Reduction of the computational burden of POD models with polynomial nonlinearities
This paper presents a technique for making the evaluation of POD models with polynomial nonlinearities less intensive. Regularly, Proper Orthogonal Decomposition (POD) and Galerkin projection have been employed to reduce the highdimensionality of the discretized systems used to approximate Partial D...
- Autores:
-
Agudelo Mañozca, Oscar Mauricio
Espinosa, Jairo Jose
De Moor, Bart
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2010
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/12001
- Acceso en línea:
- http://red.uao.edu.co//handle/10614/12001
- Palabra clave:
- Computational modeling
Polynomials
Mathematical model
Reduced order systems
Approximation methods
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_6d1b7e31effb16f4448b32d375023dbe |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/12001 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Reduction of the computational burden of POD models with polynomial nonlinearities |
title |
Reduction of the computational burden of POD models with polynomial nonlinearities |
spellingShingle |
Reduction of the computational burden of POD models with polynomial nonlinearities Computational modeling Polynomials Mathematical model Reduced order systems Approximation methods |
title_short |
Reduction of the computational burden of POD models with polynomial nonlinearities |
title_full |
Reduction of the computational burden of POD models with polynomial nonlinearities |
title_fullStr |
Reduction of the computational burden of POD models with polynomial nonlinearities |
title_full_unstemmed |
Reduction of the computational burden of POD models with polynomial nonlinearities |
title_sort |
Reduction of the computational burden of POD models with polynomial nonlinearities |
dc.creator.fl_str_mv |
Agudelo Mañozca, Oscar Mauricio Espinosa, Jairo Jose De Moor, Bart |
dc.contributor.author.none.fl_str_mv |
Agudelo Mañozca, Oscar Mauricio Espinosa, Jairo Jose De Moor, Bart |
dc.subject.proposal.eng.fl_str_mv |
Computational modeling Polynomials Mathematical model Reduced order systems Approximation methods |
topic |
Computational modeling Polynomials Mathematical model Reduced order systems Approximation methods |
description |
This paper presents a technique for making the evaluation of POD models with polynomial nonlinearities less intensive. Regularly, Proper Orthogonal Decomposition (POD) and Galerkin projection have been employed to reduce the highdimensionality of the discretized systems used to approximate Partial Differential Equations (PDEs). Although a large modelorder reduction can be obtained with these techniques, the computational saving during simulation is small when we have to deal with nonlinear or Linear Time Variant (LTV) models. In this paper, we present a method that exploits the polynomial nature of POD models derived from input-affine high-dimensional systems with polynomial nonlinearities, for generating compact and efficient representations that can be evaluated much faster. Furthermore, we show how the use of the feature selection techniques can lead to a significant computational saving |
publishDate |
2010 |
dc.date.issued.none.fl_str_mv |
2010-12 |
dc.date.accessioned.none.fl_str_mv |
2020-02-26T20:45:06Z |
dc.date.available.none.fl_str_mv |
2020-02-26T20:45:06Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.spa.fl_str_mv |
http://red.uao.edu.co//handle/10614/12001 |
url |
http://red.uao.edu.co//handle/10614/12001 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.eng.fl_str_mv |
EEE Conference on Decision and Control. (febrero 2011); páginas 3457-3462 |
dc.relation.citationendpage.none.fl_str_mv |
3462 |
dc.relation.citationstartpage.none.fl_str_mv |
3457 |
dc.relation.cites.spa.fl_str_mv |
Agudelo, O. M., Espinosa, J. J., De Moor, B (2010). Reduction of the computational burden of POD models with polynomial nonlinearities. 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 2010. 3457-3462. http://red.uao.edu.co//handle/10614/12001 |
dc.relation.ispartofbook.eng.fl_str_mv |
49th IEEE Conference on Decision and Control (CDC) |
dc.relation.references.none.fl_str_mv |
P. Astrid, "Reduction of process simulation models: a proper orthogonal decomposition approach", November 2004 P. Astrid, S. Weiland, K. Willcox and T. Backs, "Missing point estimation in models described by proper orthogonal decomposition", IEEE Transactions on Automatic Control, vol. 53, no. 10, pp. 2237-2251, November 2008. P. Astrid, "Fast reduced order modeling technique for large scale LTV systems", Proceedings of American Control Conference 2004, vol. 1, pp. 762-767, 2004. O. M. Agudelo, J. J. Espinosa and B. DeMoor, "Acceleration of nonlinear POD models: a neural network approach", Proceedings of the European Control Conference 2009 (ECC'09), pp. 1547-1552, August 2009. A. Yousefi, B. Lohmann, J. Lienemann and J. G. Korvink, "Nonlinear heat tranfer modelling and reduction", Proceedings of the 12th IEEE Mediterranean Conference on Control and Automation (MED '04), June 2004 L. Huisman, "Control of glass melting processes based on reduced CFD models", March 2005. M. M. Gupta, L. Jin and N. Homma, "Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory" in , Wiley-IEEE press, April 2003. R. Kohavi and H. John, "Wrappers for feature subset selection", Artificial Intelligence, vol. 97, no. 1–2, pp. 273-324, 1997. L. F. Shampine and M. E. Hosea, "Analysis and implementation of TR-BDF2", Applied Numerical Mathematics, vol. 20, pp. 21-37, 1996. |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
7 páginas |
dc.publisher.eng.fl_str_mv |
IEEE |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/7a50fbc5-9759-40ff-8113-ef1f64497c8f/download https://red.uao.edu.co/bitstreams/e0c8ba22-92f2-4450-9ada-a55360060812/download https://red.uao.edu.co/bitstreams/5d47401c-a971-4ce8-8de1-41464c739e64/download https://red.uao.edu.co/bitstreams/72af905e-402d-4b16-9233-5a68d38a8754/download https://red.uao.edu.co/bitstreams/20b20738-c3ae-4058-977d-0169d326ac15/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 4460e5956bc1d1639be9ae6146a50347 3defaf2c27150f02b039e6641a0ba70c fee83050363d191a95c131baef112975 852d3ad840dbf2246d9ed8bda00dca5b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259840198901760 |
spelling |
Agudelo Mañozca, Oscar MauricioEspinosa, Jairo Jose1ff246337dc450de715898b4b11355e6De Moor, Bart8e81f4d9266382c6a21478056b46d2522020-02-26T20:45:06Z2020-02-26T20:45:06Z2010-12http://red.uao.edu.co//handle/10614/12001This paper presents a technique for making the evaluation of POD models with polynomial nonlinearities less intensive. Regularly, Proper Orthogonal Decomposition (POD) and Galerkin projection have been employed to reduce the highdimensionality of the discretized systems used to approximate Partial Differential Equations (PDEs). Although a large modelorder reduction can be obtained with these techniques, the computational saving during simulation is small when we have to deal with nonlinear or Linear Time Variant (LTV) models. In this paper, we present a method that exploits the polynomial nature of POD models derived from input-affine high-dimensional systems with polynomial nonlinearities, for generating compact and efficient representations that can be evaluated much faster. Furthermore, we show how the use of the feature selection techniques can lead to a significant computational savingapplication/pdf7 páginasengIEEEEEE Conference on Decision and Control. (febrero 2011); páginas 3457-346234623457Agudelo, O. M., Espinosa, J. J., De Moor, B (2010). Reduction of the computational burden of POD models with polynomial nonlinearities. 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 2010. 3457-3462. http://red.uao.edu.co//handle/10614/1200149th IEEE Conference on Decision and Control (CDC)P. Astrid, "Reduction of process simulation models: a proper orthogonal decomposition approach", November 2004P. Astrid, S. Weiland, K. Willcox and T. Backs, "Missing point estimation in models described by proper orthogonal decomposition", IEEE Transactions on Automatic Control, vol. 53, no. 10, pp. 2237-2251, November 2008.P. Astrid, "Fast reduced order modeling technique for large scale LTV systems", Proceedings of American Control Conference 2004, vol. 1, pp. 762-767, 2004.O. M. Agudelo, J. J. Espinosa and B. DeMoor, "Acceleration of nonlinear POD models: a neural network approach", Proceedings of the European Control Conference 2009 (ECC'09), pp. 1547-1552, August 2009.A. Yousefi, B. Lohmann, J. Lienemann and J. G. Korvink, "Nonlinear heat tranfer modelling and reduction", Proceedings of the 12th IEEE Mediterranean Conference on Control and Automation (MED '04), June 2004L. Huisman, "Control of glass melting processes based on reduced CFD models", March 2005.M. M. Gupta, L. Jin and N. Homma, "Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory" in , Wiley-IEEE press, April 2003.R. Kohavi and H. John, "Wrappers for feature subset selection", Artificial Intelligence, vol. 97, no. 1–2, pp. 273-324, 1997.L. F. Shampine and M. E. Hosea, "Analysis and implementation of TR-BDF2", Applied Numerical Mathematics, vol. 20, pp. 21-37, 1996.Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Reduction of the computational burden of POD models with polynomial nonlinearitiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Computational modelingPolynomialsMathematical modelReduced order systemsApproximation methodsPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/7a50fbc5-9759-40ff-8113-ef1f64497c8f/download20b5ba22b1117f71589c7318baa2c560MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/e0c8ba22-92f2-4450-9ada-a55360060812/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALReductionofthecomputationalburdenofPODmodelswithpolynomialnonlinearities (1).pdfReductionofthecomputationalburdenofPODmodelswithpolynomialnonlinearities (1).pdfapplication/pdf340858https://red.uao.edu.co/bitstreams/5d47401c-a971-4ce8-8de1-41464c739e64/download3defaf2c27150f02b039e6641a0ba70cMD54TEXTReductionofthecomputationalburdenofPODmodelswithpolynomialnonlinearities (1).pdf.txtReductionofthecomputationalburdenofPODmodelswithpolynomialnonlinearities (1).pdf.txtExtracted texttext/plain32660https://red.uao.edu.co/bitstreams/72af905e-402d-4b16-9233-5a68d38a8754/downloadfee83050363d191a95c131baef112975MD55THUMBNAILReductionofthecomputationalburdenofPODmodelswithpolynomialnonlinearities (1).pdf.jpgReductionofthecomputationalburdenofPODmodelswithpolynomialnonlinearities (1).pdf.jpgGenerated Thumbnailimage/jpeg6370https://red.uao.edu.co/bitstreams/20b20738-c3ae-4058-977d-0169d326ac15/download852d3ad840dbf2246d9ed8bda00dca5bMD5610614/12001oai:red.uao.edu.co:10614/120012024-03-19 09:37:13.838https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |