Reduction of the computational burden of POD models with polynomial nonlinearities

This paper presents a technique for making the evaluation of POD models with polynomial nonlinearities less intensive. Regularly, Proper Orthogonal Decomposition (POD) and Galerkin projection have been employed to reduce the highdimensionality of the discretized systems used to approximate Partial D...

Full description

Autores:
Agudelo Mañozca, Oscar Mauricio
Espinosa, Jairo Jose
De Moor, Bart
Tipo de recurso:
Article of journal
Fecha de publicación:
2010
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/12001
Acceso en línea:
http://red.uao.edu.co//handle/10614/12001
Palabra clave:
Computational modeling
Polynomials
Mathematical model
Reduced order systems
Approximation methods
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_6d1b7e31effb16f4448b32d375023dbe
oai_identifier_str oai:red.uao.edu.co:10614/12001
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Reduction of the computational burden of POD models with polynomial nonlinearities
title Reduction of the computational burden of POD models with polynomial nonlinearities
spellingShingle Reduction of the computational burden of POD models with polynomial nonlinearities
Computational modeling
Polynomials
Mathematical model
Reduced order systems
Approximation methods
title_short Reduction of the computational burden of POD models with polynomial nonlinearities
title_full Reduction of the computational burden of POD models with polynomial nonlinearities
title_fullStr Reduction of the computational burden of POD models with polynomial nonlinearities
title_full_unstemmed Reduction of the computational burden of POD models with polynomial nonlinearities
title_sort Reduction of the computational burden of POD models with polynomial nonlinearities
dc.creator.fl_str_mv Agudelo Mañozca, Oscar Mauricio
Espinosa, Jairo Jose
De Moor, Bart
dc.contributor.author.none.fl_str_mv Agudelo Mañozca, Oscar Mauricio
Espinosa, Jairo Jose
De Moor, Bart
dc.subject.proposal.eng.fl_str_mv Computational modeling
Polynomials
Mathematical model
Reduced order systems
Approximation methods
topic Computational modeling
Polynomials
Mathematical model
Reduced order systems
Approximation methods
description This paper presents a technique for making the evaluation of POD models with polynomial nonlinearities less intensive. Regularly, Proper Orthogonal Decomposition (POD) and Galerkin projection have been employed to reduce the highdimensionality of the discretized systems used to approximate Partial Differential Equations (PDEs). Although a large modelorder reduction can be obtained with these techniques, the computational saving during simulation is small when we have to deal with nonlinear or Linear Time Variant (LTV) models. In this paper, we present a method that exploits the polynomial nature of POD models derived from input-affine high-dimensional systems with polynomial nonlinearities, for generating compact and efficient representations that can be evaluated much faster. Furthermore, we show how the use of the feature selection techniques can lead to a significant computational saving
publishDate 2010
dc.date.issued.none.fl_str_mv 2010-12
dc.date.accessioned.none.fl_str_mv 2020-02-26T20:45:06Z
dc.date.available.none.fl_str_mv 2020-02-26T20:45:06Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.spa.fl_str_mv http://red.uao.edu.co//handle/10614/12001
url http://red.uao.edu.co//handle/10614/12001
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.eng.fl_str_mv EEE Conference on Decision and Control. (febrero 2011); páginas 3457-3462
dc.relation.citationendpage.none.fl_str_mv 3462
dc.relation.citationstartpage.none.fl_str_mv 3457
dc.relation.cites.spa.fl_str_mv Agudelo, O. M., Espinosa, J. J., De Moor, B (2010). Reduction of the computational burden of POD models with polynomial nonlinearities. 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 2010. 3457-3462. http://red.uao.edu.co//handle/10614/12001
dc.relation.ispartofbook.eng.fl_str_mv 49th IEEE Conference on Decision and Control (CDC)
dc.relation.references.none.fl_str_mv P. Astrid, "Reduction of process simulation models: a proper orthogonal decomposition approach", November 2004
P. Astrid, S. Weiland, K. Willcox and T. Backs, "Missing point estimation in models described by proper orthogonal decomposition", IEEE Transactions on Automatic Control, vol. 53, no. 10, pp. 2237-2251, November 2008.
P. Astrid, "Fast reduced order modeling technique for large scale LTV systems", Proceedings of American Control Conference 2004, vol. 1, pp. 762-767, 2004.
O. M. Agudelo, J. J. Espinosa and B. DeMoor, "Acceleration of nonlinear POD models: a neural network approach", Proceedings of the European Control Conference 2009 (ECC'09), pp. 1547-1552, August 2009.
A. Yousefi, B. Lohmann, J. Lienemann and J. G. Korvink, "Nonlinear heat tranfer modelling and reduction", Proceedings of the 12th IEEE Mediterranean Conference on Control and Automation (MED '04), June 2004
L. Huisman, "Control of glass melting processes based on reduced CFD models", March 2005.
M. M. Gupta, L. Jin and N. Homma, "Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory" in , Wiley-IEEE press, April 2003.
R. Kohavi and H. John, "Wrappers for feature subset selection", Artificial Intelligence, vol. 97, no. 1–2, pp. 273-324, 1997.
L. F. Shampine and M. E. Hosea, "Analysis and implementation of TR-BDF2", Applied Numerical Mathematics, vol. 20, pp. 21-37, 1996.
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 7 páginas
dc.publisher.eng.fl_str_mv IEEE
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/7a50fbc5-9759-40ff-8113-ef1f64497c8f/download
https://red.uao.edu.co/bitstreams/e0c8ba22-92f2-4450-9ada-a55360060812/download
https://red.uao.edu.co/bitstreams/5d47401c-a971-4ce8-8de1-41464c739e64/download
https://red.uao.edu.co/bitstreams/72af905e-402d-4b16-9233-5a68d38a8754/download
https://red.uao.edu.co/bitstreams/20b20738-c3ae-4058-977d-0169d326ac15/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
4460e5956bc1d1639be9ae6146a50347
3defaf2c27150f02b039e6641a0ba70c
fee83050363d191a95c131baef112975
852d3ad840dbf2246d9ed8bda00dca5b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259840198901760
spelling Agudelo Mañozca, Oscar MauricioEspinosa, Jairo Jose1ff246337dc450de715898b4b11355e6De Moor, Bart8e81f4d9266382c6a21478056b46d2522020-02-26T20:45:06Z2020-02-26T20:45:06Z2010-12http://red.uao.edu.co//handle/10614/12001This paper presents a technique for making the evaluation of POD models with polynomial nonlinearities less intensive. Regularly, Proper Orthogonal Decomposition (POD) and Galerkin projection have been employed to reduce the highdimensionality of the discretized systems used to approximate Partial Differential Equations (PDEs). Although a large modelorder reduction can be obtained with these techniques, the computational saving during simulation is small when we have to deal with nonlinear or Linear Time Variant (LTV) models. In this paper, we present a method that exploits the polynomial nature of POD models derived from input-affine high-dimensional systems with polynomial nonlinearities, for generating compact and efficient representations that can be evaluated much faster. Furthermore, we show how the use of the feature selection techniques can lead to a significant computational savingapplication/pdf7 páginasengIEEEEEE Conference on Decision and Control. (febrero 2011); páginas 3457-346234623457Agudelo, O. M., Espinosa, J. J., De Moor, B (2010). Reduction of the computational burden of POD models with polynomial nonlinearities. 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 2010. 3457-3462. http://red.uao.edu.co//handle/10614/1200149th IEEE Conference on Decision and Control (CDC)P. Astrid, "Reduction of process simulation models: a proper orthogonal decomposition approach", November 2004P. Astrid, S. Weiland, K. Willcox and T. Backs, "Missing point estimation in models described by proper orthogonal decomposition", IEEE Transactions on Automatic Control, vol. 53, no. 10, pp. 2237-2251, November 2008.P. Astrid, "Fast reduced order modeling technique for large scale LTV systems", Proceedings of American Control Conference 2004, vol. 1, pp. 762-767, 2004.O. M. Agudelo, J. J. Espinosa and B. DeMoor, "Acceleration of nonlinear POD models: a neural network approach", Proceedings of the European Control Conference 2009 (ECC'09), pp. 1547-1552, August 2009.A. Yousefi, B. Lohmann, J. Lienemann and J. G. Korvink, "Nonlinear heat tranfer modelling and reduction", Proceedings of the 12th IEEE Mediterranean Conference on Control and Automation (MED '04), June 2004L. Huisman, "Control of glass melting processes based on reduced CFD models", March 2005.M. M. Gupta, L. Jin and N. Homma, "Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory" in , Wiley-IEEE press, April 2003.R. Kohavi and H. John, "Wrappers for feature subset selection", Artificial Intelligence, vol. 97, no. 1–2, pp. 273-324, 1997.L. F. Shampine and M. E. Hosea, "Analysis and implementation of TR-BDF2", Applied Numerical Mathematics, vol. 20, pp. 21-37, 1996.Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Reduction of the computational burden of POD models with polynomial nonlinearitiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Computational modelingPolynomialsMathematical modelReduced order systemsApproximation methodsPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/7a50fbc5-9759-40ff-8113-ef1f64497c8f/download20b5ba22b1117f71589c7318baa2c560MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/e0c8ba22-92f2-4450-9ada-a55360060812/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALReductionofthecomputationalburdenofPODmodelswithpolynomialnonlinearities (1).pdfReductionofthecomputationalburdenofPODmodelswithpolynomialnonlinearities (1).pdfapplication/pdf340858https://red.uao.edu.co/bitstreams/5d47401c-a971-4ce8-8de1-41464c739e64/download3defaf2c27150f02b039e6641a0ba70cMD54TEXTReductionofthecomputationalburdenofPODmodelswithpolynomialnonlinearities (1).pdf.txtReductionofthecomputationalburdenofPODmodelswithpolynomialnonlinearities (1).pdf.txtExtracted texttext/plain32660https://red.uao.edu.co/bitstreams/72af905e-402d-4b16-9233-5a68d38a8754/downloadfee83050363d191a95c131baef112975MD55THUMBNAILReductionofthecomputationalburdenofPODmodelswithpolynomialnonlinearities (1).pdf.jpgReductionofthecomputationalburdenofPODmodelswithpolynomialnonlinearities (1).pdf.jpgGenerated Thumbnailimage/jpeg6370https://red.uao.edu.co/bitstreams/20b20738-c3ae-4058-977d-0169d326ac15/download852d3ad840dbf2246d9ed8bda00dca5bMD5610614/12001oai:red.uao.edu.co:10614/120012024-03-19 09:37:13.838https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K