Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles

By using the transfer matrix formalism, in this work it is presented the study of the optical properties of 1D photonic structures constructed with M periods of bilayers of dielectric material and slabs with gradient refractive index (GRIN) profile of two types: linear and quadratic. By varying the...

Full description

Autores:
Sánchez Cano, Robert
Calvo Velasco, Danny Manuel
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13565
Acceso en línea:
https://hdl.handle.net/10614/13565
Palabra clave:
Fotónica
Photonics
Gradient refractive index
Photonic system
Linear index profile
Quadratic index profile
Rights
openAccess
License
Derechos reservados - Elsevier, 2021
id REPOUAO2_6cd222d6bacbd36a0cc2186a65ee1133
oai_identifier_str oai:red.uao.edu.co:10614/13565
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles
title Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles
spellingShingle Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles
Fotónica
Photonics
Gradient refractive index
Photonic system
Linear index profile
Quadratic index profile
title_short Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles
title_full Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles
title_fullStr Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles
title_full_unstemmed Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles
title_sort Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles
dc.creator.fl_str_mv Sánchez Cano, Robert
Calvo Velasco, Danny Manuel
dc.contributor.author.none.fl_str_mv Sánchez Cano, Robert
Calvo Velasco, Danny Manuel
dc.contributor.corporatename.spa.fl_str_mv Elsevier
dc.subject.armarc.spa.fl_str_mv Fotónica
topic Fotónica
Photonics
Gradient refractive index
Photonic system
Linear index profile
Quadratic index profile
dc.subject.armarc.eng.fl_str_mv Photonics
dc.subject.proposal.eng.fl_str_mv Gradient refractive index
Photonic system
Linear index profile
Quadratic index profile
description By using the transfer matrix formalism, in this work it is presented the study of the optical properties of 1D photonic structures constructed with M periods of bilayers of dielectric material and slabs with gradient refractive index (GRIN) profile of two types: linear and quadratic. By varying the profile parameters, preserving the average value of the refractive index for the GRIN slab, the results show the formation of new photonic band gaps whose bandwidths depends on the slope and the curvature of the linear and quadratic profile respectively. Also, it can be observed the formation of omnidirectional photonic bandgaps for the TE and TM polarizations, one for the linear profile and three for the quadratic one, for which their bandwidths depend linearly on the slope and the curvature of the GRIN profiles. It is expected that the presented results could be useful in the construction of optical devices based in their optical response under oblique incidence
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12
dc.date.accessioned.none.fl_str_mv 2022-01-21T18:39:01Z
dc.date.available.none.fl_str_mv 2022-01-21T18:39:01Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 15671739
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13565
identifier_str_mv 15671739
url https://hdl.handle.net/10614/13565
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 6
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.cites.eng.fl_str_mv Calvo Velasco, D.M., Sánchez Cano, R. (2021). Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles. Current Applied Physics, pp.1-6. https://doi.org/10.1016/j.cap.2021.12.013
dc.relation.ispartofjournal.eng.fl_str_mv Current Applied Physics
dc.relation.references.none.fl_str_mv [1] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58 (May 1987) 2059–2062.
[2] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58 (Jun 1987) 2486–2489.
[3] L.-M. Zhao, Y.-S. Zhou, A.-H. Wang, Facile way to obtain multiple interface modes in a photonic crystal heterostructure, Opt. Lett. 43 (Jul 2018) 3216–3219.
[4] M. Bellingeri, A. Chiasera, I. Kriegel, F. Scotognella, Optical properties of periodic, quasi-periodic, and disordered one-dimensional photonic structures, Opt. Mater. 72 (2017) 403–421.
[5] F. Wang, Y.Z. Cheng, X. Wang, D. Qi, H. Luo, R.Z. Gong, Effective modulation of the photonic band gap based on Ge/ZnS one-dimensional photonic crystal at the infrared band, Opt. Mater. 75 (2018) 373–378.
[6] A.H. Aly, D. Mohamed, The optical properties of metamaterial-superconductor photonic band gap with/without defect layer, J. Supercond. Nov. Magnetism 32 (2019) 1897–1902.
[7] M. Bellingeri, S. Longhi, F. Scotognella, Transmission of light in crystals with different homogeneity: using shannon index in photonic media, J. Eur. Opt. Soc. Rapid Publ. 5 (2010), 0.
[8] F. Wu, G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, H. Chen, Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials, Phys. Rev. Appl. 10 (Dec 2018), 064022.
[9] B. Xu, D. Zhang, X. Zeng, Y. Wang, Z. Dong, Transmission characteristics of photonic crystal waveguide with array square Al2O3 rods lattice in millimeter wave, Opt. Mater. 97 (2019), 109364.
[10] P. Russell, Photonic crystal fibers, Science 299 (5605) (2003) 358–362.
[11] M. De, T.K. Gangopadhyay, V.K. Singh, Prospects of photonic crystal fiber as physical sensor: an overview, Sensors 19 (3) (2019).
[12] T.-M. Luis, G. Amadeu, G.-R. Jaime, Slow light bimodal interferometry in onedimensional photonic crystal waveguides, Light Sci. Appl. 10 (2021).
[13] D. Calvo-Velasco, N. Porras-Montenegro, Optical properties of one dimensional metal-air graded system, Phys. E Low-dimens. Syst. Nanostruct. 105 (2019) 224–230.
[14] D. Qi, X. Wang, Y. Cheng, F. Chen, L. Liu, R. Gong, Quasi-periodic Photonic Crystal Fabry–Perot Optical Filter Based on Si/SiO2 for Visible-Laser Spectral Selectivity, vol. 51, may 2018, 225103.
[15] F. Wang, Y.Z. Cheng, X. Wang, Y.N. Zhang, Y. Nie, R.Z. Gong, Narrow band filter at 1550 nm based on quasi-one-dimensional photonic crystal with a mirrorsymmetric heterostructure, Materials 11 (7) (2018).
[16] F. Wang, Y.Z. Cheng, X. Wang, D. Qi, H. Luo, R.Z. Gong, Effective modulation of the photonic band gap based on Ge/ZnS one-dimensional photonic crystal at the infrared band, Opt. Mater. 75 (2018) 373–378.
[17] G.V. Morozov, D.W.L. Sprung, J. Martorell, One-dimensional photonic crystals with a sawtooth refractive index: another exactly solvable potential, New J. Phys. 15 (oct 2013), 103009.
[18] B.K. Singh, P. Kumar, P.C. Pandey, Tunable photonic band-gaps in one-dimensional photonic crystals containing linear graded index material, Appl. Phys. B 117 (3) (2014) 947–956.
[19] B.K. Singh, M.K. Chaudhari, P.C. Pandey, Photonic and omnidirectional band gap engineering in one-dimensional photonic crystals consisting of linearly graded index material, J. Lightwave Technol. 34 (10) (2016) 2431–2438.
[20] Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, E.L. Thomas, A dielectric omnidirectional reflector, Science 282 (5394) (1998) 1679–1682.
[21] F. Wu, M. Chen, D. Liu, Y. Chen, Y. Long, Broadband omnidirectional near-infrared reflector based on an angle-insensitive photonic band gap, Appl. Opt. 59 (Oct 2020) 9621–9625.
[22] C.-h. Xue, Y. Ding, H.-t. Jiang, Y. Li, Z.-s. Wang, Y.-w. Zhang, H. Chen, Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials, Phys. Rev. B 93 (Mar 2016), 125310.
[23] F. Wu, M. Chen, Z. Chen, C. Yin, Omnidirectional terahertz photonic band gap broaden effect in one-dimensional photonic crystal containing few-layer graphene, Opt Commun. 490 (2021), 126898.
[24] M. Skorobogatiy, J. Yang, Fundamentals of Photonic Crystal Guiding, Cambridge University Press, New York, 2009.
[25] S. Roshan Entezar, Optical bistability in one-dimensional photonic band gap structure with nonlinear graded-index defect layer, Opt Commun. 287 (2013) 19–24
dc.rights.spa.fl_str_mv Derechos reservados - Elsevier, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Elsevier, 2021
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 6 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Elsevier
dc.source.eng.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1567173921002959#
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/3b8a2109-7648-4d93-9171-f6580b6b8bff/download
https://red.uao.edu.co/bitstreams/5d70c021-82fc-45ab-9b30-0f741fe59cb1/download
https://red.uao.edu.co/bitstreams/7171b2d7-9321-4548-af8f-bfdafb07e0ca/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
f76392787506633dac30eebcaaf10610
451f5d7c857a4a8c2d8902e29da2be8d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260105360703488
spelling Sánchez Cano, Robertvirtual::4603-1Calvo Velasco, Danny Manuelda181d1ea9bca7cae290426665dc814eElsevier2022-01-21T18:39:01Z2022-01-21T18:39:01Z2021-1215671739https://hdl.handle.net/10614/13565By using the transfer matrix formalism, in this work it is presented the study of the optical properties of 1D photonic structures constructed with M periods of bilayers of dielectric material and slabs with gradient refractive index (GRIN) profile of two types: linear and quadratic. By varying the profile parameters, preserving the average value of the refractive index for the GRIN slab, the results show the formation of new photonic band gaps whose bandwidths depends on the slope and the curvature of the linear and quadratic profile respectively. Also, it can be observed the formation of omnidirectional photonic bandgaps for the TE and TM polarizations, one for the linear profile and three for the quadratic one, for which their bandwidths depend linearly on the slope and the curvature of the GRIN profiles. It is expected that the presented results could be useful in the construction of optical devices based in their optical response under oblique incidence6 páginasapplication/pdfengElsevierDerechos reservados - Elsevier, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S1567173921002959#Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profilesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85FotónicaPhotonicsGradient refractive indexPhotonic systemLinear index profileQuadratic index profile61Calvo Velasco, D.M., Sánchez Cano, R. (2021). Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles. Current Applied Physics, pp.1-6. https://doi.org/10.1016/j.cap.2021.12.013Current Applied Physics[1] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58 (May 1987) 2059–2062.[2] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58 (Jun 1987) 2486–2489.[3] L.-M. Zhao, Y.-S. Zhou, A.-H. Wang, Facile way to obtain multiple interface modes in a photonic crystal heterostructure, Opt. Lett. 43 (Jul 2018) 3216–3219.[4] M. Bellingeri, A. Chiasera, I. Kriegel, F. Scotognella, Optical properties of periodic, quasi-periodic, and disordered one-dimensional photonic structures, Opt. Mater. 72 (2017) 403–421.[5] F. Wang, Y.Z. Cheng, X. Wang, D. Qi, H. Luo, R.Z. Gong, Effective modulation of the photonic band gap based on Ge/ZnS one-dimensional photonic crystal at the infrared band, Opt. Mater. 75 (2018) 373–378.[6] A.H. Aly, D. Mohamed, The optical properties of metamaterial-superconductor photonic band gap with/without defect layer, J. Supercond. Nov. Magnetism 32 (2019) 1897–1902.[7] M. Bellingeri, S. Longhi, F. Scotognella, Transmission of light in crystals with different homogeneity: using shannon index in photonic media, J. Eur. Opt. Soc. Rapid Publ. 5 (2010), 0.[8] F. Wu, G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, H. Chen, Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials, Phys. Rev. Appl. 10 (Dec 2018), 064022.[9] B. Xu, D. Zhang, X. Zeng, Y. Wang, Z. Dong, Transmission characteristics of photonic crystal waveguide with array square Al2O3 rods lattice in millimeter wave, Opt. Mater. 97 (2019), 109364.[10] P. Russell, Photonic crystal fibers, Science 299 (5605) (2003) 358–362.[11] M. De, T.K. Gangopadhyay, V.K. Singh, Prospects of photonic crystal fiber as physical sensor: an overview, Sensors 19 (3) (2019).[12] T.-M. Luis, G. Amadeu, G.-R. Jaime, Slow light bimodal interferometry in onedimensional photonic crystal waveguides, Light Sci. Appl. 10 (2021).[13] D. Calvo-Velasco, N. Porras-Montenegro, Optical properties of one dimensional metal-air graded system, Phys. E Low-dimens. Syst. Nanostruct. 105 (2019) 224–230.[14] D. Qi, X. Wang, Y. Cheng, F. Chen, L. Liu, R. Gong, Quasi-periodic Photonic Crystal Fabry–Perot Optical Filter Based on Si/SiO2 for Visible-Laser Spectral Selectivity, vol. 51, may 2018, 225103.[15] F. Wang, Y.Z. Cheng, X. Wang, Y.N. Zhang, Y. Nie, R.Z. Gong, Narrow band filter at 1550 nm based on quasi-one-dimensional photonic crystal with a mirrorsymmetric heterostructure, Materials 11 (7) (2018).[16] F. Wang, Y.Z. Cheng, X. Wang, D. Qi, H. Luo, R.Z. Gong, Effective modulation of the photonic band gap based on Ge/ZnS one-dimensional photonic crystal at the infrared band, Opt. Mater. 75 (2018) 373–378.[17] G.V. Morozov, D.W.L. Sprung, J. Martorell, One-dimensional photonic crystals with a sawtooth refractive index: another exactly solvable potential, New J. Phys. 15 (oct 2013), 103009.[18] B.K. Singh, P. Kumar, P.C. Pandey, Tunable photonic band-gaps in one-dimensional photonic crystals containing linear graded index material, Appl. Phys. B 117 (3) (2014) 947–956.[19] B.K. Singh, M.K. Chaudhari, P.C. Pandey, Photonic and omnidirectional band gap engineering in one-dimensional photonic crystals consisting of linearly graded index material, J. Lightwave Technol. 34 (10) (2016) 2431–2438.[20] Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, E.L. Thomas, A dielectric omnidirectional reflector, Science 282 (5394) (1998) 1679–1682.[21] F. Wu, M. Chen, D. Liu, Y. Chen, Y. Long, Broadband omnidirectional near-infrared reflector based on an angle-insensitive photonic band gap, Appl. Opt. 59 (Oct 2020) 9621–9625.[22] C.-h. Xue, Y. Ding, H.-t. Jiang, Y. Li, Z.-s. Wang, Y.-w. Zhang, H. Chen, Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials, Phys. Rev. B 93 (Mar 2016), 125310.[23] F. Wu, M. Chen, Z. Chen, C. Yin, Omnidirectional terahertz photonic band gap broaden effect in one-dimensional photonic crystal containing few-layer graphene, Opt Commun. 490 (2021), 126898.[24] M. Skorobogatiy, J. Yang, Fundamentals of Photonic Crystal Guiding, Cambridge University Press, New York, 2009.[25] S. Roshan Entezar, Optical bistability in one-dimensional photonic band gap structure with nonlinear graded-index defect layer, Opt Commun. 287 (2013) 19–24Comunidad en generalPublication56129f5e-4a76-48d6-b925-bc429fd6d848virtual::4603-156129f5e-4a76-48d6-b925-bc429fd6d848virtual::4603-1https://scholar.google.com/citations?hl=es&user=WXol0WcAAAAJvirtual::4603-10000-0003-0906-4150virtual::4603-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000311405virtual::4603-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/3b8a2109-7648-4d93-9171-f6580b6b8bff/download20b5ba22b1117f71589c7318baa2c560MD52TEXTOmnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles.pdf.txtOmnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles.pdf.txtExtracted texttext/plain27664https://red.uao.edu.co/bitstreams/5d70c021-82fc-45ab-9b30-0f741fe59cb1/downloadf76392787506633dac30eebcaaf10610MD54THUMBNAILOmnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles.pdf.jpgOmnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles.pdf.jpgGenerated Thumbnailimage/jpeg15304https://red.uao.edu.co/bitstreams/7171b2d7-9321-4548-af8f-bfdafb07e0ca/download451f5d7c857a4a8c2d8902e29da2be8dMD5510614/13565oai:red.uao.edu.co:10614/135652024-03-14 16:44:27.531https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2021metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K