Effects of water inlet configuration in a service reservoir applying CFD modelling

En este estudio se evaluó mediante simulación numérica la influencia del cambio en la configuración de entrada de agua sobre el patrón de flujo, condiciones de mezcla y decaimiento del cloro residual libre en un tanque de compensación de una red de distribución de agua potable. Se establecieron cuat...

Full description

Autores:
Laín Beatove, Santiago
Cruz Vélez, Camilo Hernán
Torres Lozada, Patricia
Escobar Rivera, Juan Carlos
Montoya Pachongo, Carolina
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/11112
Acceso en línea:
http://hdl.handle.net/10614/11112
https://doi.org/10.15446/ing.investig.v36n1.50631
Palabra clave:
Red de agua potable
Estructuras hidráulicas
Drinking water nets
Hydraulic structures
Dinámica de fluidos
Modelos matemáticos
Fluid dynamics
Mathematical models
Dinámica de fluidos computacional
CFD
Cloro residual libre
Tiempo de mezcla
Flujo de momento
Tanque de compensación
Trazador
Computational fluid dynamics
CFD
Free residual chlorine
Mixing time, Mentum flow
Service reservoir
Tracer
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_6f5309051378c9ab445133e0d623ffda
oai_identifier_str oai:red.uao.edu.co:10614/11112
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Effects of water inlet configuration in a service reservoir applying CFD modelling
dc.title.alternative.spa.fl_str_mv Efecto de la configuración de entrada de agua en un tanque de compensación aplicando modelación CFD
title Effects of water inlet configuration in a service reservoir applying CFD modelling
spellingShingle Effects of water inlet configuration in a service reservoir applying CFD modelling
Red de agua potable
Estructuras hidráulicas
Drinking water nets
Hydraulic structures
Dinámica de fluidos
Modelos matemáticos
Fluid dynamics
Mathematical models
Dinámica de fluidos computacional
CFD
Cloro residual libre
Tiempo de mezcla
Flujo de momento
Tanque de compensación
Trazador
Computational fluid dynamics
CFD
Free residual chlorine
Mixing time, Mentum flow
Service reservoir
Tracer
title_short Effects of water inlet configuration in a service reservoir applying CFD modelling
title_full Effects of water inlet configuration in a service reservoir applying CFD modelling
title_fullStr Effects of water inlet configuration in a service reservoir applying CFD modelling
title_full_unstemmed Effects of water inlet configuration in a service reservoir applying CFD modelling
title_sort Effects of water inlet configuration in a service reservoir applying CFD modelling
dc.creator.fl_str_mv Laín Beatove, Santiago
Cruz Vélez, Camilo Hernán
Torres Lozada, Patricia
Escobar Rivera, Juan Carlos
Montoya Pachongo, Carolina
dc.contributor.author.none.fl_str_mv Laín Beatove, Santiago
Cruz Vélez, Camilo Hernán
Torres Lozada, Patricia
Escobar Rivera, Juan Carlos
Montoya Pachongo, Carolina
dc.subject.lemb.spa.fl_str_mv Red de agua potable
Estructuras hidráulicas
topic Red de agua potable
Estructuras hidráulicas
Drinking water nets
Hydraulic structures
Dinámica de fluidos
Modelos matemáticos
Fluid dynamics
Mathematical models
Dinámica de fluidos computacional
CFD
Cloro residual libre
Tiempo de mezcla
Flujo de momento
Tanque de compensación
Trazador
Computational fluid dynamics
CFD
Free residual chlorine
Mixing time, Mentum flow
Service reservoir
Tracer
dc.subject.lemb.eng.fl_str_mv Drinking water nets
Hydraulic structures
dc.subject.armarc.spa.fl_str_mv Dinámica de fluidos
Modelos matemáticos
dc.subject.armarc.eng.fl_str_mv Fluid dynamics
Mathematical models
dc.subject.proposal.spa.fl_str_mv Dinámica de fluidos computacional
CFD
Cloro residual libre
Tiempo de mezcla
Flujo de momento
Tanque de compensación
dc.subject.proposal.none.fl_str_mv Trazador
dc.subject.proposal.eng.fl_str_mv Computational fluid dynamics
CFD
Free residual chlorine
Mixing time, Mentum flow
Service reservoir
Tracer
description En este estudio se evaluó mediante simulación numérica la influencia del cambio en la configuración de entrada de agua sobre el patrón de flujo, condiciones de mezcla y decaimiento del cloro residual libre en un tanque de compensación de una red de distribución de agua potable. Se establecieron cuatro escenarios, tres presentaron diferencias en el nivel de agua y velocidad de flujo y el cuarto escenario evaluó la influencia de la configuración de entrada, el flujo de momento y nivel del agua sobre las condiciones hidrodinámicas en el tanque de compensación. La distribución de cuatro boquillas de 152,4 mm de diámetro fue identificada como una medida viable para preservar la calidad del agua en este tipo de estructuras hidráulicas
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2019-09-17T17:59:04Z
dc.date.available.none.fl_str_mv 2019-09-17T17:59:04Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 01205609
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11112
dc.identifier.doi.eng.fl_str_mv https://doi.org/10.15446/ing.investig.v36n1.50631
identifier_str_mv 01205609
url http://hdl.handle.net/10614/11112
https://doi.org/10.15446/ing.investig.v36n1.50631
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.citationedition.spa.fl_str_mv Volumen 36, número 1, (enero-junio, 2016)
dc.relation.citationendpage.none.fl_str_mv 40
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 31
dc.relation.citationvolume.none.fl_str_mv 36
dc.relation.cites.spa.fl_str_mv Montoya-Pachongo, C, Laín-Beatove, S., Torres-Lozada, P., Cruz-Vélez, C., & Escobar-Rivera, J. (2016). Effects of water inlet configuration in a service reservoir applying cfd modelling. Ingeniería e investigación, 36(1), pp.31-40. DOI: http://dx.doi.org/10.15446/ing.investig.v36n1.50631
dc.relation.ispartofjournal.spa.fl_str_mv Ingeniería e investigación
dc.relation.references.spa.fl_str_mv Angeloudis, A., Stoesser, T., Kim, D. & Falconer, R.A. (2014). Predicting the disinfection efficiency range in chlorine contact tanks through a CFD-based approach. Water Research, 60(10), 118-129. DOI: 10.1016/j.watres.2014.04.037
Duer, J. M. (2003). Use of CFD to analyze the effects of buoyant inlet jets on mixing standpipes. AWWA. AWWA Annual Conference and Exposition. Anaheim, United States
EMCALI EICE ESP and Universidad del Valle. (2007). Investigación y desarrollo de estrategias para reducción del riesgo sanitario en la red de distribución abastecida con agua tratada del río Cauca. Informe final - Tomo I. (Unpublished investigation proyect).Universidad del Valle: Cali
Fluent Inc. (2006). Fluent 6.3. User's Cuide. Lebanon: Fluent Inc. Retrieved from 
Grayman, M. W., Deininger, A. R., Green, A., Boulos, F. P., Bowcock, W. R. & Godwin, C. C. (1996). Water quality and mixing models for tanks and reservoirs. Journal AWWA, 88(77), 60-73
Grayman, M. W., Rossman, A. L., Deininger, D. C., Arnold, N. C. & Smith, F. J. (2004). Mixing and aging of water in distribution system storage facilities. Journal AWWA, 96(9), 70-80
Jaunâtre, J. (2013). Numerical simulation of three-dimensional flows in water storage tanks (M.Sc. dissertation). Retrieved from . (Report number TVVR-13/5010)
Jayanti, S. (2001). Hydrodynamics of jet mixing in vessels. Chemical Engineering Science, 56(1), 193-210. DOI: 10.1016/S0009-2509(99)00588-6
Lain, S. & Aliod, R. (2000). Study of the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments. International Journal Heat Fluid Flow, 21(3), 374-380. DOI: 10.1016/S0142-727X(00)00023-0
Lansey, K. E. & Boulos, F. P. (2005). Comprehensive handbook on water quality analysis for distributions systems. California: MWH Soft
Levenspiel O. (1999). Chemical Reaction Engineering. 3rd edition. New York: John Wiley & Sons
Mahmood, F., Pimblett, G. J., Grace, O. G. & Grayman, M. G. (2005). Evaluation of water mixing characteristics in distribution system storage tanks. Journal AWWA, 97(3), 74-88
Ministerio de la Protección Social & Ministerio de Ambiente, Vivienda y Desarrollo Territorial. (2007). Resolución No. 2115 del 22 de junio. Retrieved from 
Montoya, C., Cruz, C.H., Torres, P., Lain, S. & Escobar, J.C. (2012). Evaluación de las condiciones de mezcla y su influencia sobre el cloro residual en tanques de compensación de un sistema de distribución de agua potable. Revista Ingeniería y Ciencia, 8(15), 9-30
Nordblom O. (2004). Mixing and stagnation in drinking water storage tanks (Doctoral dissertation), Chalmers University of Technology. (ISBN 91-7291-447-5) (Dr Nordblom sent his thesis by post to Carolina Montoya-Pachongo)
Patiño, P., Cruz, C., Torres, P. & Lain, S. (2012). Hydrodynamic evaluation of a hydraulic clarifier through hydraulic behaviour indicators and simplified flow models. Ingeniería e Investigación, 32(1), 77-82
Poling, E. B., Thomson, H. G., Friend, G. D., Rowley, L. R. & Vincent, W. W. (2007). Physical and Chemical Data. In D. W. Green & R. H. Perry (Eds.) Perry's chemical engineers' handbook. New York: Mc Graw Hill
Roache, P. J. (1998). Verification and validation in computational science and engineering. Albuquerque: Hermosa Publishers
Rossman, A. L. & Grayman, M. W. (1999). Scale-model studies of mixing in drinking water storage tanks. Journal of Environmental Engineering, 125(8), 755-761. DOI: 10.1061/ (asce)0733-9372(1999)125:8(755)
Stamou, A. (2008). Improving the hydraulic efficiency of water process tanks using CFD models. (2008). Chemical Engineering and Processing: Process Intensification, 47(8), 1 179-1189. DOI: 10.1016/j.cep.2007.02.033
Tian, X. & Roberts, P. J. W. (2008). Mixing in water storage tanks. I: no buoyancy effects. Journal of Environmental Engineering, 134(12), 974-985. DOI: /10.1061/ (ASCE) 0733-9372(2008)134:12(986)
Van der Walt, J. J. (2002). The modelling of water treatment process tanks (Doctoral dissertation). Retrieved from . (Identifier uj: 2269)
Zhang, J., Lee, H., Khoo, B., Teo, C., Haja, N. & Peng, K. (2011). Modelling and simulations of flow pattern, chlorine concentration, and mean age distributions in potable water service reservoir of Singapore. Journal of Environmental Engineering, 137(7), 575-584. DOI: 10.1061/ (ASCE) EE.1943-7870.0000359
Zhang, J., Khoo, B., Lee, H., Teo, C., Haja, N. & Peng, K. (2013). Numerical simulation and assessment of the effects of operation and baffling on a potable water service reservoir. Journal of Environmental Engineering, 139(3), 341-348. DOI: 10.1061/ (ASCE) EE.1943-7870.0000629
Zhang, J., Tejada-Martinez, A.E., Zhang, Q. (2014a). Developments in computational fluid dynamics-based modeling for disinfection technologies over the last two decades: A review. Journal Environmental Modelling & Software, 58(8), 71-85. DOI: 10.1016/j.envsoft.2014.04.003
Zhang, J., Lee, H., Khoo, B., Peng, K., Zhong, L., Khang C. & Ba, T. (2014b). Shape effect on mixing and age distributions in service reservoirs. Journal AWWA, 106(11), E481-E491. DOI: 10.5942/jawwa.2014.106.0094
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv páginas 31-40
dc.coverage.spatial.spa.fl_str_mv Cali, Colombia
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia. Facultad de Ingeniería
dc.source.spa.fl_str_mv instname:Universidad Autónoma de Occidente
reponame:Repositorio Institucional UAO
instname_str Universidad Autónoma de Occidente
institution Universidad Autónoma de Occidente
reponame_str Repositorio Institucional UAO
collection Repositorio Institucional UAO
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/12d856a6-313e-40d9-9793-7ca397e9754c/download
https://red.uao.edu.co/bitstreams/5f79e215-4694-4bb8-bdba-8dd01175ca5b/download
https://red.uao.edu.co/bitstreams/7a059a22-b10b-45c6-8c36-1647408023d7/download
https://red.uao.edu.co/bitstreams/299101bb-c6f4-4c38-838c-2cfeef7cb386/download
https://red.uao.edu.co/bitstreams/81ede22f-348e-4af1-812c-5afbe540a621/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
35c12954af0667a5d988721b603a0e70
d7e7582543d71aabaf41636ff8cf8470
e365261c09d5009ae3a07b8702f89759
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260219900854272
spelling Laín Beatove, Santiagovirtual::2577-1Cruz Vélez, Camilo Hernánb8ee6e58e5522a1bc3217c058819c8e8Torres Lozada, Patricia19d1c3f4ec42a2d557905872afe48477Escobar Rivera, Juan Carlos66b6b2827c9c13f8752aef1643732731Montoya Pachongo, Carolinaffcdb86264f9815c8bbc9b4389662b3eCali, ColombiaUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-09-17T17:59:04Z2019-09-17T17:59:04Z201601205609http://hdl.handle.net/10614/11112https://doi.org/10.15446/ing.investig.v36n1.50631En este estudio se evaluó mediante simulación numérica la influencia del cambio en la configuración de entrada de agua sobre el patrón de flujo, condiciones de mezcla y decaimiento del cloro residual libre en un tanque de compensación de una red de distribución de agua potable. Se establecieron cuatro escenarios, tres presentaron diferencias en el nivel de agua y velocidad de flujo y el cuarto escenario evaluó la influencia de la configuración de entrada, el flujo de momento y nivel del agua sobre las condiciones hidrodinámicas en el tanque de compensación. La distribución de cuatro boquillas de 152,4 mm de diámetro fue identificada como una medida viable para preservar la calidad del agua en este tipo de estructuras hidráulicasThis study investigated the state of a service reservoir of a drinking water distribution network. Numerical simulation was applied to establish its flow pattern, mixing conditions, and free residual chlorine decay. The influence of the change in the water inlet configuration on these characteristics was evaluated. Four scenarios were established with different water level and flow rate as the differences between the first three scenarios. The fourth scenario was evaluated to assess the influence of the inlet configuration, momentum flow and water level on hydrodynamic conditions within the service reservoir. The distribution of four nozzles of 152.4 mm diameter was identified as a viable measure to preserve the water quality in this type of hydraulic structuresapplication/pdfpáginas 31-40spaUniversidad Nacional de Colombia. Facultad de IngenieríaDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2instname:Universidad Autónoma de Occidentereponame:Repositorio Institucional UAOEffects of water inlet configuration in a service reservoir applying CFD modellingEfecto de la configuración de entrada de agua en un tanque de compensación aplicando modelación CFDArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Red de agua potableEstructuras hidráulicasDrinking water netsHydraulic structuresDinámica de fluidosModelos matemáticosFluid dynamicsMathematical modelsDinámica de fluidos computacionalCFDCloro residual libreTiempo de mezclaFlujo de momentoTanque de compensaciónTrazadorComputational fluid dynamicsCFDFree residual chlorineMixing time, Mentum flowService reservoirTracerVolumen 36, número 1, (enero-junio, 2016)4013136Montoya-Pachongo, C, Laín-Beatove, S., Torres-Lozada, P., Cruz-Vélez, C., & Escobar-Rivera, J. (2016). Effects of water inlet configuration in a service reservoir applying cfd modelling. Ingeniería e investigación, 36(1), pp.31-40. DOI: http://dx.doi.org/10.15446/ing.investig.v36n1.50631Ingeniería e investigaciónAngeloudis, A., Stoesser, T., Kim, D. & Falconer, R.A. (2014). Predicting the disinfection efficiency range in chlorine contact tanks through a CFD-based approach. Water Research, 60(10), 118-129. DOI: 10.1016/j.watres.2014.04.037Duer, J. M. (2003). Use of CFD to analyze the effects of buoyant inlet jets on mixing standpipes. AWWA. AWWA Annual Conference and Exposition. Anaheim, United StatesEMCALI EICE ESP and Universidad del Valle. (2007). Investigación y desarrollo de estrategias para reducción del riesgo sanitario en la red de distribución abastecida con agua tratada del río Cauca. Informe final - Tomo I. (Unpublished investigation proyect).Universidad del Valle: CaliFluent Inc. (2006). Fluent 6.3. User's Cuide. Lebanon: Fluent Inc. Retrieved from Grayman, M. W., Deininger, A. R., Green, A., Boulos, F. P., Bowcock, W. R. & Godwin, C. C. (1996). Water quality and mixing models for tanks and reservoirs. Journal AWWA, 88(77), 60-73Grayman, M. W., Rossman, A. L., Deininger, D. C., Arnold, N. C. & Smith, F. J. (2004). Mixing and aging of water in distribution system storage facilities. Journal AWWA, 96(9), 70-80Jaunâtre, J. (2013). Numerical simulation of three-dimensional flows in water storage tanks (M.Sc. dissertation). Retrieved from . (Report number TVVR-13/5010)Jayanti, S. (2001). Hydrodynamics of jet mixing in vessels. Chemical Engineering Science, 56(1), 193-210. DOI: 10.1016/S0009-2509(99)00588-6Lain, S. & Aliod, R. (2000). Study of the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments. International Journal Heat Fluid Flow, 21(3), 374-380. DOI: 10.1016/S0142-727X(00)00023-0Lansey, K. E. & Boulos, F. P. (2005). Comprehensive handbook on water quality analysis for distributions systems. California: MWH SoftLevenspiel O. (1999). Chemical Reaction Engineering. 3rd edition. New York: John Wiley & SonsMahmood, F., Pimblett, G. J., Grace, O. G. & Grayman, M. G. (2005). Evaluation of water mixing characteristics in distribution system storage tanks. Journal AWWA, 97(3), 74-88Ministerio de la Protección Social & Ministerio de Ambiente, Vivienda y Desarrollo Territorial. (2007). Resolución No. 2115 del 22 de junio. Retrieved from Montoya, C., Cruz, C.H., Torres, P., Lain, S. & Escobar, J.C. (2012). Evaluación de las condiciones de mezcla y su influencia sobre el cloro residual en tanques de compensación de un sistema de distribución de agua potable. Revista Ingeniería y Ciencia, 8(15), 9-30Nordblom O. (2004). Mixing and stagnation in drinking water storage tanks (Doctoral dissertation), Chalmers University of Technology. (ISBN 91-7291-447-5) (Dr Nordblom sent his thesis by post to Carolina Montoya-Pachongo)Patiño, P., Cruz, C., Torres, P. & Lain, S. (2012). Hydrodynamic evaluation of a hydraulic clarifier through hydraulic behaviour indicators and simplified flow models. Ingeniería e Investigación, 32(1), 77-82Poling, E. B., Thomson, H. G., Friend, G. D., Rowley, L. R. & Vincent, W. W. (2007). Physical and Chemical Data. In D. W. Green & R. H. Perry (Eds.) Perry's chemical engineers' handbook. New York: Mc Graw HillRoache, P. J. (1998). Verification and validation in computational science and engineering. Albuquerque: Hermosa PublishersRossman, A. L. & Grayman, M. W. (1999). Scale-model studies of mixing in drinking water storage tanks. Journal of Environmental Engineering, 125(8), 755-761. DOI: 10.1061/ (asce)0733-9372(1999)125:8(755)Stamou, A. (2008). Improving the hydraulic efficiency of water process tanks using CFD models. (2008). Chemical Engineering and Processing: Process Intensification, 47(8), 1 179-1189. DOI: 10.1016/j.cep.2007.02.033Tian, X. & Roberts, P. J. W. (2008). Mixing in water storage tanks. I: no buoyancy effects. Journal of Environmental Engineering, 134(12), 974-985. DOI: /10.1061/ (ASCE) 0733-9372(2008)134:12(986)Van der Walt, J. J. (2002). The modelling of water treatment process tanks (Doctoral dissertation). Retrieved from . (Identifier uj: 2269)Zhang, J., Lee, H., Khoo, B., Teo, C., Haja, N. & Peng, K. (2011). Modelling and simulations of flow pattern, chlorine concentration, and mean age distributions in potable water service reservoir of Singapore. Journal of Environmental Engineering, 137(7), 575-584. DOI: 10.1061/ (ASCE) EE.1943-7870.0000359Zhang, J., Khoo, B., Lee, H., Teo, C., Haja, N. & Peng, K. (2013). Numerical simulation and assessment of the effects of operation and baffling on a potable water service reservoir. Journal of Environmental Engineering, 139(3), 341-348. DOI: 10.1061/ (ASCE) EE.1943-7870.0000629Zhang, J., Tejada-Martinez, A.E., Zhang, Q. (2014a). Developments in computational fluid dynamics-based modeling for disinfection technologies over the last two decades: A review. Journal Environmental Modelling & Software, 58(8), 71-85. DOI: 10.1016/j.envsoft.2014.04.003Zhang, J., Lee, H., Khoo, B., Peng, K., Zhong, L., Khang C. & Ba, T. (2014b). Shape effect on mixing and age distributions in service reservoirs. Journal AWWA, 106(11), E481-E491. DOI: 10.5942/jawwa.2014.106.0094Publication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2577-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2577-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2577-10000-0002-0269-2608virtual::2577-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2577-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/12d856a6-313e-40d9-9793-7ca397e9754c/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/5f79e215-4694-4bb8-bdba-8dd01175ca5b/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALA0318_Effects of water inlet configuration in a service reservoir applying CFD modelling.pdfA0318_Effects of water inlet configuration in a service reservoir applying CFD modelling.pdfArchivo texto completo del artículoapplication/pdf748025https://red.uao.edu.co/bitstreams/7a059a22-b10b-45c6-8c36-1647408023d7/download35c12954af0667a5d988721b603a0e70MD54TEXTA0318_Effects of water inlet configuration in a service reservoir applying CFD modelling.pdf.txtA0318_Effects of water inlet configuration in a service reservoir applying CFD modelling.pdf.txtExtracted texttext/plain46046https://red.uao.edu.co/bitstreams/299101bb-c6f4-4c38-838c-2cfeef7cb386/downloadd7e7582543d71aabaf41636ff8cf8470MD55THUMBNAILA0318_Effects of water inlet configuration in a service reservoir applying CFD modelling.pdf.jpgA0318_Effects of water inlet configuration in a service reservoir applying CFD modelling.pdf.jpgGenerated Thumbnailimage/jpeg15310https://red.uao.edu.co/bitstreams/81ede22f-348e-4af1-812c-5afbe540a621/downloade365261c09d5009ae3a07b8702f89759MD5610614/11112oai:red.uao.edu.co:10614/111122024-03-06 16:50:17.325https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K