Extracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartado

Currently tissue engineering strategies for myocardial regeneration after infarction are explored, including scaffolds that offer mechanical support and cell delivery into the injury. Bone marrow mesenchymal stem cells (MSC) are important candidates for cell therapy due to its ability to differentia...

Full description

Autores:
Melo Escobar, María Isabel
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/10909
Acceso en línea:
http://hdl.handle.net/10614/10909
Palabra clave:
Ingeniería Biomédica
Ingeniería de tejidos
Scaffold
Infarto del miocardio
Células madre mesenquimales
Biomaterial
Viabilidad celular
Migración celular
Medicina regenerativa
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_6e7e3ad3beab80281a6c3418783b2b28
oai_identifier_str oai:red.uao.edu.co:10614/10909
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.spa.fl_str_mv Extracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartado
dc.title.alternative.spa.fl_str_mv Cultivo de células madre en biodispositivos para regeneración del miocardio infartado
title Extracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartado
spellingShingle Extracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartado
Ingeniería Biomédica
Ingeniería de tejidos
Scaffold
Infarto del miocardio
Células madre mesenquimales
Biomaterial
Viabilidad celular
Migración celular
Medicina regenerativa
title_short Extracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartado
title_full Extracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartado
title_fullStr Extracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartado
title_full_unstemmed Extracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartado
title_sort Extracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartado
dc.creator.fl_str_mv Melo Escobar, María Isabel
dc.contributor.advisor.spa.fl_str_mv Neuta-Arciniegas, Paola
dc.contributor.author.spa.fl_str_mv Melo Escobar, María Isabel
dc.subject.spa.fl_str_mv Ingeniería Biomédica
Ingeniería de tejidos
Scaffold
Infarto del miocardio
Células madre mesenquimales
Biomaterial
Viabilidad celular
Migración celular
Medicina regenerativa
topic Ingeniería Biomédica
Ingeniería de tejidos
Scaffold
Infarto del miocardio
Células madre mesenquimales
Biomaterial
Viabilidad celular
Migración celular
Medicina regenerativa
description Currently tissue engineering strategies for myocardial regeneration after infarction are explored, including scaffolds that offer mechanical support and cell delivery into the injury. Bone marrow mesenchymal stem cells (MSC) are important candidates for cell therapy due to its ability to differentiate into cells of cardiac tissue. However, the underlying mechanisms of MSC to promote tissue regeneration are not fully understood. The present study examined the undifferentiated and differentiated MSC’s behavior on a biopolymer, to assess cell viability and cell migration. The MSC were isolated from Wistar rats aged between 4 and 8 weeks. An improved isolation protocol was executed to optimize the performance of the cells in the scaffold. Group 1 (G1) of scaffolds (750 cells/µL) and group 2 (G2) (5000 cells/µL) were studied through trypan blue exclusion test to compare cell viability during 4 weeks. To assess cell migration group 3 (G3) were cell-seeded in a homogenous distribution and group 4 (G4) in a divided distribution, both at the same cell concentration of 2250 cells/µL. Cell migration was estimated through fluorescent microscopy. The isolation and cell culture protocol resulted in optimum confluence (>90%) in passage 4 to seed all the scaffolds. The cell viability assay determined G1 live cells had an average viability percentage of 98.23 ± 3.35 and for G2 an average of 98.38 ± 1.95. Distances measured in cell migration resulted highly similar (cv<1%). MSC showed optimal behavior during culture and differentiation and should be considered as good candidates for tissue regeneration. Their viability was significantly high, and it was not affected by the concentration of cells in the scaffold, the gelation method with ammonium hydroxide, the use of PETG in 3D printing or the integration to the biopolymer. Closeness in the distances evaluated between cellular reference points for cell migration, showed that there was no significant cellular migration. This suggests that cells did not generate sufficient tensile forces to create focal adhesions in the scaffold. Despite the favorable characteristics of MSC it is important to extend the study by modifying the biopolymer and submitting cellular constructs to paracrine factors of the natural myocardial infarcted microenvironment
publishDate 2019
dc.date.accessioned.spa.fl_str_mv 2019-05-24T17:54:40Z
dc.date.available.spa.fl_str_mv 2019-05-24T17:54:40Z
dc.date.issued.spa.fl_str_mv 2019-02-19
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/10614/10909
url http://hdl.handle.net/10614/10909
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 65 páginas
dc.coverage.spatial.spa.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.spa.fl_str_mv Universidad Autónoma de Occidente
dc.publisher.program.spa.fl_str_mv Ingeniería Biomédica
dc.publisher.department.spa.fl_str_mv Departamento de Automática y Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.source.spa.fl_str_mv instname:Universidad Autónoma de Occidente
reponame:Repositorio Institucional UAO
instname_str Universidad Autónoma de Occidente
institution Universidad Autónoma de Occidente
reponame_str Repositorio Institucional UAO
collection Repositorio Institucional UAO
dc.source.bibliographiccitation.spa.fl_str_mv AMERICAN HEART ASSOCIATION. Heart Disease and Stroke Statistics 2017: At-a-glance. [en línea] USA: 2017. [Consultado: 17 de octubre de 2017] Disponible en internet: https://healthmetrics.heart.org/wp-content/uploads/2017/06/Heart-Disease-and-Stroke-Statistics-2017-ucm_491265.pdf ANDERSON, Jeffrey y MORROW, David. Acute Myocardial Infarction. En: N Engl J Med. 2017, p. 2053-2064. BARINOV, E.F. General Histology. 4 ed. Ucrania: Donetsk, 2011. p. 83. BOLOOKI, Michael y ASKARI, Arman. Acute Myocardial Infarction. [En línea] Cleveland, USA: 2010. [Consultado: 15 de diciembre de 2017] Disponible en internet:http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/cardiology/acute-myocardial-infarction/ BRADE, Thomas, et al. Embryonic Heart Progenitors and Cardiogenesis. En: Cold Spring Harbor Perspectives in Medicine. 2013. BUJA, Maximilian, et al. Apoptosis and necrosis: basic types and mechanisms of cell death. En: Arch Pathol Lab Med. 1993, p. 1208–1214. CARRIER, Rebecca, et al. Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. En: Biotechnology and bioengineering. 1999, p. 580-589. CARVALHO, Juliana y BRAGA, Vinicius, et al. Priming mesenchymal stem cells boosts stem cell therapy to treat myocardial infarction. En: Journal of cellular and molecular medicine, Marzo, 2013, p 617–625. CECCALDI, Caroline y GIROD, Sophie. Alginate Scaffolds for Mesenchymal Stem Cell Cardiac Therapy: Influence of Alginate Composition. En: Cell Transplantation, 2012, vol. 21, p. 1969-1984.CHAN, Barbara; et al. Scaffolding in Tissue Engineering: General Approaches and Tissue-Specific Considerations. En: European Spine Journal, Enero, 2008, p 467–479. CHASE, Lucas; VEMURI, Mohan. Mesenchymal Stem Cell Therapy. New York: Springer, 2013. P 15-16. CHONG, James, et al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. En: Cell Stem Cell. Diciembre, 2011, vol. 9, no. 6, p. 527-540. COOK, Jeffrey, et al. Microporosity of the substratum regulates differentiation of MDCK cells in vitro. En: In Vitro Cell Dev Biol. Octubre, 1989, vol. 25, no. 10, p. 914-922. DO, Anh-Vu, et al. 3D Printing of scaffolds for tissue regeneration applications. En: Adv Healthc Mater. Agosto, 2015, p. 1742-1762. DOMINICI, Massimo, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. En: The International Society for Cellular Therapy position statement. 2006, vol. 8, no. 4, p. 315-317. FERRARO, Francesca; LO CELSO, Cristina y SCADDEN, David. Adult stem cells and their niches. En: Advances in experimental medicine and biology. 2010, p. 155–168. FUKUHARA, Shinya, et al. Bone Marrow Cell-Seeded Biodegradable Polymeric Scaffold Enhances Angiogenesis and Improves Function of the Infarcted Heart. En: Circulation Journal. Julio, 2005. p. 850-857. GALINDO, Jorge. Guía de práctica clínica para pacientes con diagnóstico de síndrome coronario agudo. En: Revista Colombiana de Cardiología. Diciembre, 2013, vol. 20, no. 2, p. 46. GRECO, Steven y RAMESHWAR, Pranela. Microenvironmental considerations in the application of human mesenchymal stem cells in regenerative therapies. En: Biologics. Diciembre, 2008, vol. 2, no. 4, p. 699-705.GULATI, Ankur, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. En: JAMA, 2013, p 309:896–908. doi: 10.1001/jama.2013.1363 HATZISTERGOS, Konstantions, et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. En: Circulation research, 2010. p 913-922. KARANTALIS, Vasileios. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery. En: Circ Res. Abril, 2014, vol. 114, no. 8, p.1302-1310. -------- Use of Mesenchymal Stem Cells for Therapy of Cardiac Disease. En: Circulation research. Enero, 2015, p. 1413–1430. LEOR, Jonathan; AMSALEM, Yoram y COHEN, Smadar. Cells, scaffolds, and molecules for myocardial tissue engineering. En: Pharmacology & therapeutics, 2005, vol. 105, no 2, p. 151-163. MALLIARAS, Konstantinos y MARBAN, Eduardo. Cardiac cell therapy: where we've been, where we are, and where we should be headed. En: British Medical Bulletin. Junio, 2011, vol. 98, no. 1, p 161–185. MENG, Xuan, et al. Stem Cells in a Three-Dimensional Scaffold Environment. [En línea] NC, USA. [Consulado: 13 de enero de 2018] En: SpringerPlus 3. 2014. MOLINA, Ezequiel, et al. Reverse remodeling is associated with changes in extracellular matrix proteases and tissue inhibitors after mesenchymal stem cell (MSC) treatment of pressure overload hypertrophy. En: J Tissue Eng Regen Med. Febrero, 2009, vol. 3, no. 2, p. 85-91. PELEKANOS, Rebecca, et al. Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities. En: Stem Cell Res., Enero, 2012, p. 58-73.PITTENGER, Mark. Mesenchymal Stem Cells for Cardiac Therapy. En: Stem Cells and Myocardial Regeneration. New Jersey: Human Press Inc, 2007. p 29-37. -------- Multilineage potential of adult human mesenchymal stem cells. En: Science. Abril, 1999, p.143-147. PORTALSKA, Karolina Janeczek, et al. Endothelial differentiation of mesenchymal stromal cells. En: PloS one, 2012, vol. 7, no 10, p. 842. PSALTIS, Peter, et al. Concise review: mesenchymal stromal cells: potential for cardiovascular repair. En: Stem Cells. Septiembre, 2008, vol. 26, no. 9, p. 2201-2210. QUEVEDO, Henry, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. En: PNAS. Agosto, 2009, vol. 106, no. 33, p. 14022-14027. RAMIREZ-RAMIREZ, Federico. Fisiología cardiaca. En: Revista Médica MD. Septiembre, 2009, vol. 1, no. 3. p. 2. REIMER, KA; IDEREK, RE. Myocardial ischemia and infarction: anatomic and biochemical substrates for ischemic cell death and ventricular arrhythmias. En: Human Pathol. 1987, vol.18, p. 462–475. SANDHAANAM, Sylvestar, et al. Mesenchymal stem cells (MSC): Identification, proliferation and differentiatiom – A review article. En: Peer J. Diciembre, 2013. SCHITTINI, Andressa. Human cardiac explant-conditioned medium: soluble factors and cardiomyogenic effect on mesenchymal stem cells. En: Exp Biol Med (Maywood). Agosto, 2010 Aug, p. 1015-1024. SCHLUTER, Klaus. Cardiomyocytes – Active Players in Cardiac Disease. Alemania: Springer, 2016. p. 4. SECRETARIA DE SALUD PUBLICA MUNICIPAL. Salud en Cifras 2011. Municipio de Cali: 2012. p. 119.STEFFENS, Daniela y REZENDE, Rodrigo. 3D-printed scaffolds for the cultivation of mesenchymal stem cells. En: IFAC MCPL . Septiembre, 2013, p. 361-366. TALMAN, Virpi y RUSKOAHO, Heikki. Cardiac Fibrosis in Myocardial Infarction—from Repair and Remodeling to Regeneration. En: Cell and Tissue Research, Enero, 2016, p 563–581. TIMMERS, Leo y KIANG, Sai, et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. En: Stem Cell Research, Junio, 2008, p. 129-137. TRUSKEY, George. Advancing cardiovascular tissue engineering. [en línea] US National Library of Medicine. (31 de mayo de 2016), párr. 1. [Consultado: 20 de diciembre de 2017] Disponible en internet: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890312/ VUNJAK-NOVAKOVIC, Gordana; ESCHENHAGEN, Thomas y MUMMERY, Christine. Myocardial Tissue Engineering: In Vitro Models. En: Cold Spring Harbor Perspectives in Medicine. Marzo, 2014, vol. 4, no. 3. -------- Biomimetic Platforms for Human Stem Cell Research. En: Cell stem cell. Marzo, 2011, vol. 8, no. 3, p. 252–253. WANG, Bo, et al. Fabrication of Cardiac Patch with Decellularized Porcine Myocardial Scaffold and Bone Marrow Mononuclear Cells. En: J Biomed Mater Res A. Septiembre, 2010. p. 1100-1110. WU, Zhiye, et al. Treatment of Myocardial Infarction with Gene-modified Mesenchymal Stem Cells in a Small Molecular Hydrogel. En: Scientific Reports. Noviembre, 2017. YU, Hye-Sun, et al. Construction of mesenchymal stem cell–containing collagen gel with a macrochanneled polycaprolactone scaffold and the flow perfusion culturing for bone tissue engineering. En: BioResearch open access. Junio, 2012, vol. 1, no 3, p. 124-136. ZHOU, Pingzhu y PU, William. Recounting Cardiac Cellular Composition. En: Circulation Research. Febrero, 2016, p. 368.ZIMMERMANN, Wolfram, et al. Cardiac Grafting of Engineered Heart Tissue in Syngenic Rats. En: American Heart Association Journals. Septiembre, 2002. p. 151-157.
bitstream.url.fl_str_mv https://dspace7-uao.metacatalogo.com/bitstreams/c4471cd0-57b5-43b7-95e6-080f515ef5e8/download
https://dspace7-uao.metacatalogo.com/bitstreams/9c19bfdc-9aba-4e4b-9017-6516d566ae35/download
https://dspace7-uao.metacatalogo.com/bitstreams/bec013dd-ed8d-43f5-9a8f-38e48c784f6d/download
https://dspace7-uao.metacatalogo.com/bitstreams/41c1ed1d-5540-41ef-8fff-d7ce65a4c6e4/download
https://dspace7-uao.metacatalogo.com/bitstreams/7438dcae-a829-4f98-ba13-7dbdf64696e1/download
https://dspace7-uao.metacatalogo.com/bitstreams/7a735fea-e1f0-48a5-be3a-d2e25df60e2e/download
https://dspace7-uao.metacatalogo.com/bitstreams/4ffb264a-c040-4e31-a54c-75624fc12e40/download
https://dspace7-uao.metacatalogo.com/bitstreams/7b94d49b-5eae-4b88-a83b-ce80d77d5192/download
bitstream.checksum.fl_str_mv 7d1a391a1dd9d5d7308411a4aa507720
b07f318c60c78f4dfc687514f54b6727
affc2093a25d30e2315f2084377be296
9cac2bcae0c587860f0d25bdee291715
4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
7a0b131e4a2aa9b413766ad34fc994c5
4d1ac0a20bd7f34a86930843d6bbc120
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UAO
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260006531366912
spelling Neuta-Arciniegas, Paolaf12d6cc0eb11ddf742dadbd88cc8e3baMelo Escobar, María Isabel2dfdab02656b1cabec12e3f9b13f2190Ingeniero BiomédicoUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-05-24T17:54:40Z2019-05-24T17:54:40Z2019-02-19http://hdl.handle.net/10614/10909Currently tissue engineering strategies for myocardial regeneration after infarction are explored, including scaffolds that offer mechanical support and cell delivery into the injury. Bone marrow mesenchymal stem cells (MSC) are important candidates for cell therapy due to its ability to differentiate into cells of cardiac tissue. However, the underlying mechanisms of MSC to promote tissue regeneration are not fully understood. The present study examined the undifferentiated and differentiated MSC’s behavior on a biopolymer, to assess cell viability and cell migration. The MSC were isolated from Wistar rats aged between 4 and 8 weeks. An improved isolation protocol was executed to optimize the performance of the cells in the scaffold. Group 1 (G1) of scaffolds (750 cells/µL) and group 2 (G2) (5000 cells/µL) were studied through trypan blue exclusion test to compare cell viability during 4 weeks. To assess cell migration group 3 (G3) were cell-seeded in a homogenous distribution and group 4 (G4) in a divided distribution, both at the same cell concentration of 2250 cells/µL. Cell migration was estimated through fluorescent microscopy. The isolation and cell culture protocol resulted in optimum confluence (>90%) in passage 4 to seed all the scaffolds. The cell viability assay determined G1 live cells had an average viability percentage of 98.23 ± 3.35 and for G2 an average of 98.38 ± 1.95. Distances measured in cell migration resulted highly similar (cv<1%). MSC showed optimal behavior during culture and differentiation and should be considered as good candidates for tissue regeneration. Their viability was significantly high, and it was not affected by the concentration of cells in the scaffold, the gelation method with ammonium hydroxide, the use of PETG in 3D printing or the integration to the biopolymer. Closeness in the distances evaluated between cellular reference points for cell migration, showed that there was no significant cellular migration. This suggests that cells did not generate sufficient tensile forces to create focal adhesions in the scaffold. Despite the favorable characteristics of MSC it is important to extend the study by modifying the biopolymer and submitting cellular constructs to paracrine factors of the natural myocardial infarcted microenvironmentLa medicina regenerativa involucra el diseño de nuevos métodos para controlar y modificar los procesos normarles de reparación del tejido. Actualmente se exploran constructos de polímeros y células para crear tejido que reemplace el área afectada, especialmente en tejido cardiaco después de un infarto miocárdico. El objetivo del presente estudio consiste en evaluar el comportamiento de las células madre mesenquimales (MSC) diferenciadas y sin diferenciar, en los biodispositivos impresos para tratamiento del miocardio infartado en biomodelos, a través de mediciones de viabilidad celular, áreas de concentración y cantidad del biomaterial del andamiaje. Las MSC son extraídas de la médula ósea de ratas de 4 semanas y se conservan en condiciones de cultivo celular por varios periodos, hasta obtener suficiente confluencia para diferenciar y sembrarlas en múltiples scaffolds de un biomaterial gelificado. Posteriormente se evalúa la viabilidad celular por exposición a un colorante supravital, de los scaffolds sembrados; adicionalmente se evalúa la migración celular por microscopía de fluorescencia. Los resultados muestran que las condiciones de extracción y cultivo influyen de manera importante en la tasa de proliferación celular. Se encontró que las MSC diferenciadas y sin diferenciar presentan alta viabilidad en el biomaterial del scaffold, sin embargo, se evidencia poca movilidad de las células en el constructoPasantía en investigación (Ingeniera Biomédica)-- Universidad Autónoma de Occidente, 2019PregradoIngeniero(a) Biomédico(a)application/pdf65 páginasspaUniversidad Autónoma de OccidenteIngeniería BiomédicaDepartamento de Automática y ElectrónicaFacultad de IngenieríaDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2instname:Universidad Autónoma de Occidentereponame:Repositorio Institucional UAOAMERICAN HEART ASSOCIATION. Heart Disease and Stroke Statistics 2017: At-a-glance. [en línea] USA: 2017. [Consultado: 17 de octubre de 2017] Disponible en internet: https://healthmetrics.heart.org/wp-content/uploads/2017/06/Heart-Disease-and-Stroke-Statistics-2017-ucm_491265.pdf ANDERSON, Jeffrey y MORROW, David. Acute Myocardial Infarction. En: N Engl J Med. 2017, p. 2053-2064. BARINOV, E.F. General Histology. 4 ed. Ucrania: Donetsk, 2011. p. 83. BOLOOKI, Michael y ASKARI, Arman. Acute Myocardial Infarction. [En línea] Cleveland, USA: 2010. [Consultado: 15 de diciembre de 2017] Disponible en internet:http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/cardiology/acute-myocardial-infarction/ BRADE, Thomas, et al. Embryonic Heart Progenitors and Cardiogenesis. En: Cold Spring Harbor Perspectives in Medicine. 2013. BUJA, Maximilian, et al. Apoptosis and necrosis: basic types and mechanisms of cell death. En: Arch Pathol Lab Med. 1993, p. 1208–1214. CARRIER, Rebecca, et al. Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. En: Biotechnology and bioengineering. 1999, p. 580-589. CARVALHO, Juliana y BRAGA, Vinicius, et al. Priming mesenchymal stem cells boosts stem cell therapy to treat myocardial infarction. En: Journal of cellular and molecular medicine, Marzo, 2013, p 617–625. CECCALDI, Caroline y GIROD, Sophie. Alginate Scaffolds for Mesenchymal Stem Cell Cardiac Therapy: Influence of Alginate Composition. En: Cell Transplantation, 2012, vol. 21, p. 1969-1984.CHAN, Barbara; et al. Scaffolding in Tissue Engineering: General Approaches and Tissue-Specific Considerations. En: European Spine Journal, Enero, 2008, p 467–479. CHASE, Lucas; VEMURI, Mohan. Mesenchymal Stem Cell Therapy. New York: Springer, 2013. P 15-16. CHONG, James, et al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. En: Cell Stem Cell. Diciembre, 2011, vol. 9, no. 6, p. 527-540. COOK, Jeffrey, et al. Microporosity of the substratum regulates differentiation of MDCK cells in vitro. En: In Vitro Cell Dev Biol. Octubre, 1989, vol. 25, no. 10, p. 914-922. DO, Anh-Vu, et al. 3D Printing of scaffolds for tissue regeneration applications. En: Adv Healthc Mater. Agosto, 2015, p. 1742-1762. DOMINICI, Massimo, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. En: The International Society for Cellular Therapy position statement. 2006, vol. 8, no. 4, p. 315-317. FERRARO, Francesca; LO CELSO, Cristina y SCADDEN, David. Adult stem cells and their niches. En: Advances in experimental medicine and biology. 2010, p. 155–168. FUKUHARA, Shinya, et al. Bone Marrow Cell-Seeded Biodegradable Polymeric Scaffold Enhances Angiogenesis and Improves Function of the Infarcted Heart. En: Circulation Journal. Julio, 2005. p. 850-857. GALINDO, Jorge. Guía de práctica clínica para pacientes con diagnóstico de síndrome coronario agudo. En: Revista Colombiana de Cardiología. Diciembre, 2013, vol. 20, no. 2, p. 46. GRECO, Steven y RAMESHWAR, Pranela. Microenvironmental considerations in the application of human mesenchymal stem cells in regenerative therapies. En: Biologics. Diciembre, 2008, vol. 2, no. 4, p. 699-705.GULATI, Ankur, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. En: JAMA, 2013, p 309:896–908. doi: 10.1001/jama.2013.1363 HATZISTERGOS, Konstantions, et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. En: Circulation research, 2010. p 913-922. KARANTALIS, Vasileios. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery. En: Circ Res. Abril, 2014, vol. 114, no. 8, p.1302-1310. -------- Use of Mesenchymal Stem Cells for Therapy of Cardiac Disease. En: Circulation research. Enero, 2015, p. 1413–1430. LEOR, Jonathan; AMSALEM, Yoram y COHEN, Smadar. Cells, scaffolds, and molecules for myocardial tissue engineering. En: Pharmacology & therapeutics, 2005, vol. 105, no 2, p. 151-163. MALLIARAS, Konstantinos y MARBAN, Eduardo. Cardiac cell therapy: where we've been, where we are, and where we should be headed. En: British Medical Bulletin. Junio, 2011, vol. 98, no. 1, p 161–185. MENG, Xuan, et al. Stem Cells in a Three-Dimensional Scaffold Environment. [En línea] NC, USA. [Consulado: 13 de enero de 2018] En: SpringerPlus 3. 2014. MOLINA, Ezequiel, et al. Reverse remodeling is associated with changes in extracellular matrix proteases and tissue inhibitors after mesenchymal stem cell (MSC) treatment of pressure overload hypertrophy. En: J Tissue Eng Regen Med. Febrero, 2009, vol. 3, no. 2, p. 85-91. PELEKANOS, Rebecca, et al. Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities. En: Stem Cell Res., Enero, 2012, p. 58-73.PITTENGER, Mark. Mesenchymal Stem Cells for Cardiac Therapy. En: Stem Cells and Myocardial Regeneration. New Jersey: Human Press Inc, 2007. p 29-37. -------- Multilineage potential of adult human mesenchymal stem cells. En: Science. Abril, 1999, p.143-147. PORTALSKA, Karolina Janeczek, et al. Endothelial differentiation of mesenchymal stromal cells. En: PloS one, 2012, vol. 7, no 10, p. 842. PSALTIS, Peter, et al. Concise review: mesenchymal stromal cells: potential for cardiovascular repair. En: Stem Cells. Septiembre, 2008, vol. 26, no. 9, p. 2201-2210. QUEVEDO, Henry, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. En: PNAS. Agosto, 2009, vol. 106, no. 33, p. 14022-14027. RAMIREZ-RAMIREZ, Federico. Fisiología cardiaca. En: Revista Médica MD. Septiembre, 2009, vol. 1, no. 3. p. 2. REIMER, KA; IDEREK, RE. Myocardial ischemia and infarction: anatomic and biochemical substrates for ischemic cell death and ventricular arrhythmias. En: Human Pathol. 1987, vol.18, p. 462–475. SANDHAANAM, Sylvestar, et al. Mesenchymal stem cells (MSC): Identification, proliferation and differentiatiom – A review article. En: Peer J. Diciembre, 2013. SCHITTINI, Andressa. Human cardiac explant-conditioned medium: soluble factors and cardiomyogenic effect on mesenchymal stem cells. En: Exp Biol Med (Maywood). Agosto, 2010 Aug, p. 1015-1024. SCHLUTER, Klaus. Cardiomyocytes – Active Players in Cardiac Disease. Alemania: Springer, 2016. p. 4. SECRETARIA DE SALUD PUBLICA MUNICIPAL. Salud en Cifras 2011. Municipio de Cali: 2012. p. 119.STEFFENS, Daniela y REZENDE, Rodrigo. 3D-printed scaffolds for the cultivation of mesenchymal stem cells. En: IFAC MCPL . Septiembre, 2013, p. 361-366. TALMAN, Virpi y RUSKOAHO, Heikki. Cardiac Fibrosis in Myocardial Infarction—from Repair and Remodeling to Regeneration. En: Cell and Tissue Research, Enero, 2016, p 563–581. TIMMERS, Leo y KIANG, Sai, et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. En: Stem Cell Research, Junio, 2008, p. 129-137. TRUSKEY, George. Advancing cardiovascular tissue engineering. [en línea] US National Library of Medicine. (31 de mayo de 2016), párr. 1. [Consultado: 20 de diciembre de 2017] Disponible en internet: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890312/ VUNJAK-NOVAKOVIC, Gordana; ESCHENHAGEN, Thomas y MUMMERY, Christine. Myocardial Tissue Engineering: In Vitro Models. En: Cold Spring Harbor Perspectives in Medicine. Marzo, 2014, vol. 4, no. 3. -------- Biomimetic Platforms for Human Stem Cell Research. En: Cell stem cell. Marzo, 2011, vol. 8, no. 3, p. 252–253. WANG, Bo, et al. Fabrication of Cardiac Patch with Decellularized Porcine Myocardial Scaffold and Bone Marrow Mononuclear Cells. En: J Biomed Mater Res A. Septiembre, 2010. p. 1100-1110. WU, Zhiye, et al. Treatment of Myocardial Infarction with Gene-modified Mesenchymal Stem Cells in a Small Molecular Hydrogel. En: Scientific Reports. Noviembre, 2017. YU, Hye-Sun, et al. Construction of mesenchymal stem cell–containing collagen gel with a macrochanneled polycaprolactone scaffold and the flow perfusion culturing for bone tissue engineering. En: BioResearch open access. Junio, 2012, vol. 1, no 3, p. 124-136. ZHOU, Pingzhu y PU, William. Recounting Cardiac Cellular Composition. En: Circulation Research. Febrero, 2016, p. 368.ZIMMERMANN, Wolfram, et al. Cardiac Grafting of Engineered Heart Tissue in Syngenic Rats. En: American Heart Association Journals. Septiembre, 2002. p. 151-157.Ingeniería BiomédicaIngeniería de tejidosScaffoldInfarto del miocardioCélulas madre mesenquimalesBiomaterialViabilidad celularMigración celularMedicina regenerativaExtracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartadoCultivo de células madre en biodispositivos para regeneración del miocardio infartadoTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85PublicationTEXTT08447.pdf.txtT08447.pdf.txtExtracted texttext/plain108840https://dspace7-uao.metacatalogo.com/bitstreams/c4471cd0-57b5-43b7-95e6-080f515ef5e8/download7d1a391a1dd9d5d7308411a4aa507720MD57TA8447.pdf.txtTA8447.pdf.txtExtracted texttext/plain4152https://dspace7-uao.metacatalogo.com/bitstreams/9c19bfdc-9aba-4e4b-9017-6516d566ae35/downloadb07f318c60c78f4dfc687514f54b6727MD59THUMBNAILT08447.pdf.jpgT08447.pdf.jpgGenerated Thumbnailimage/jpeg7028https://dspace7-uao.metacatalogo.com/bitstreams/bec013dd-ed8d-43f5-9a8f-38e48c784f6d/downloadaffc2093a25d30e2315f2084377be296MD58TA8447.pdf.jpgTA8447.pdf.jpgGenerated Thumbnailimage/jpeg13281https://dspace7-uao.metacatalogo.com/bitstreams/41c1ed1d-5540-41ef-8fff-d7ce65a4c6e4/download9cac2bcae0c587860f0d25bdee291715MD510CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://dspace7-uao.metacatalogo.com/bitstreams/7438dcae-a829-4f98-ba13-7dbdf64696e1/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/7a735fea-e1f0-48a5-be3a-d2e25df60e2e/download20b5ba22b1117f71589c7318baa2c560MD54ORIGINALT08447.pdfT08447.pdfapplication/pdf1767023https://dspace7-uao.metacatalogo.com/bitstreams/4ffb264a-c040-4e31-a54c-75624fc12e40/download7a0b131e4a2aa9b413766ad34fc994c5MD55TA8447.pdfTA8447.pdfapplication/pdf1567902https://dspace7-uao.metacatalogo.com/bitstreams/7b94d49b-5eae-4b88-a83b-ce80d77d5192/download4d1ac0a20bd7f34a86930843d6bbc120MD5610614/10909oai:dspace7-uao.metacatalogo.com:10614/109092024-01-19 16:36:32.298https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K