.15446/dyna.v86n210.75286In the production of ethanol from agroindustrial crop residues, one of the critical stages in the process is the conversion of lignocellulosic material to simple sugars, which can be done chemically or enzymatically. In this research, the enzymatic activities of commercial enzymes were evaluated for their influence on the degradation of lignocellulosic materials from sugar cane harvest residues (leaves and top cane). Eight substrates were pretreated with different delignification methods. Likewise, five enzymatic preparations were configured. An analysis of the enzyme-substrate interactions was conducted through fuzzy system analysis. The results showed regions of maximum enzymatic activity for residues of the sugarcane harvest, between 20-30 Filter Paper Units (FPU) /mL values lower than 500 pNPG (p-Nitrofenol-α-D-Glucopyranoside) U / mL of activity beta-glucosidase and hemicellulase activity between 50 and 70 IU / mL, confirming that the use of large amounts of cellulolytic enzymes is not necessaryEn la producción de etanol a partir de residuos agroindustriales, una de las etapas críticas en el proceso es la conversión del material lignocelulósico a azúcares simples, que puede realizarse química o enzimáticamente. En esta investigación, se evaluó la influencia de las actividades enzimáticas de las enzimas comerciales para degradar materiales de residuos de cosecha de la caña de azúcar (hojas y cogollos). Ocho sustratos fueron pretratados con diferentes métodos de deslignificación, con cinco preparaciones enzimáticas. Se utilizó un análisis de las interacciones enzima-sustrato, a través del análisis del sistema difuso. Los resultados mostraron regiones de actividad enzimática entre 20-30 FPU / mL y valores inferiores a 500 pNPG U / mL de actividad beta-glucosidasa y para actividad hemicelulasa entre 50 y 70 IU / mL, confirmando que el uso de grandes cantidades de enzimas celulolíticas no es necesario7 páginasapplication/pdfengUniversidad Nacional de Colombia, Sede MedellínMedellìnDerechos reservados - Universidad Nacional de Colombia, Sede Medellín, 2019https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Significant enzymatic activities in the residues hydrolysis of the sugar cane harvestActividades enzimáticas significativas en la hidrólisis de residuos de la cosecha de caña de azúcarArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85HidrolisisHydrolysisTalloHojasCaña de azúcarHemicelulasasCelulasasHidrólisis enzimáticatop caneleavessugar canehemicellulosecellulasesenzymatic hydrolysisVolumen 86, número 210 (2019)412103586Salcedo Mendoza, J.G., Florez Pardo, L.M., López Galán, J. E. (2019). Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest. Revista DYNA, (Vol. 86 (210), pp. 35-41. https://doi.org/10.15446/dyna.v86n210.75286DYNA[1] FEPA - Fondo de estabilización de los precios del azúcar, [en líena]. 2014. Disponible en: http://www.fepa.com.co[2] CENICAÑA - Centro de Investigación de la Caña de Azúcar. Indicadores de productividad de la industria azucarera colombiana entre enero y agosto de 2006 - 2007 [en línea]. Florida, Valle del Cauca. Disponible en: http://www.cenicana. org/ web/[3] Simas-Días, D., Acevedo-Jaramillo, L.Y., Vasconcelos, U. and Pereira, N., Characterization of glucosidases produced by Aspergillus niger Atcc 1004 in submerged fermentation from sugarcane bagasse. Revista Mexicana de Ingeniería Química. [online]. 17, pp. 365-377, 2018. Available at: http://www.rmiq.org/ojs311/index.php/rmiq/article/view/45[4] Peña-Maravilla, M., Calixto-Romo, M.A., K. Guillén-Navarro, K., Sánchez, J.E. and Amaya-Delgado, L., Cellulases and xylanases production by Penicillium citrinum CGETCR using coffee pulp in solid-state fermentation. Revista Mexicana de Ingeniería Química, [online]. 16(3), pp. 757-769, 2017. Available at: http://www.redalyc.org/articulo.oa?id=62053304006[5] Chylenski, P., Forsberg, Z., St Ahlberg, J., V´Arnai, A., Lersch, M., Bengtsson, O., Sæbø, S., Jarle-Horn, S. and Eijsink, V., Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass. Journal of Biotechnology, 20, pp. 16-23, 2017. DOI: 10.1016/j .jbiotec. 2017.02.009[6] Peciulyte, A., Pisano, M., De Vries, R. and Olsson, O., Hydrolytic potential of five fungal supernatants to enhance a commercial enzyme cocktail Biotechnol Lett. 39, pp. 1403-1411, 2007. DOI: 10.1007/s 10529-017-2371-9[7] Bhatia, L., Chandel, A.K., Singh, A.K. and Singh, O.V., Biotechnological advances in lignocellulosic ethanol production. In: Singh, O. and Chandel, A. (eds), Sustainable biotechnology- Enzymatic resources of renewable energy. Springer, Cham, 2018, pp 57-82, DOI: 10.1007/978-3-319-95480-6_3[8] Meng, X. and Ragauskas, A.J., Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin. Biotechnol. 27, pp. 150-158, 2014. DOI: 10.1016/ j.copbio.2014.01.014[9] Sadaf, A. and Khare, S.K., Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis. Bioresour. Technol., 153, pp. 126-130, 2014. DOI: 10.1016/j. biortech.2013 .11.058.[10] Marembo, C, Mamphweli, S. and Okoh, O., Bioethanol production from lignocellulosic sugarcane leaves and tops, Journal of Energy in Southern Africa. 28, pp. 1-11, 2017, DOI: 10.17159/2413-3051/2017 /v28i3a2354[11] Chapla, D., Divecha, J., Madamwar, D. and Shah, A., Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochem. Eng. J., 49, pp. 361-369, 2010. DOI: 10.1016/j.bej.2010.01.012.[12] Hongdan, Z., Shaohua, X. and Shubin, W., Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Bioresour. Technol., 143, pp. 391-396, 2013. DOI: 10.1016 /j.biortech .2013.05.103[13] Pensupa, N., Jin, M., Kokolski, M., Archer, D.B. and Du, C., A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw. Bioresour. Technol., 149, pp. 261-267, 2013. DOI: 10.1016/j. biortech. 2013.09.061.[14] Bátori, V., Ferreira, J.A., Taherzadeh, M.J. and Lennartsson, P.R., Ethanol and protein from ethanol plant by-products using edible fungi Neurospora intermedia and Aspergillus oryzae. BioMed. Res. Int., 15, pp. 1-10, 2015. DOI: 10.1155/2015 /176371[15] Nair, R.B., Lundin, M., Brandberg, T., Lennartsson, P.R. and Taherzadeh, M.J., Dilute phosphoric acid pretreatment of wheat bran for enzymatic hydrolysis and subsequent ethanol production by edible fungi Neurospora intermedia. Ind. Crops Prod., 69, pp. 314-323, 2015. DOI: 10.1016/j.indcrop. 2015. 02.038.[16] Knawang-Chhunji, K.I., Madhao, M. and Rintu-Banerjee, R., Optimization of saccharification of enzymatically pretreated sugarcane tops by response surface methodology for ethanol production, Biofuels, 10, pp. 73-80, 2019, DOI: 10.1080/ 17597269. 2017.1409058.[17] Mokomele, T., Da Costa Sousa, L., Balan, V., Van -Rensburg, E., Dale, D. and Görgens., J., Ethanol production potential from AFEX™ and steam-exploded sugarcane residues for sugarcane biorefiner, Biotechnol Biofuels, 11 pp. 11-17, 2018, DOI: 10.1186/s13068-018-1130-z[18] Sanchez, O. and Cardona, C., Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 99, pp. 5270-5295, 2008. DOI: 10.1016/j.biortech. 2007.11.013[19] Malgas, S., Chandra, R., Van- Dyk, J.S., Saddler, J.N. and Pletschke, B.I., Formulation of an optimized synergistic enzyme cocktail, HoloMix, for effective degradation of various pre-treated hardwoods, Bioresource Technology, 245, pp.46-52, 2017 DOI: 10.1016/j.biortech. 2017.08.186[20] Eveling, D., Mandels, M., Andreotti, R. and Rocche, C., Measurement of saccharifiying cellulose. Biothecnology for biofuels. pp. 2-21, 2009. DOI: 10.1186/1754-6834-2-21[21] Bailey, M., Biely, P. and Pountanen, K., Interlaboratory testig of methods for assay of xylanase activity. Journal of Biotechnology, 23, pp. 257-270, 1992. DOI: 10.1016/0168-1656(92)90074-J[22] Megazyme International Ireland Limited Ltda., Assay of endo 1-4-β-D Galactanase using azo -galactan (agalp), Assay of 1-4-β- endo Mannanase using AZO- carob galactomannan, Assay of Rhamnogalacturonanase Using Azo- Rhamnogalacturonan AZRH [online]. (11/99). 2009. Available at: https://secure.megazyme.com /files/Booklet[23] Ghose, T.K., Measure cellulose activities, Pure & Appl. Chem. [online]. 59, pp. 257-268. Avaqilable at: https://www.iupac.org/ publications. 1987[24] Salcedo, J., Enzymatic hydrolysis of sugarcane crop residues (leaves and top cane) for the production of ethanol. Thesis PhD in Engineering. Escuela de Ingeniería Química, Universidad del Valle, Colombia. 2011.[25] Van-Soest, P., Use of detergents in the analysis of fibrous feeds. I. Preparation of fiber residues of low nitrogen content, Journal of the AOAC, 46, pp. 829-835, 1987.[26] Xiaolu, W., Bin, Y. and Su, X., Linking enzymatic oxidative degradation of lignin to organics detoxification. Int. J. Mol. Sci., 19, pp. 2-17, 2018, DOI: 10.3390/ijms19113373[27] Jong-Rok, J., Murugesan, K., Kim, Y., Kim, E. and Chang, Y., Synergistic effect of laccase mediators on entachlorophenol removal by Ganoderma lucidum laccase. Appl Microbiol Biotechnol., 81, pp. 783-790, 2008. DOI: 10.1007/s00253-008-1753-2[28] Mutis, D., Delignification of sugar cane residues (leaves and top cane) with chemical processes, Thesis. Escuela de Ingeniería Química, Universidad del Valle, Colombia. 2009.[29] Bhattacharya, D., Germinario, L. and Winter, W., Isolation, preparation and characterization of cellulose microfibers obtained from bagasse, Carbohydrate Polymers, 73, pp. 371-377, 2008. DOI: 10.1016/j.carbpol. 2007.12.005[30] Miller, G., Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical chemistry, 31, pp. 426- 426, 1959. DOI: 10.1021/ ac60147a030[31] Patel, H., Chapla, D., Divecha, J. and Shah, A., Improved yield of α- l - arabinofuranosidase by newly isolated Aspergillus niger ADH-11 and synergistic effect of crude enzyme on saccharification of maize stover. Bioresour Bioproces, 2, pp. 2-14, 2015. DOI: 10.1186/s40643-015-0039-7[32] Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D. and Osborne, J., A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol., 98, pp. 3000-3011, 2007. DOI: 10.1016/j .biortech. 2006.10.022[33] Kubicek, C.P. and Penttilä, M.E., Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. In: Harman, G.E. and Kubicek, C.P. (Eds.), Trichoderma and Gliocladium: enzymes, Biological Control and Commercial Applications, 2, pp. 49-72, 1998.[34] Gasparotto, J.M., Werle, L.B., Foletto, E.L., Kuhn, R.C., Jahn, S.L. and Mazutti, M.A., Production of cellulolytic enzymes and application of crude enzymatic extract for sacchar- ification of lignocellulosic biomass. Appl Biochem Biotechnol., 72, pp. 175-560, 2005. DOI: 10.1007/s12010- 014- 1297-0[35] Zhang, L., Liu, Y., Niu, X., Liu, Y. and Liao, W., Effects of acid and alkali treated lignocellulosic materials on cellulase/xylanase production by Trichoderma ree- sei Rut C-30 and corresponding enzymatic hydrolysis. Biomass Bioenergy, 37, pp. 16-24, 2012. DOI: 10.1016/j.biombioe. 2011.12.044[36] Adsula, MG., Ghuleb, J., Shaikhb, H., Singhb, R., Bastawdea, K.B., Gokhalea, D.V. and Varma, A.J., Enzymatic hydrolysis of delignified bagasse polysaccharides, Carbohydrate Polymers, 62, pp. 6-10, 2005. DOI: 10.1016/j.carbpol. 2005. 07.010[37] Millett, M., Effland, M. and Caulfield, D., Influence of fine grinding on the hydrolysis of cellulosic materials—Acid Vs. Enzymatic. Advances in Chemistry, 181, pp. 71-89, 1979. DOI: 10.1021/ba-1979-0181.ch004[38] Mais, U., Esteghlalian, A., Saddler, J. and Mansfield, S., Enhancingthe enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Applied Biochemistry and Biotechnology - Part A. Enzyme Engineering and Biotechnology, 98, pp. 815-832, 2002. DOI: 10.1385/ABAB:98- 100:1-9:815[39] Wyman, C., Handbook on Bioethanol: production and utilization. Taylor & Francis, Washinnton, DC, USA, 1996.[40] Galbe, M. and Zacchi, G., A review of the production of ethanol from softwood. Appl. Microbial Biotechnol, 5, pp. 618-628, 2002. DOI: 10.1007 /s00253-002-1058-9[41] Mosier, N., Hall, P., Ladisch, C. and Ladisch, M., Reacction kinetics, molecular action and mechanisms of cellulolytic proteins. Adv Biochem Eng Biotechnol., 65, pp. 23-40, 1999. DOI: 10.1007/3-540-49194-5-2GeneralPublicationcc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1694-1cc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1694-1https://scholar.google.com/citations?user=88OyeaAAAAAJ&hl=es&oi=aovirtual::1694-10000-0001-8779-8120virtual::1694-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000002410virtual::1694-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/219ca4a4-a0ba-4aa6-8fa8-96ce559939ff/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALSignificant enzymatic activities in the residues hydrolysis of the sugar cane harvest.pdfSignificant enzymatic activities in the residues hydrolysis of the sugar cane harvest.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf644872https://red.uao.edu.co/bitstreams/03d0d7e3-b859-420b-874f-4ac9f29d1833/download07dc89b7362790b64c8bb56b169b6057MD53TEXTSignificant enzymatic activities in the residues hydrolysis of the sugar cane harvest.pdf.txtSignificant enzymatic activities in the residues hydrolysis of the sugar cane harvest.pdf.txtExtracted texttext/plain32238https://red.uao.edu.co/bitstreams/ac0a67a6-0ed7-4619-b0a7-21af046ba95b/downloadceb63270e30a3b5eb68a4be957cc081eMD54THUMBNAILSignificant enzymatic activities in the residues hydrolysis of the sugar cane harvest.pdf.jpgSignificant enzymatic activities in the residues hydrolysis of the sugar cane harvest.pdf.jpgGenerated Thumbnailimage/jpeg15601https://red.uao.edu.co/bitstreams/a8dabf08-4730-492a-aa7d-a5b2ac0f1e40/downloaddaab1bc6d5c626524f7e3b71e6fd45aaMD5510614/13402oai:red.uao.edu.co:10614/134022024-03-05 09:43:28.907https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Universidad Nacional de Colombia, Sede Medellín, 2019open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K