Extracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartado
Currently tissue engineering strategies for myocardial regeneration after infarction are explored, including scaffolds that offer mechanical support and cell delivery into the injury. Bone marrow mesenchymal stem cells (MSC) are important candidates for cell therapy due to its ability to differentia...
- Autores:
-
Melo Escobar, María Isabel
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/10909
- Acceso en línea:
- http://hdl.handle.net/10614/10909
- Palabra clave:
- Ingeniería Biomédica
Ingeniería de tejidos
Scaffold
Infarto del miocardio
Células madre mesenquimales
Biomaterial
Viabilidad celular
Migración celular
Medicina regenerativa
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_6e7e3ad3beab80281a6c3418783b2b28 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/10909 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Extracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartado |
dc.title.alternative.spa.fl_str_mv |
Cultivo de células madre en biodispositivos para regeneración del miocardio infartado |
title |
Extracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartado |
spellingShingle |
Extracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartado Ingeniería Biomédica Ingeniería de tejidos Scaffold Infarto del miocardio Células madre mesenquimales Biomaterial Viabilidad celular Migración celular Medicina regenerativa |
title_short |
Extracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartado |
title_full |
Extracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartado |
title_fullStr |
Extracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartado |
title_full_unstemmed |
Extracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartado |
title_sort |
Extracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartado |
dc.creator.fl_str_mv |
Melo Escobar, María Isabel |
dc.contributor.advisor.spa.fl_str_mv |
Neuta-Arciniegas, Paola |
dc.contributor.author.spa.fl_str_mv |
Melo Escobar, María Isabel |
dc.subject.spa.fl_str_mv |
Ingeniería Biomédica Ingeniería de tejidos Scaffold Infarto del miocardio Células madre mesenquimales Biomaterial Viabilidad celular Migración celular Medicina regenerativa |
topic |
Ingeniería Biomédica Ingeniería de tejidos Scaffold Infarto del miocardio Células madre mesenquimales Biomaterial Viabilidad celular Migración celular Medicina regenerativa |
description |
Currently tissue engineering strategies for myocardial regeneration after infarction are explored, including scaffolds that offer mechanical support and cell delivery into the injury. Bone marrow mesenchymal stem cells (MSC) are important candidates for cell therapy due to its ability to differentiate into cells of cardiac tissue. However, the underlying mechanisms of MSC to promote tissue regeneration are not fully understood. The present study examined the undifferentiated and differentiated MSC’s behavior on a biopolymer, to assess cell viability and cell migration. The MSC were isolated from Wistar rats aged between 4 and 8 weeks. An improved isolation protocol was executed to optimize the performance of the cells in the scaffold. Group 1 (G1) of scaffolds (750 cells/µL) and group 2 (G2) (5000 cells/µL) were studied through trypan blue exclusion test to compare cell viability during 4 weeks. To assess cell migration group 3 (G3) were cell-seeded in a homogenous distribution and group 4 (G4) in a divided distribution, both at the same cell concentration of 2250 cells/µL. Cell migration was estimated through fluorescent microscopy. The isolation and cell culture protocol resulted in optimum confluence (>90%) in passage 4 to seed all the scaffolds. The cell viability assay determined G1 live cells had an average viability percentage of 98.23 ± 3.35 and for G2 an average of 98.38 ± 1.95. Distances measured in cell migration resulted highly similar (cv<1%). MSC showed optimal behavior during culture and differentiation and should be considered as good candidates for tissue regeneration. Their viability was significantly high, and it was not affected by the concentration of cells in the scaffold, the gelation method with ammonium hydroxide, the use of PETG in 3D printing or the integration to the biopolymer. Closeness in the distances evaluated between cellular reference points for cell migration, showed that there was no significant cellular migration. This suggests that cells did not generate sufficient tensile forces to create focal adhesions in the scaffold. Despite the favorable characteristics of MSC it is important to extend the study by modifying the biopolymer and submitting cellular constructs to paracrine factors of the natural myocardial infarcted microenvironment |
publishDate |
2019 |
dc.date.accessioned.spa.fl_str_mv |
2019-05-24T17:54:40Z |
dc.date.available.spa.fl_str_mv |
2019-05-24T17:54:40Z |
dc.date.issued.spa.fl_str_mv |
2019-02-19 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.uri.spa.fl_str_mv |
http://hdl.handle.net/10614/10909 |
url |
http://hdl.handle.net/10614/10909 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.spa.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
65 páginas |
dc.coverage.spatial.spa.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Biomédica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Automática y Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.source.spa.fl_str_mv |
instname:Universidad Autónoma de Occidente reponame:Repositorio Institucional UAO |
instname_str |
Universidad Autónoma de Occidente |
institution |
Universidad Autónoma de Occidente |
reponame_str |
Repositorio Institucional UAO |
collection |
Repositorio Institucional UAO |
dc.source.bibliographiccitation.spa.fl_str_mv |
AMERICAN HEART ASSOCIATION. Heart Disease and Stroke Statistics 2017: At-a-glance. [en línea] USA: 2017. [Consultado: 17 de octubre de 2017] Disponible en internet: https://healthmetrics.heart.org/wp-content/uploads/2017/06/Heart-Disease-and-Stroke-Statistics-2017-ucm_491265.pdf ANDERSON, Jeffrey y MORROW, David. Acute Myocardial Infarction. En: N Engl J Med. 2017, p. 2053-2064. BARINOV, E.F. General Histology. 4 ed. Ucrania: Donetsk, 2011. p. 83. BOLOOKI, Michael y ASKARI, Arman. Acute Myocardial Infarction. [En línea] Cleveland, USA: 2010. [Consultado: 15 de diciembre de 2017] Disponible en internet:http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/cardiology/acute-myocardial-infarction/ BRADE, Thomas, et al. Embryonic Heart Progenitors and Cardiogenesis. En: Cold Spring Harbor Perspectives in Medicine. 2013. BUJA, Maximilian, et al. Apoptosis and necrosis: basic types and mechanisms of cell death. En: Arch Pathol Lab Med. 1993, p. 1208–1214. CARRIER, Rebecca, et al. Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. En: Biotechnology and bioengineering. 1999, p. 580-589. CARVALHO, Juliana y BRAGA, Vinicius, et al. Priming mesenchymal stem cells boosts stem cell therapy to treat myocardial infarction. En: Journal of cellular and molecular medicine, Marzo, 2013, p 617–625. CECCALDI, Caroline y GIROD, Sophie. Alginate Scaffolds for Mesenchymal Stem Cell Cardiac Therapy: Influence of Alginate Composition. En: Cell Transplantation, 2012, vol. 21, p. 1969-1984.CHAN, Barbara; et al. Scaffolding in Tissue Engineering: General Approaches and Tissue-Specific Considerations. En: European Spine Journal, Enero, 2008, p 467–479. CHASE, Lucas; VEMURI, Mohan. Mesenchymal Stem Cell Therapy. New York: Springer, 2013. P 15-16. CHONG, James, et al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. En: Cell Stem Cell. Diciembre, 2011, vol. 9, no. 6, p. 527-540. COOK, Jeffrey, et al. Microporosity of the substratum regulates differentiation of MDCK cells in vitro. En: In Vitro Cell Dev Biol. Octubre, 1989, vol. 25, no. 10, p. 914-922. DO, Anh-Vu, et al. 3D Printing of scaffolds for tissue regeneration applications. En: Adv Healthc Mater. Agosto, 2015, p. 1742-1762. DOMINICI, Massimo, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. En: The International Society for Cellular Therapy position statement. 2006, vol. 8, no. 4, p. 315-317. FERRARO, Francesca; LO CELSO, Cristina y SCADDEN, David. Adult stem cells and their niches. En: Advances in experimental medicine and biology. 2010, p. 155–168. FUKUHARA, Shinya, et al. Bone Marrow Cell-Seeded Biodegradable Polymeric Scaffold Enhances Angiogenesis and Improves Function of the Infarcted Heart. En: Circulation Journal. Julio, 2005. p. 850-857. GALINDO, Jorge. Guía de práctica clínica para pacientes con diagnóstico de síndrome coronario agudo. En: Revista Colombiana de Cardiología. Diciembre, 2013, vol. 20, no. 2, p. 46. GRECO, Steven y RAMESHWAR, Pranela. Microenvironmental considerations in the application of human mesenchymal stem cells in regenerative therapies. En: Biologics. Diciembre, 2008, vol. 2, no. 4, p. 699-705.GULATI, Ankur, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. En: JAMA, 2013, p 309:896–908. doi: 10.1001/jama.2013.1363 HATZISTERGOS, Konstantions, et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. En: Circulation research, 2010. p 913-922. KARANTALIS, Vasileios. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery. En: Circ Res. Abril, 2014, vol. 114, no. 8, p.1302-1310. -------- Use of Mesenchymal Stem Cells for Therapy of Cardiac Disease. En: Circulation research. Enero, 2015, p. 1413–1430. LEOR, Jonathan; AMSALEM, Yoram y COHEN, Smadar. Cells, scaffolds, and molecules for myocardial tissue engineering. En: Pharmacology & therapeutics, 2005, vol. 105, no 2, p. 151-163. MALLIARAS, Konstantinos y MARBAN, Eduardo. Cardiac cell therapy: where we've been, where we are, and where we should be headed. En: British Medical Bulletin. Junio, 2011, vol. 98, no. 1, p 161–185. MENG, Xuan, et al. Stem Cells in a Three-Dimensional Scaffold Environment. [En línea] NC, USA. [Consulado: 13 de enero de 2018] En: SpringerPlus 3. 2014. MOLINA, Ezequiel, et al. Reverse remodeling is associated with changes in extracellular matrix proteases and tissue inhibitors after mesenchymal stem cell (MSC) treatment of pressure overload hypertrophy. En: J Tissue Eng Regen Med. Febrero, 2009, vol. 3, no. 2, p. 85-91. PELEKANOS, Rebecca, et al. Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities. En: Stem Cell Res., Enero, 2012, p. 58-73.PITTENGER, Mark. Mesenchymal Stem Cells for Cardiac Therapy. En: Stem Cells and Myocardial Regeneration. New Jersey: Human Press Inc, 2007. p 29-37. -------- Multilineage potential of adult human mesenchymal stem cells. En: Science. Abril, 1999, p.143-147. PORTALSKA, Karolina Janeczek, et al. Endothelial differentiation of mesenchymal stromal cells. En: PloS one, 2012, vol. 7, no 10, p. 842. PSALTIS, Peter, et al. Concise review: mesenchymal stromal cells: potential for cardiovascular repair. En: Stem Cells. Septiembre, 2008, vol. 26, no. 9, p. 2201-2210. QUEVEDO, Henry, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. En: PNAS. Agosto, 2009, vol. 106, no. 33, p. 14022-14027. RAMIREZ-RAMIREZ, Federico. Fisiología cardiaca. En: Revista Médica MD. Septiembre, 2009, vol. 1, no. 3. p. 2. REIMER, KA; IDEREK, RE. Myocardial ischemia and infarction: anatomic and biochemical substrates for ischemic cell death and ventricular arrhythmias. En: Human Pathol. 1987, vol.18, p. 462–475. SANDHAANAM, Sylvestar, et al. Mesenchymal stem cells (MSC): Identification, proliferation and differentiatiom – A review article. En: Peer J. Diciembre, 2013. SCHITTINI, Andressa. Human cardiac explant-conditioned medium: soluble factors and cardiomyogenic effect on mesenchymal stem cells. En: Exp Biol Med (Maywood). Agosto, 2010 Aug, p. 1015-1024. SCHLUTER, Klaus. Cardiomyocytes – Active Players in Cardiac Disease. Alemania: Springer, 2016. p. 4. SECRETARIA DE SALUD PUBLICA MUNICIPAL. Salud en Cifras 2011. Municipio de Cali: 2012. p. 119.STEFFENS, Daniela y REZENDE, Rodrigo. 3D-printed scaffolds for the cultivation of mesenchymal stem cells. En: IFAC MCPL . Septiembre, 2013, p. 361-366. TALMAN, Virpi y RUSKOAHO, Heikki. Cardiac Fibrosis in Myocardial Infarction—from Repair and Remodeling to Regeneration. En: Cell and Tissue Research, Enero, 2016, p 563–581. TIMMERS, Leo y KIANG, Sai, et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. En: Stem Cell Research, Junio, 2008, p. 129-137. TRUSKEY, George. Advancing cardiovascular tissue engineering. [en línea] US National Library of Medicine. (31 de mayo de 2016), párr. 1. [Consultado: 20 de diciembre de 2017] Disponible en internet: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890312/ VUNJAK-NOVAKOVIC, Gordana; ESCHENHAGEN, Thomas y MUMMERY, Christine. Myocardial Tissue Engineering: In Vitro Models. En: Cold Spring Harbor Perspectives in Medicine. Marzo, 2014, vol. 4, no. 3. -------- Biomimetic Platforms for Human Stem Cell Research. En: Cell stem cell. Marzo, 2011, vol. 8, no. 3, p. 252–253. WANG, Bo, et al. Fabrication of Cardiac Patch with Decellularized Porcine Myocardial Scaffold and Bone Marrow Mononuclear Cells. En: J Biomed Mater Res A. Septiembre, 2010. p. 1100-1110. WU, Zhiye, et al. Treatment of Myocardial Infarction with Gene-modified Mesenchymal Stem Cells in a Small Molecular Hydrogel. En: Scientific Reports. Noviembre, 2017. YU, Hye-Sun, et al. Construction of mesenchymal stem cell–containing collagen gel with a macrochanneled polycaprolactone scaffold and the flow perfusion culturing for bone tissue engineering. En: BioResearch open access. Junio, 2012, vol. 1, no 3, p. 124-136. ZHOU, Pingzhu y PU, William. Recounting Cardiac Cellular Composition. En: Circulation Research. Febrero, 2016, p. 368.ZIMMERMANN, Wolfram, et al. Cardiac Grafting of Engineered Heart Tissue in Syngenic Rats. En: American Heart Association Journals. Septiembre, 2002. p. 151-157. |
bitstream.url.fl_str_mv |
https://dspace7-uao.metacatalogo.com/bitstreams/c4471cd0-57b5-43b7-95e6-080f515ef5e8/download https://dspace7-uao.metacatalogo.com/bitstreams/9c19bfdc-9aba-4e4b-9017-6516d566ae35/download https://dspace7-uao.metacatalogo.com/bitstreams/bec013dd-ed8d-43f5-9a8f-38e48c784f6d/download https://dspace7-uao.metacatalogo.com/bitstreams/41c1ed1d-5540-41ef-8fff-d7ce65a4c6e4/download https://dspace7-uao.metacatalogo.com/bitstreams/7438dcae-a829-4f98-ba13-7dbdf64696e1/download https://dspace7-uao.metacatalogo.com/bitstreams/7a735fea-e1f0-48a5-be3a-d2e25df60e2e/download https://dspace7-uao.metacatalogo.com/bitstreams/4ffb264a-c040-4e31-a54c-75624fc12e40/download https://dspace7-uao.metacatalogo.com/bitstreams/7b94d49b-5eae-4b88-a83b-ce80d77d5192/download |
bitstream.checksum.fl_str_mv |
7d1a391a1dd9d5d7308411a4aa507720 b07f318c60c78f4dfc687514f54b6727 affc2093a25d30e2315f2084377be296 9cac2bcae0c587860f0d25bdee291715 4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 7a0b131e4a2aa9b413766ad34fc994c5 4d1ac0a20bd7f34a86930843d6bbc120 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UAO |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260006531366912 |
spelling |
Neuta-Arciniegas, Paolaf12d6cc0eb11ddf742dadbd88cc8e3baMelo Escobar, María Isabel2dfdab02656b1cabec12e3f9b13f2190Ingeniero BiomédicoUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-05-24T17:54:40Z2019-05-24T17:54:40Z2019-02-19http://hdl.handle.net/10614/10909Currently tissue engineering strategies for myocardial regeneration after infarction are explored, including scaffolds that offer mechanical support and cell delivery into the injury. Bone marrow mesenchymal stem cells (MSC) are important candidates for cell therapy due to its ability to differentiate into cells of cardiac tissue. However, the underlying mechanisms of MSC to promote tissue regeneration are not fully understood. The present study examined the undifferentiated and differentiated MSC’s behavior on a biopolymer, to assess cell viability and cell migration. The MSC were isolated from Wistar rats aged between 4 and 8 weeks. An improved isolation protocol was executed to optimize the performance of the cells in the scaffold. Group 1 (G1) of scaffolds (750 cells/µL) and group 2 (G2) (5000 cells/µL) were studied through trypan blue exclusion test to compare cell viability during 4 weeks. To assess cell migration group 3 (G3) were cell-seeded in a homogenous distribution and group 4 (G4) in a divided distribution, both at the same cell concentration of 2250 cells/µL. Cell migration was estimated through fluorescent microscopy. The isolation and cell culture protocol resulted in optimum confluence (>90%) in passage 4 to seed all the scaffolds. The cell viability assay determined G1 live cells had an average viability percentage of 98.23 ± 3.35 and for G2 an average of 98.38 ± 1.95. Distances measured in cell migration resulted highly similar (cv<1%). MSC showed optimal behavior during culture and differentiation and should be considered as good candidates for tissue regeneration. Their viability was significantly high, and it was not affected by the concentration of cells in the scaffold, the gelation method with ammonium hydroxide, the use of PETG in 3D printing or the integration to the biopolymer. Closeness in the distances evaluated between cellular reference points for cell migration, showed that there was no significant cellular migration. This suggests that cells did not generate sufficient tensile forces to create focal adhesions in the scaffold. Despite the favorable characteristics of MSC it is important to extend the study by modifying the biopolymer and submitting cellular constructs to paracrine factors of the natural myocardial infarcted microenvironmentLa medicina regenerativa involucra el diseño de nuevos métodos para controlar y modificar los procesos normarles de reparación del tejido. Actualmente se exploran constructos de polímeros y células para crear tejido que reemplace el área afectada, especialmente en tejido cardiaco después de un infarto miocárdico. El objetivo del presente estudio consiste en evaluar el comportamiento de las células madre mesenquimales (MSC) diferenciadas y sin diferenciar, en los biodispositivos impresos para tratamiento del miocardio infartado en biomodelos, a través de mediciones de viabilidad celular, áreas de concentración y cantidad del biomaterial del andamiaje. Las MSC son extraídas de la médula ósea de ratas de 4 semanas y se conservan en condiciones de cultivo celular por varios periodos, hasta obtener suficiente confluencia para diferenciar y sembrarlas en múltiples scaffolds de un biomaterial gelificado. Posteriormente se evalúa la viabilidad celular por exposición a un colorante supravital, de los scaffolds sembrados; adicionalmente se evalúa la migración celular por microscopía de fluorescencia. Los resultados muestran que las condiciones de extracción y cultivo influyen de manera importante en la tasa de proliferación celular. Se encontró que las MSC diferenciadas y sin diferenciar presentan alta viabilidad en el biomaterial del scaffold, sin embargo, se evidencia poca movilidad de las células en el constructoPasantía en investigación (Ingeniera Biomédica)-- Universidad Autónoma de Occidente, 2019PregradoIngeniero(a) Biomédico(a)application/pdf65 páginasspaUniversidad Autónoma de OccidenteIngeniería BiomédicaDepartamento de Automática y ElectrónicaFacultad de IngenieríaDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2instname:Universidad Autónoma de Occidentereponame:Repositorio Institucional UAOAMERICAN HEART ASSOCIATION. Heart Disease and Stroke Statistics 2017: At-a-glance. [en línea] USA: 2017. [Consultado: 17 de octubre de 2017] Disponible en internet: https://healthmetrics.heart.org/wp-content/uploads/2017/06/Heart-Disease-and-Stroke-Statistics-2017-ucm_491265.pdf ANDERSON, Jeffrey y MORROW, David. Acute Myocardial Infarction. En: N Engl J Med. 2017, p. 2053-2064. BARINOV, E.F. General Histology. 4 ed. Ucrania: Donetsk, 2011. p. 83. BOLOOKI, Michael y ASKARI, Arman. Acute Myocardial Infarction. [En línea] Cleveland, USA: 2010. [Consultado: 15 de diciembre de 2017] Disponible en internet:http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/cardiology/acute-myocardial-infarction/ BRADE, Thomas, et al. Embryonic Heart Progenitors and Cardiogenesis. En: Cold Spring Harbor Perspectives in Medicine. 2013. BUJA, Maximilian, et al. Apoptosis and necrosis: basic types and mechanisms of cell death. En: Arch Pathol Lab Med. 1993, p. 1208–1214. CARRIER, Rebecca, et al. Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. En: Biotechnology and bioengineering. 1999, p. 580-589. CARVALHO, Juliana y BRAGA, Vinicius, et al. Priming mesenchymal stem cells boosts stem cell therapy to treat myocardial infarction. En: Journal of cellular and molecular medicine, Marzo, 2013, p 617–625. CECCALDI, Caroline y GIROD, Sophie. Alginate Scaffolds for Mesenchymal Stem Cell Cardiac Therapy: Influence of Alginate Composition. En: Cell Transplantation, 2012, vol. 21, p. 1969-1984.CHAN, Barbara; et al. Scaffolding in Tissue Engineering: General Approaches and Tissue-Specific Considerations. En: European Spine Journal, Enero, 2008, p 467–479. CHASE, Lucas; VEMURI, Mohan. Mesenchymal Stem Cell Therapy. New York: Springer, 2013. P 15-16. CHONG, James, et al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. En: Cell Stem Cell. Diciembre, 2011, vol. 9, no. 6, p. 527-540. COOK, Jeffrey, et al. Microporosity of the substratum regulates differentiation of MDCK cells in vitro. En: In Vitro Cell Dev Biol. Octubre, 1989, vol. 25, no. 10, p. 914-922. DO, Anh-Vu, et al. 3D Printing of scaffolds for tissue regeneration applications. En: Adv Healthc Mater. Agosto, 2015, p. 1742-1762. DOMINICI, Massimo, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. En: The International Society for Cellular Therapy position statement. 2006, vol. 8, no. 4, p. 315-317. FERRARO, Francesca; LO CELSO, Cristina y SCADDEN, David. Adult stem cells and their niches. En: Advances in experimental medicine and biology. 2010, p. 155–168. FUKUHARA, Shinya, et al. Bone Marrow Cell-Seeded Biodegradable Polymeric Scaffold Enhances Angiogenesis and Improves Function of the Infarcted Heart. En: Circulation Journal. Julio, 2005. p. 850-857. GALINDO, Jorge. Guía de práctica clínica para pacientes con diagnóstico de síndrome coronario agudo. En: Revista Colombiana de Cardiología. Diciembre, 2013, vol. 20, no. 2, p. 46. GRECO, Steven y RAMESHWAR, Pranela. Microenvironmental considerations in the application of human mesenchymal stem cells in regenerative therapies. En: Biologics. Diciembre, 2008, vol. 2, no. 4, p. 699-705.GULATI, Ankur, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. En: JAMA, 2013, p 309:896–908. doi: 10.1001/jama.2013.1363 HATZISTERGOS, Konstantions, et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. En: Circulation research, 2010. p 913-922. KARANTALIS, Vasileios. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery. En: Circ Res. Abril, 2014, vol. 114, no. 8, p.1302-1310. -------- Use of Mesenchymal Stem Cells for Therapy of Cardiac Disease. En: Circulation research. Enero, 2015, p. 1413–1430. LEOR, Jonathan; AMSALEM, Yoram y COHEN, Smadar. Cells, scaffolds, and molecules for myocardial tissue engineering. En: Pharmacology & therapeutics, 2005, vol. 105, no 2, p. 151-163. MALLIARAS, Konstantinos y MARBAN, Eduardo. Cardiac cell therapy: where we've been, where we are, and where we should be headed. En: British Medical Bulletin. Junio, 2011, vol. 98, no. 1, p 161–185. MENG, Xuan, et al. Stem Cells in a Three-Dimensional Scaffold Environment. [En línea] NC, USA. [Consulado: 13 de enero de 2018] En: SpringerPlus 3. 2014. MOLINA, Ezequiel, et al. Reverse remodeling is associated with changes in extracellular matrix proteases and tissue inhibitors after mesenchymal stem cell (MSC) treatment of pressure overload hypertrophy. En: J Tissue Eng Regen Med. Febrero, 2009, vol. 3, no. 2, p. 85-91. PELEKANOS, Rebecca, et al. Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities. En: Stem Cell Res., Enero, 2012, p. 58-73.PITTENGER, Mark. Mesenchymal Stem Cells for Cardiac Therapy. En: Stem Cells and Myocardial Regeneration. New Jersey: Human Press Inc, 2007. p 29-37. -------- Multilineage potential of adult human mesenchymal stem cells. En: Science. Abril, 1999, p.143-147. PORTALSKA, Karolina Janeczek, et al. Endothelial differentiation of mesenchymal stromal cells. En: PloS one, 2012, vol. 7, no 10, p. 842. PSALTIS, Peter, et al. Concise review: mesenchymal stromal cells: potential for cardiovascular repair. En: Stem Cells. Septiembre, 2008, vol. 26, no. 9, p. 2201-2210. QUEVEDO, Henry, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. En: PNAS. Agosto, 2009, vol. 106, no. 33, p. 14022-14027. RAMIREZ-RAMIREZ, Federico. Fisiología cardiaca. En: Revista Médica MD. Septiembre, 2009, vol. 1, no. 3. p. 2. REIMER, KA; IDEREK, RE. Myocardial ischemia and infarction: anatomic and biochemical substrates for ischemic cell death and ventricular arrhythmias. En: Human Pathol. 1987, vol.18, p. 462–475. SANDHAANAM, Sylvestar, et al. Mesenchymal stem cells (MSC): Identification, proliferation and differentiatiom – A review article. En: Peer J. Diciembre, 2013. SCHITTINI, Andressa. Human cardiac explant-conditioned medium: soluble factors and cardiomyogenic effect on mesenchymal stem cells. En: Exp Biol Med (Maywood). Agosto, 2010 Aug, p. 1015-1024. SCHLUTER, Klaus. Cardiomyocytes – Active Players in Cardiac Disease. Alemania: Springer, 2016. p. 4. SECRETARIA DE SALUD PUBLICA MUNICIPAL. Salud en Cifras 2011. Municipio de Cali: 2012. p. 119.STEFFENS, Daniela y REZENDE, Rodrigo. 3D-printed scaffolds for the cultivation of mesenchymal stem cells. En: IFAC MCPL . Septiembre, 2013, p. 361-366. TALMAN, Virpi y RUSKOAHO, Heikki. Cardiac Fibrosis in Myocardial Infarction—from Repair and Remodeling to Regeneration. En: Cell and Tissue Research, Enero, 2016, p 563–581. TIMMERS, Leo y KIANG, Sai, et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. En: Stem Cell Research, Junio, 2008, p. 129-137. TRUSKEY, George. Advancing cardiovascular tissue engineering. [en línea] US National Library of Medicine. (31 de mayo de 2016), párr. 1. [Consultado: 20 de diciembre de 2017] Disponible en internet: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890312/ VUNJAK-NOVAKOVIC, Gordana; ESCHENHAGEN, Thomas y MUMMERY, Christine. Myocardial Tissue Engineering: In Vitro Models. En: Cold Spring Harbor Perspectives in Medicine. Marzo, 2014, vol. 4, no. 3. -------- Biomimetic Platforms for Human Stem Cell Research. En: Cell stem cell. Marzo, 2011, vol. 8, no. 3, p. 252–253. WANG, Bo, et al. Fabrication of Cardiac Patch with Decellularized Porcine Myocardial Scaffold and Bone Marrow Mononuclear Cells. En: J Biomed Mater Res A. Septiembre, 2010. p. 1100-1110. WU, Zhiye, et al. Treatment of Myocardial Infarction with Gene-modified Mesenchymal Stem Cells in a Small Molecular Hydrogel. En: Scientific Reports. Noviembre, 2017. YU, Hye-Sun, et al. Construction of mesenchymal stem cell–containing collagen gel with a macrochanneled polycaprolactone scaffold and the flow perfusion culturing for bone tissue engineering. En: BioResearch open access. Junio, 2012, vol. 1, no 3, p. 124-136. ZHOU, Pingzhu y PU, William. Recounting Cardiac Cellular Composition. En: Circulation Research. Febrero, 2016, p. 368.ZIMMERMANN, Wolfram, et al. Cardiac Grafting of Engineered Heart Tissue in Syngenic Rats. En: American Heart Association Journals. Septiembre, 2002. p. 151-157.Ingeniería BiomédicaIngeniería de tejidosScaffoldInfarto del miocardioCélulas madre mesenquimalesBiomaterialViabilidad celularMigración celularMedicina regenerativaExtracción, cultivo y caracterización de células mesenquimales de médula ósea en biodispositivos para la regeneración del miocardio infartadoCultivo de células madre en biodispositivos para regeneración del miocardio infartadoTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85PublicationTEXTT08447.pdf.txtT08447.pdf.txtExtracted texttext/plain108840https://dspace7-uao.metacatalogo.com/bitstreams/c4471cd0-57b5-43b7-95e6-080f515ef5e8/download7d1a391a1dd9d5d7308411a4aa507720MD57TA8447.pdf.txtTA8447.pdf.txtExtracted texttext/plain4152https://dspace7-uao.metacatalogo.com/bitstreams/9c19bfdc-9aba-4e4b-9017-6516d566ae35/downloadb07f318c60c78f4dfc687514f54b6727MD59THUMBNAILT08447.pdf.jpgT08447.pdf.jpgGenerated Thumbnailimage/jpeg7028https://dspace7-uao.metacatalogo.com/bitstreams/bec013dd-ed8d-43f5-9a8f-38e48c784f6d/downloadaffc2093a25d30e2315f2084377be296MD58TA8447.pdf.jpgTA8447.pdf.jpgGenerated Thumbnailimage/jpeg13281https://dspace7-uao.metacatalogo.com/bitstreams/41c1ed1d-5540-41ef-8fff-d7ce65a4c6e4/download9cac2bcae0c587860f0d25bdee291715MD510CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://dspace7-uao.metacatalogo.com/bitstreams/7438dcae-a829-4f98-ba13-7dbdf64696e1/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/7a735fea-e1f0-48a5-be3a-d2e25df60e2e/download20b5ba22b1117f71589c7318baa2c560MD54ORIGINALT08447.pdfT08447.pdfapplication/pdf1767023https://dspace7-uao.metacatalogo.com/bitstreams/4ffb264a-c040-4e31-a54c-75624fc12e40/download7a0b131e4a2aa9b413766ad34fc994c5MD55TA8447.pdfTA8447.pdfapplication/pdf1567902https://dspace7-uao.metacatalogo.com/bitstreams/7b94d49b-5eae-4b88-a83b-ce80d77d5192/download4d1ac0a20bd7f34a86930843d6bbc120MD5610614/10909oai:dspace7-uao.metacatalogo.com:10614/109092024-01-19 16:36:32.298https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |