Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest
In the production of ethanol from agroindustrial crop residues, one of the critical stages in the process is the conversion of lignocellulosic material to simple sugars, which can be done chemically or enzymatically. In this research, the enzymatic activities of commercial enzymes were evaluated for...
- Autores:
-
Salcedo Mendoza, Jairo Guadalupe
López Galán, Jorge Enrique
Flórez Pardo, Luz Marina
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13402
- Acceso en línea:
- https://hdl.handle.net/10614/13402
- Palabra clave:
- Hidrolisis
Hydrolysis
Tallo
Hojas
Caña de azúcar
Hemicelulasas
Celulasas
Hidrólisis enzimática
top cane
leaves
sugar cane
hemicellulose
cellulases
enzymatic hydrolysis
- Rights
- openAccess
- License
- Derechos reservados - Universidad Nacional de Colombia, Sede Medellín, 2019
id |
REPOUAO2_74cf9df50c1f02fc2d9e7395277ac74c |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13402 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest |
dc.title.alternative.spa.fl_str_mv |
Actividades enzimáticas significativas en la hidrólisis de residuos de la cosecha de caña de azúcar |
title |
Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest |
spellingShingle |
Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest Hidrolisis Hydrolysis Tallo Hojas Caña de azúcar Hemicelulasas Celulasas Hidrólisis enzimática top cane leaves sugar cane hemicellulose cellulases enzymatic hydrolysis |
title_short |
Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest |
title_full |
Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest |
title_fullStr |
Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest |
title_full_unstemmed |
Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest |
title_sort |
Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest |
dc.creator.fl_str_mv |
Salcedo Mendoza, Jairo Guadalupe López Galán, Jorge Enrique Flórez Pardo, Luz Marina |
dc.contributor.author.spa.fl_str_mv |
Salcedo Mendoza, Jairo Guadalupe López Galán, Jorge Enrique |
dc.contributor.author.none.fl_str_mv |
Flórez Pardo, Luz Marina |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Nacional de Colombia, Sede Medellín |
dc.subject.lemb.spa.fl_str_mv |
Hidrolisis |
topic |
Hidrolisis Hydrolysis Tallo Hojas Caña de azúcar Hemicelulasas Celulasas Hidrólisis enzimática top cane leaves sugar cane hemicellulose cellulases enzymatic hydrolysis |
dc.subject.lemb.eng.fl_str_mv |
Hydrolysis |
dc.subject.proposal.spa.fl_str_mv |
Tallo Hojas Caña de azúcar Hemicelulasas Celulasas Hidrólisis enzimática |
dc.subject.proposal.eng.fl_str_mv |
top cane leaves sugar cane hemicellulose cellulases enzymatic hydrolysis |
description |
In the production of ethanol from agroindustrial crop residues, one of the critical stages in the process is the conversion of lignocellulosic material to simple sugars, which can be done chemically or enzymatically. In this research, the enzymatic activities of commercial enzymes were evaluated for their influence on the degradation of lignocellulosic materials from sugar cane harvest residues (leaves and top cane). Eight substrates were pretreated with different delignification methods. Likewise, five enzymatic preparations were configured. An analysis of the enzyme-substrate interactions was conducted through fuzzy system analysis. The results showed regions of maximum enzymatic activity for residues of the sugarcane harvest, between 20-30 Filter Paper Units (FPU) /mL values lower than 500 pNPG (p-Nitrofenol-α-D-Glucopyranoside) U / mL of activity beta-glucosidase and hemicellulase activity between 50 and 70 IU / mL, confirming that the use of large amounts of cellulolytic enzymes is not necessary |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-07 |
dc.date.accessioned.none.fl_str_mv |
2021-11-04T17:04:34Z |
dc.date.available.none.fl_str_mv |
2021-11-04T17:04:34Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
127353 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13402 |
dc.identifier.doi.none.fl_str_mv |
10.15446/dyna.v86n210.75286 |
identifier_str_mv |
127353 10.15446/dyna.v86n210.75286 |
url |
https://hdl.handle.net/10614/13402 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Volumen 86, número 210 (2019) |
dc.relation.citationendpage.spa.fl_str_mv |
41 |
dc.relation.citationissue.spa.fl_str_mv |
210 |
dc.relation.citationstartpage.spa.fl_str_mv |
35 |
dc.relation.citationvolume.spa.fl_str_mv |
86 |
dc.relation.cites.eng.fl_str_mv |
Salcedo Mendoza, J.G., Florez Pardo, L.M., López Galán, J. E. (2019). Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest. Revista DYNA, (Vol. 86 (210), pp. 35-41. https://doi.org/10.15446/dyna.v86n210.75286 |
dc.relation.ispartofjournal.spa.fl_str_mv |
DYNA |
dc.relation.references.none.fl_str_mv |
[1] FEPA - Fondo de estabilización de los precios del azúcar, [en líena]. 2014. Disponible en: http://www.fepa.com.co [2] CENICAÑA - Centro de Investigación de la Caña de Azúcar. Indicadores de productividad de la industria azucarera colombiana entre enero y agosto de 2006 - 2007 [en línea]. Florida, Valle del Cauca. Disponible en: http://www.cenicana. org/ web/ [3] Simas-Días, D., Acevedo-Jaramillo, L.Y., Vasconcelos, U. and Pereira, N., Characterization of glucosidases produced by Aspergillus niger Atcc 1004 in submerged fermentation from sugarcane bagasse. Revista Mexicana de Ingeniería Química. [online]. 17, pp. 365-377, 2018. Available at: http://www.rmiq.org/ojs311/index.php/rmiq/article/view/45 [4] Peña-Maravilla, M., Calixto-Romo, M.A., K. Guillén-Navarro, K., Sánchez, J.E. and Amaya-Delgado, L., Cellulases and xylanases production by Penicillium citrinum CGETCR using coffee pulp in solid-state fermentation. Revista Mexicana de Ingeniería Química, [online]. 16(3), pp. 757-769, 2017. Available at: http://www.redalyc.org/articulo.oa?id=62053304006 [5] Chylenski, P., Forsberg, Z., St Ahlberg, J., V´Arnai, A., Lersch, M., Bengtsson, O., Sæbø, S., Jarle-Horn, S. and Eijsink, V., Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass. Journal of Biotechnology, 20, pp. 16-23, 2017. DOI: 10.1016/j .jbiotec. 2017.02.009 [6] Peciulyte, A., Pisano, M., De Vries, R. and Olsson, O., Hydrolytic potential of five fungal supernatants to enhance a commercial enzyme cocktail Biotechnol Lett. 39, pp. 1403-1411, 2007. DOI: 10.1007/s 10529-017-2371-9 [7] Bhatia, L., Chandel, A.K., Singh, A.K. and Singh, O.V., Biotechnological advances in lignocellulosic ethanol production. In: Singh, O. and Chandel, A. (eds), Sustainable biotechnology- Enzymatic resources of renewable energy. Springer, Cham, 2018, pp 57-82, DOI: 10.1007/978-3-319-95480-6_3 [8] Meng, X. and Ragauskas, A.J., Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin. Biotechnol. 27, pp. 150-158, 2014. DOI: 10.1016/ j.copbio.2014.01.014 [9] Sadaf, A. and Khare, S.K., Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis. Bioresour. Technol., 153, pp. 126-130, 2014. DOI: 10.1016/j. biortech.2013 .11.058. [10] Marembo, C, Mamphweli, S. and Okoh, O., Bioethanol production from lignocellulosic sugarcane leaves and tops, Journal of Energy in Southern Africa. 28, pp. 1-11, 2017, DOI: 10.17159/2413-3051/2017 /v28i3a2354 [11] Chapla, D., Divecha, J., Madamwar, D. and Shah, A., Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochem. Eng. J., 49, pp. 361-369, 2010. DOI: 10.1016/j.bej.2010.01.012. [12] Hongdan, Z., Shaohua, X. and Shubin, W., Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Bioresour. Technol., 143, pp. 391-396, 2013. DOI: 10.1016 /j.biortech .2013.05.103 [13] Pensupa, N., Jin, M., Kokolski, M., Archer, D.B. and Du, C., A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw. Bioresour. Technol., 149, pp. 261-267, 2013. DOI: 10.1016/j. biortech. 2013.09.061. [14] Bátori, V., Ferreira, J.A., Taherzadeh, M.J. and Lennartsson, P.R., Ethanol and protein from ethanol plant by-products using edible fungi Neurospora intermedia and Aspergillus oryzae. BioMed. Res. Int., 15, pp. 1-10, 2015. DOI: 10.1155/2015 /176371 [15] Nair, R.B., Lundin, M., Brandberg, T., Lennartsson, P.R. and Taherzadeh, M.J., Dilute phosphoric acid pretreatment of wheat bran for enzymatic hydrolysis and subsequent ethanol production by edible fungi Neurospora intermedia. Ind. Crops Prod., 69, pp. 314-323, 2015. DOI: 10.1016/j.indcrop. 2015. 02.038. [16] Knawang-Chhunji, K.I., Madhao, M. and Rintu-Banerjee, R., Optimization of saccharification of enzymatically pretreated sugarcane tops by response surface methodology for ethanol production, Biofuels, 10, pp. 73-80, 2019, DOI: 10.1080/ 17597269. 2017.1409058. [17] Mokomele, T., Da Costa Sousa, L., Balan, V., Van -Rensburg, E., Dale, D. and Görgens., J., Ethanol production potential from AFEX™ and steam-exploded sugarcane residues for sugarcane biorefiner, Biotechnol Biofuels, 11 pp. 11-17, 2018, DOI: 10.1186/s13068-018-1130-z [18] Sanchez, O. and Cardona, C., Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 99, pp. 5270-5295, 2008. DOI: 10.1016/j.biortech. 2007.11.013 [19] Malgas, S., Chandra, R., Van- Dyk, J.S., Saddler, J.N. and Pletschke, B.I., Formulation of an optimized synergistic enzyme cocktail, HoloMix, for effective degradation of various pre-treated hardwoods, Bioresource Technology, 245, pp.46-52, 2017 DOI: 10.1016/j.biortech. 2017.08.186 [20] Eveling, D., Mandels, M., Andreotti, R. and Rocche, C., Measurement of saccharifiying cellulose. Biothecnology for biofuels. pp. 2-21, 2009. DOI: 10.1186/1754-6834-2-21 [21] Bailey, M., Biely, P. and Pountanen, K., Interlaboratory testig of methods for assay of xylanase activity. Journal of Biotechnology, 23, pp. 257-270, 1992. DOI: 10.1016/0168-1656(92)90074-J [22] Megazyme International Ireland Limited Ltda., Assay of endo 1-4-β-D Galactanase using azo -galactan (agalp), Assay of 1-4-β- endo Mannanase using AZO- carob galactomannan, Assay of Rhamnogalacturonanase Using Azo- Rhamnogalacturonan AZRH [online]. (11/99). 2009. Available at: https://secure.megazyme.com /files/Booklet [23] Ghose, T.K., Measure cellulose activities, Pure & Appl. Chem. [online]. 59, pp. 257-268. Avaqilable at: https://www.iupac.org/ publications. 1987 [24] Salcedo, J., Enzymatic hydrolysis of sugarcane crop residues (leaves and top cane) for the production of ethanol. Thesis PhD in Engineering. Escuela de Ingeniería Química, Universidad del Valle, Colombia. 2011. [25] Van-Soest, P., Use of detergents in the analysis of fibrous feeds. I. Preparation of fiber residues of low nitrogen content, Journal of the AOAC, 46, pp. 829-835, 1987. [26] Xiaolu, W., Bin, Y. and Su, X., Linking enzymatic oxidative degradation of lignin to organics detoxification. Int. J. Mol. Sci., 19, pp. 2-17, 2018, DOI: 10.3390/ijms19113373 [27] Jong-Rok, J., Murugesan, K., Kim, Y., Kim, E. and Chang, Y., Synergistic effect of laccase mediators on entachlorophenol removal by Ganoderma lucidum laccase. Appl Microbiol Biotechnol., 81, pp. 783-790, 2008. DOI: 10.1007/s00253-008-1753-2 [28] Mutis, D., Delignification of sugar cane residues (leaves and top cane) with chemical processes, Thesis. Escuela de Ingeniería Química, Universidad del Valle, Colombia. 2009. [29] Bhattacharya, D., Germinario, L. and Winter, W., Isolation, preparation and characterization of cellulose microfibers obtained from bagasse, Carbohydrate Polymers, 73, pp. 371-377, 2008. DOI: 10.1016/j.carbpol. 2007.12.005 [30] Miller, G., Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical chemistry, 31, pp. 426- 426, 1959. DOI: 10.1021/ ac60147a030 [31] Patel, H., Chapla, D., Divecha, J. and Shah, A., Improved yield of α- l - arabinofuranosidase by newly isolated Aspergillus niger ADH-11 and synergistic effect of crude enzyme on saccharification of maize stover. Bioresour Bioproces, 2, pp. 2-14, 2015. DOI: 10.1186/s40643-015-0039-7 [32] Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D. and Osborne, J., A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol., 98, pp. 3000-3011, 2007. DOI: 10.1016/j .biortech. 2006.10.022 [33] Kubicek, C.P. and Penttilä, M.E., Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. In: Harman, G.E. and Kubicek, C.P. (Eds.), Trichoderma and Gliocladium: enzymes, Biological Control and Commercial Applications, 2, pp. 49-72, 1998. [34] Gasparotto, J.M., Werle, L.B., Foletto, E.L., Kuhn, R.C., Jahn, S.L. and Mazutti, M.A., Production of cellulolytic enzymes and application of crude enzymatic extract for sacchar- ification of lignocellulosic biomass. Appl Biochem Biotechnol., 72, pp. 175-560, 2005. DOI: 10.1007/s12010- 014- 1297-0 [35] Zhang, L., Liu, Y., Niu, X., Liu, Y. and Liao, W., Effects of acid and alkali treated lignocellulosic materials on cellulase/xylanase production by Trichoderma ree- sei Rut C-30 and corresponding enzymatic hydrolysis. Biomass Bioenergy, 37, pp. 16-24, 2012. DOI: 10.1016/j.biombioe. 2011.12.044 [36] Adsula, MG., Ghuleb, J., Shaikhb, H., Singhb, R., Bastawdea, K.B., Gokhalea, D.V. and Varma, A.J., Enzymatic hydrolysis of delignified bagasse polysaccharides, Carbohydrate Polymers, 62, pp. 6-10, 2005. DOI: 10.1016/j.carbpol. 2005. 07.010 [37] Millett, M., Effland, M. and Caulfield, D., Influence of fine grinding on the hydrolysis of cellulosic materials—Acid Vs. Enzymatic. Advances in Chemistry, 181, pp. 71-89, 1979. DOI: 10.1021/ba-1979-0181.ch004 [38] Mais, U., Esteghlalian, A., Saddler, J. and Mansfield, S., Enhancingthe enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Applied Biochemistry and Biotechnology - Part A. Enzyme Engineering and Biotechnology, 98, pp. 815-832, 2002. DOI: 10.1385/ABAB:98- 100:1-9:815 [39] Wyman, C., Handbook on Bioethanol: production and utilization. Taylor & Francis, Washinnton, DC, USA, 1996. [40] Galbe, M. and Zacchi, G., A review of the production of ethanol from softwood. Appl. Microbial Biotechnol, 5, pp. 618-628, 2002. DOI: 10.1007 /s00253-002-1058-9 [41] Mosier, N., Hall, P., Ladisch, C. and Ladisch, M., Reacction kinetics, molecular action and mechanisms of cellulolytic proteins. Adv Biochem Eng Biotechnol., 65, pp. 23-40, 1999. DOI: 10.1007/3-540-49194-5-2 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia, Sede Medellín, 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Universidad Nacional de Colombia, Sede Medellín, 2019 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
7 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia, Sede Medellín |
dc.publisher.place.spa.fl_str_mv |
Medellìn |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/219ca4a4-a0ba-4aa6-8fa8-96ce559939ff/download https://red.uao.edu.co/bitstreams/03d0d7e3-b859-420b-874f-4ac9f29d1833/download https://red.uao.edu.co/bitstreams/ac0a67a6-0ed7-4619-b0a7-21af046ba95b/download https://red.uao.edu.co/bitstreams/a8dabf08-4730-492a-aa7d-a5b2ac0f1e40/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 07dc89b7362790b64c8bb56b169b6057 ceb63270e30a3b5eb68a4be957cc081e daab1bc6d5c626524f7e3b71e6fd45aa |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260010379640832 |
spelling |
Salcedo Mendoza, Jairo Guadalupe8c7535331f5d5f90d3cb2028b22f6fa2López Galán, Jorge Enriquec28f842fdc151536a90f2149d7bd6b1fFlórez Pardo, Luz Marinavirtual::1694-1Universidad Nacional de Colombia, Sede Medellín2021-11-04T17:04:34Z2021-11-04T17:04:34Z2019-07127353https://hdl.handle.net/10614/1340210.15446/dyna.v86n210.75286In the production of ethanol from agroindustrial crop residues, one of the critical stages in the process is the conversion of lignocellulosic material to simple sugars, which can be done chemically or enzymatically. In this research, the enzymatic activities of commercial enzymes were evaluated for their influence on the degradation of lignocellulosic materials from sugar cane harvest residues (leaves and top cane). Eight substrates were pretreated with different delignification methods. Likewise, five enzymatic preparations were configured. An analysis of the enzyme-substrate interactions was conducted through fuzzy system analysis. The results showed regions of maximum enzymatic activity for residues of the sugarcane harvest, between 20-30 Filter Paper Units (FPU) /mL values lower than 500 pNPG (p-Nitrofenol-α-D-Glucopyranoside) U / mL of activity beta-glucosidase and hemicellulase activity between 50 and 70 IU / mL, confirming that the use of large amounts of cellulolytic enzymes is not necessaryEn la producción de etanol a partir de residuos agroindustriales, una de las etapas críticas en el proceso es la conversión del material lignocelulósico a azúcares simples, que puede realizarse química o enzimáticamente. En esta investigación, se evaluó la influencia de las actividades enzimáticas de las enzimas comerciales para degradar materiales de residuos de cosecha de la caña de azúcar (hojas y cogollos). Ocho sustratos fueron pretratados con diferentes métodos de deslignificación, con cinco preparaciones enzimáticas. Se utilizó un análisis de las interacciones enzima-sustrato, a través del análisis del sistema difuso. Los resultados mostraron regiones de actividad enzimática entre 20-30 FPU / mL y valores inferiores a 500 pNPG U / mL de actividad beta-glucosidasa y para actividad hemicelulasa entre 50 y 70 IU / mL, confirmando que el uso de grandes cantidades de enzimas celulolíticas no es necesario7 páginasapplication/pdfengUniversidad Nacional de Colombia, Sede MedellínMedellìnDerechos reservados - Universidad Nacional de Colombia, Sede Medellín, 2019https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Significant enzymatic activities in the residues hydrolysis of the sugar cane harvestActividades enzimáticas significativas en la hidrólisis de residuos de la cosecha de caña de azúcarArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85HidrolisisHydrolysisTalloHojasCaña de azúcarHemicelulasasCelulasasHidrólisis enzimáticatop caneleavessugar canehemicellulosecellulasesenzymatic hydrolysisVolumen 86, número 210 (2019)412103586Salcedo Mendoza, J.G., Florez Pardo, L.M., López Galán, J. E. (2019). Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest. Revista DYNA, (Vol. 86 (210), pp. 35-41. https://doi.org/10.15446/dyna.v86n210.75286DYNA[1] FEPA - Fondo de estabilización de los precios del azúcar, [en líena]. 2014. Disponible en: http://www.fepa.com.co[2] CENICAÑA - Centro de Investigación de la Caña de Azúcar. Indicadores de productividad de la industria azucarera colombiana entre enero y agosto de 2006 - 2007 [en línea]. Florida, Valle del Cauca. Disponible en: http://www.cenicana. org/ web/[3] Simas-Días, D., Acevedo-Jaramillo, L.Y., Vasconcelos, U. and Pereira, N., Characterization of glucosidases produced by Aspergillus niger Atcc 1004 in submerged fermentation from sugarcane bagasse. Revista Mexicana de Ingeniería Química. [online]. 17, pp. 365-377, 2018. Available at: http://www.rmiq.org/ojs311/index.php/rmiq/article/view/45[4] Peña-Maravilla, M., Calixto-Romo, M.A., K. Guillén-Navarro, K., Sánchez, J.E. and Amaya-Delgado, L., Cellulases and xylanases production by Penicillium citrinum CGETCR using coffee pulp in solid-state fermentation. Revista Mexicana de Ingeniería Química, [online]. 16(3), pp. 757-769, 2017. Available at: http://www.redalyc.org/articulo.oa?id=62053304006[5] Chylenski, P., Forsberg, Z., St Ahlberg, J., V´Arnai, A., Lersch, M., Bengtsson, O., Sæbø, S., Jarle-Horn, S. and Eijsink, V., Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass. Journal of Biotechnology, 20, pp. 16-23, 2017. DOI: 10.1016/j .jbiotec. 2017.02.009[6] Peciulyte, A., Pisano, M., De Vries, R. and Olsson, O., Hydrolytic potential of five fungal supernatants to enhance a commercial enzyme cocktail Biotechnol Lett. 39, pp. 1403-1411, 2007. DOI: 10.1007/s 10529-017-2371-9[7] Bhatia, L., Chandel, A.K., Singh, A.K. and Singh, O.V., Biotechnological advances in lignocellulosic ethanol production. In: Singh, O. and Chandel, A. (eds), Sustainable biotechnology- Enzymatic resources of renewable energy. Springer, Cham, 2018, pp 57-82, DOI: 10.1007/978-3-319-95480-6_3[8] Meng, X. and Ragauskas, A.J., Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin. Biotechnol. 27, pp. 150-158, 2014. DOI: 10.1016/ j.copbio.2014.01.014[9] Sadaf, A. and Khare, S.K., Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis. Bioresour. Technol., 153, pp. 126-130, 2014. DOI: 10.1016/j. biortech.2013 .11.058.[10] Marembo, C, Mamphweli, S. and Okoh, O., Bioethanol production from lignocellulosic sugarcane leaves and tops, Journal of Energy in Southern Africa. 28, pp. 1-11, 2017, DOI: 10.17159/2413-3051/2017 /v28i3a2354[11] Chapla, D., Divecha, J., Madamwar, D. and Shah, A., Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochem. Eng. J., 49, pp. 361-369, 2010. DOI: 10.1016/j.bej.2010.01.012.[12] Hongdan, Z., Shaohua, X. and Shubin, W., Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Bioresour. Technol., 143, pp. 391-396, 2013. DOI: 10.1016 /j.biortech .2013.05.103[13] Pensupa, N., Jin, M., Kokolski, M., Archer, D.B. and Du, C., A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw. Bioresour. Technol., 149, pp. 261-267, 2013. DOI: 10.1016/j. biortech. 2013.09.061.[14] Bátori, V., Ferreira, J.A., Taherzadeh, M.J. and Lennartsson, P.R., Ethanol and protein from ethanol plant by-products using edible fungi Neurospora intermedia and Aspergillus oryzae. BioMed. Res. Int., 15, pp. 1-10, 2015. DOI: 10.1155/2015 /176371[15] Nair, R.B., Lundin, M., Brandberg, T., Lennartsson, P.R. and Taherzadeh, M.J., Dilute phosphoric acid pretreatment of wheat bran for enzymatic hydrolysis and subsequent ethanol production by edible fungi Neurospora intermedia. Ind. Crops Prod., 69, pp. 314-323, 2015. DOI: 10.1016/j.indcrop. 2015. 02.038.[16] Knawang-Chhunji, K.I., Madhao, M. and Rintu-Banerjee, R., Optimization of saccharification of enzymatically pretreated sugarcane tops by response surface methodology for ethanol production, Biofuels, 10, pp. 73-80, 2019, DOI: 10.1080/ 17597269. 2017.1409058.[17] Mokomele, T., Da Costa Sousa, L., Balan, V., Van -Rensburg, E., Dale, D. and Görgens., J., Ethanol production potential from AFEX™ and steam-exploded sugarcane residues for sugarcane biorefiner, Biotechnol Biofuels, 11 pp. 11-17, 2018, DOI: 10.1186/s13068-018-1130-z[18] Sanchez, O. and Cardona, C., Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 99, pp. 5270-5295, 2008. DOI: 10.1016/j.biortech. 2007.11.013[19] Malgas, S., Chandra, R., Van- Dyk, J.S., Saddler, J.N. and Pletschke, B.I., Formulation of an optimized synergistic enzyme cocktail, HoloMix, for effective degradation of various pre-treated hardwoods, Bioresource Technology, 245, pp.46-52, 2017 DOI: 10.1016/j.biortech. 2017.08.186[20] Eveling, D., Mandels, M., Andreotti, R. and Rocche, C., Measurement of saccharifiying cellulose. Biothecnology for biofuels. pp. 2-21, 2009. DOI: 10.1186/1754-6834-2-21[21] Bailey, M., Biely, P. and Pountanen, K., Interlaboratory testig of methods for assay of xylanase activity. Journal of Biotechnology, 23, pp. 257-270, 1992. DOI: 10.1016/0168-1656(92)90074-J[22] Megazyme International Ireland Limited Ltda., Assay of endo 1-4-β-D Galactanase using azo -galactan (agalp), Assay of 1-4-β- endo Mannanase using AZO- carob galactomannan, Assay of Rhamnogalacturonanase Using Azo- Rhamnogalacturonan AZRH [online]. (11/99). 2009. Available at: https://secure.megazyme.com /files/Booklet[23] Ghose, T.K., Measure cellulose activities, Pure & Appl. Chem. [online]. 59, pp. 257-268. Avaqilable at: https://www.iupac.org/ publications. 1987[24] Salcedo, J., Enzymatic hydrolysis of sugarcane crop residues (leaves and top cane) for the production of ethanol. Thesis PhD in Engineering. Escuela de Ingeniería Química, Universidad del Valle, Colombia. 2011.[25] Van-Soest, P., Use of detergents in the analysis of fibrous feeds. I. Preparation of fiber residues of low nitrogen content, Journal of the AOAC, 46, pp. 829-835, 1987.[26] Xiaolu, W., Bin, Y. and Su, X., Linking enzymatic oxidative degradation of lignin to organics detoxification. Int. J. Mol. Sci., 19, pp. 2-17, 2018, DOI: 10.3390/ijms19113373[27] Jong-Rok, J., Murugesan, K., Kim, Y., Kim, E. and Chang, Y., Synergistic effect of laccase mediators on entachlorophenol removal by Ganoderma lucidum laccase. Appl Microbiol Biotechnol., 81, pp. 783-790, 2008. DOI: 10.1007/s00253-008-1753-2[28] Mutis, D., Delignification of sugar cane residues (leaves and top cane) with chemical processes, Thesis. Escuela de Ingeniería Química, Universidad del Valle, Colombia. 2009.[29] Bhattacharya, D., Germinario, L. and Winter, W., Isolation, preparation and characterization of cellulose microfibers obtained from bagasse, Carbohydrate Polymers, 73, pp. 371-377, 2008. DOI: 10.1016/j.carbpol. 2007.12.005[30] Miller, G., Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical chemistry, 31, pp. 426- 426, 1959. DOI: 10.1021/ ac60147a030[31] Patel, H., Chapla, D., Divecha, J. and Shah, A., Improved yield of α- l - arabinofuranosidase by newly isolated Aspergillus niger ADH-11 and synergistic effect of crude enzyme on saccharification of maize stover. Bioresour Bioproces, 2, pp. 2-14, 2015. DOI: 10.1186/s40643-015-0039-7[32] Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D. and Osborne, J., A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol., 98, pp. 3000-3011, 2007. DOI: 10.1016/j .biortech. 2006.10.022[33] Kubicek, C.P. and Penttilä, M.E., Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. In: Harman, G.E. and Kubicek, C.P. (Eds.), Trichoderma and Gliocladium: enzymes, Biological Control and Commercial Applications, 2, pp. 49-72, 1998.[34] Gasparotto, J.M., Werle, L.B., Foletto, E.L., Kuhn, R.C., Jahn, S.L. and Mazutti, M.A., Production of cellulolytic enzymes and application of crude enzymatic extract for sacchar- ification of lignocellulosic biomass. Appl Biochem Biotechnol., 72, pp. 175-560, 2005. DOI: 10.1007/s12010- 014- 1297-0[35] Zhang, L., Liu, Y., Niu, X., Liu, Y. and Liao, W., Effects of acid and alkali treated lignocellulosic materials on cellulase/xylanase production by Trichoderma ree- sei Rut C-30 and corresponding enzymatic hydrolysis. Biomass Bioenergy, 37, pp. 16-24, 2012. DOI: 10.1016/j.biombioe. 2011.12.044[36] Adsula, MG., Ghuleb, J., Shaikhb, H., Singhb, R., Bastawdea, K.B., Gokhalea, D.V. and Varma, A.J., Enzymatic hydrolysis of delignified bagasse polysaccharides, Carbohydrate Polymers, 62, pp. 6-10, 2005. DOI: 10.1016/j.carbpol. 2005. 07.010[37] Millett, M., Effland, M. and Caulfield, D., Influence of fine grinding on the hydrolysis of cellulosic materials—Acid Vs. Enzymatic. Advances in Chemistry, 181, pp. 71-89, 1979. DOI: 10.1021/ba-1979-0181.ch004[38] Mais, U., Esteghlalian, A., Saddler, J. and Mansfield, S., Enhancingthe enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Applied Biochemistry and Biotechnology - Part A. Enzyme Engineering and Biotechnology, 98, pp. 815-832, 2002. DOI: 10.1385/ABAB:98- 100:1-9:815[39] Wyman, C., Handbook on Bioethanol: production and utilization. Taylor & Francis, Washinnton, DC, USA, 1996.[40] Galbe, M. and Zacchi, G., A review of the production of ethanol from softwood. Appl. Microbial Biotechnol, 5, pp. 618-628, 2002. DOI: 10.1007 /s00253-002-1058-9[41] Mosier, N., Hall, P., Ladisch, C. and Ladisch, M., Reacction kinetics, molecular action and mechanisms of cellulolytic proteins. Adv Biochem Eng Biotechnol., 65, pp. 23-40, 1999. DOI: 10.1007/3-540-49194-5-2GeneralPublicationcc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1694-1cc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1694-1https://scholar.google.com/citations?user=88OyeaAAAAAJ&hl=es&oi=aovirtual::1694-10000-0001-8779-8120virtual::1694-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000002410virtual::1694-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/219ca4a4-a0ba-4aa6-8fa8-96ce559939ff/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALSignificant enzymatic activities in the residues hydrolysis of the sugar cane harvest.pdfSignificant enzymatic activities in the residues hydrolysis of the sugar cane harvest.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf644872https://red.uao.edu.co/bitstreams/03d0d7e3-b859-420b-874f-4ac9f29d1833/download07dc89b7362790b64c8bb56b169b6057MD53TEXTSignificant enzymatic activities in the residues hydrolysis of the sugar cane harvest.pdf.txtSignificant enzymatic activities in the residues hydrolysis of the sugar cane harvest.pdf.txtExtracted texttext/plain32238https://red.uao.edu.co/bitstreams/ac0a67a6-0ed7-4619-b0a7-21af046ba95b/downloadceb63270e30a3b5eb68a4be957cc081eMD54THUMBNAILSignificant enzymatic activities in the residues hydrolysis of the sugar cane harvest.pdf.jpgSignificant enzymatic activities in the residues hydrolysis of the sugar cane harvest.pdf.jpgGenerated Thumbnailimage/jpeg15601https://red.uao.edu.co/bitstreams/a8dabf08-4730-492a-aa7d-a5b2ac0f1e40/downloaddaab1bc6d5c626524f7e3b71e6fd45aaMD5510614/13402oai:red.uao.edu.co:10614/134022024-03-05 09:43:28.907https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Universidad Nacional de Colombia, Sede Medellín, 2019open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |