Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles
By using the transfer matrix formalism, in this work it is presented the study of the optical properties of 1D photonic structures constructed with M periods of bilayers of dielectric material and slabs with gradient refractive index (GRIN) profile of two types: linear and quadratic. By varying the...
- Autores:
-
Sánchez Cano, Robert
Calvo Velasco, Danny Manuel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13565
- Acceso en línea:
- https://hdl.handle.net/10614/13565
- Palabra clave:
- Fotónica
Photonics
Gradient refractive index
Photonic system
Linear index profile
Quadratic index profile
- Rights
- openAccess
- License
- Derechos reservados - Elsevier, 2021
id |
REPOUAO2_6cd222d6bacbd36a0cc2186a65ee1133 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13565 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles |
title |
Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles |
spellingShingle |
Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles Fotónica Photonics Gradient refractive index Photonic system Linear index profile Quadratic index profile |
title_short |
Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles |
title_full |
Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles |
title_fullStr |
Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles |
title_full_unstemmed |
Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles |
title_sort |
Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles |
dc.creator.fl_str_mv |
Sánchez Cano, Robert Calvo Velasco, Danny Manuel |
dc.contributor.author.none.fl_str_mv |
Sánchez Cano, Robert Calvo Velasco, Danny Manuel |
dc.contributor.corporatename.spa.fl_str_mv |
Elsevier |
dc.subject.armarc.spa.fl_str_mv |
Fotónica |
topic |
Fotónica Photonics Gradient refractive index Photonic system Linear index profile Quadratic index profile |
dc.subject.armarc.eng.fl_str_mv |
Photonics |
dc.subject.proposal.eng.fl_str_mv |
Gradient refractive index Photonic system Linear index profile Quadratic index profile |
description |
By using the transfer matrix formalism, in this work it is presented the study of the optical properties of 1D photonic structures constructed with M periods of bilayers of dielectric material and slabs with gradient refractive index (GRIN) profile of two types: linear and quadratic. By varying the profile parameters, preserving the average value of the refractive index for the GRIN slab, the results show the formation of new photonic band gaps whose bandwidths depends on the slope and the curvature of the linear and quadratic profile respectively. Also, it can be observed the formation of omnidirectional photonic bandgaps for the TE and TM polarizations, one for the linear profile and three for the quadratic one, for which their bandwidths depend linearly on the slope and the curvature of the GRIN profiles. It is expected that the presented results could be useful in the construction of optical devices based in their optical response under oblique incidence |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-12 |
dc.date.accessioned.none.fl_str_mv |
2022-01-21T18:39:01Z |
dc.date.available.none.fl_str_mv |
2022-01-21T18:39:01Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
15671739 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13565 |
identifier_str_mv |
15671739 |
url |
https://hdl.handle.net/10614/13565 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
6 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.cites.eng.fl_str_mv |
Calvo Velasco, D.M., Sánchez Cano, R. (2021). Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles. Current Applied Physics, pp.1-6. https://doi.org/10.1016/j.cap.2021.12.013 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Current Applied Physics |
dc.relation.references.none.fl_str_mv |
[1] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58 (May 1987) 2059–2062. [2] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58 (Jun 1987) 2486–2489. [3] L.-M. Zhao, Y.-S. Zhou, A.-H. Wang, Facile way to obtain multiple interface modes in a photonic crystal heterostructure, Opt. Lett. 43 (Jul 2018) 3216–3219. [4] M. Bellingeri, A. Chiasera, I. Kriegel, F. Scotognella, Optical properties of periodic, quasi-periodic, and disordered one-dimensional photonic structures, Opt. Mater. 72 (2017) 403–421. [5] F. Wang, Y.Z. Cheng, X. Wang, D. Qi, H. Luo, R.Z. Gong, Effective modulation of the photonic band gap based on Ge/ZnS one-dimensional photonic crystal at the infrared band, Opt. Mater. 75 (2018) 373–378. [6] A.H. Aly, D. Mohamed, The optical properties of metamaterial-superconductor photonic band gap with/without defect layer, J. Supercond. Nov. Magnetism 32 (2019) 1897–1902. [7] M. Bellingeri, S. Longhi, F. Scotognella, Transmission of light in crystals with different homogeneity: using shannon index in photonic media, J. Eur. Opt. Soc. Rapid Publ. 5 (2010), 0. [8] F. Wu, G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, H. Chen, Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials, Phys. Rev. Appl. 10 (Dec 2018), 064022. [9] B. Xu, D. Zhang, X. Zeng, Y. Wang, Z. Dong, Transmission characteristics of photonic crystal waveguide with array square Al2O3 rods lattice in millimeter wave, Opt. Mater. 97 (2019), 109364. [10] P. Russell, Photonic crystal fibers, Science 299 (5605) (2003) 358–362. [11] M. De, T.K. Gangopadhyay, V.K. Singh, Prospects of photonic crystal fiber as physical sensor: an overview, Sensors 19 (3) (2019). [12] T.-M. Luis, G. Amadeu, G.-R. Jaime, Slow light bimodal interferometry in onedimensional photonic crystal waveguides, Light Sci. Appl. 10 (2021). [13] D. Calvo-Velasco, N. Porras-Montenegro, Optical properties of one dimensional metal-air graded system, Phys. E Low-dimens. Syst. Nanostruct. 105 (2019) 224–230. [14] D. Qi, X. Wang, Y. Cheng, F. Chen, L. Liu, R. Gong, Quasi-periodic Photonic Crystal Fabry–Perot Optical Filter Based on Si/SiO2 for Visible-Laser Spectral Selectivity, vol. 51, may 2018, 225103. [15] F. Wang, Y.Z. Cheng, X. Wang, Y.N. Zhang, Y. Nie, R.Z. Gong, Narrow band filter at 1550 nm based on quasi-one-dimensional photonic crystal with a mirrorsymmetric heterostructure, Materials 11 (7) (2018). [16] F. Wang, Y.Z. Cheng, X. Wang, D. Qi, H. Luo, R.Z. Gong, Effective modulation of the photonic band gap based on Ge/ZnS one-dimensional photonic crystal at the infrared band, Opt. Mater. 75 (2018) 373–378. [17] G.V. Morozov, D.W.L. Sprung, J. Martorell, One-dimensional photonic crystals with a sawtooth refractive index: another exactly solvable potential, New J. Phys. 15 (oct 2013), 103009. [18] B.K. Singh, P. Kumar, P.C. Pandey, Tunable photonic band-gaps in one-dimensional photonic crystals containing linear graded index material, Appl. Phys. B 117 (3) (2014) 947–956. [19] B.K. Singh, M.K. Chaudhari, P.C. Pandey, Photonic and omnidirectional band gap engineering in one-dimensional photonic crystals consisting of linearly graded index material, J. Lightwave Technol. 34 (10) (2016) 2431–2438. [20] Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, E.L. Thomas, A dielectric omnidirectional reflector, Science 282 (5394) (1998) 1679–1682. [21] F. Wu, M. Chen, D. Liu, Y. Chen, Y. Long, Broadband omnidirectional near-infrared reflector based on an angle-insensitive photonic band gap, Appl. Opt. 59 (Oct 2020) 9621–9625. [22] C.-h. Xue, Y. Ding, H.-t. Jiang, Y. Li, Z.-s. Wang, Y.-w. Zhang, H. Chen, Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials, Phys. Rev. B 93 (Mar 2016), 125310. [23] F. Wu, M. Chen, Z. Chen, C. Yin, Omnidirectional terahertz photonic band gap broaden effect in one-dimensional photonic crystal containing few-layer graphene, Opt Commun. 490 (2021), 126898. [24] M. Skorobogatiy, J. Yang, Fundamentals of Photonic Crystal Guiding, Cambridge University Press, New York, 2009. [25] S. Roshan Entezar, Optical bistability in one-dimensional photonic band gap structure with nonlinear graded-index defect layer, Opt Commun. 287 (2013) 19–24 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Elsevier, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Elsevier, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
6 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
Elsevier |
dc.source.eng.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1567173921002959# |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/3b8a2109-7648-4d93-9171-f6580b6b8bff/download https://red.uao.edu.co/bitstreams/5d70c021-82fc-45ab-9b30-0f741fe59cb1/download https://red.uao.edu.co/bitstreams/7171b2d7-9321-4548-af8f-bfdafb07e0ca/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 f76392787506633dac30eebcaaf10610 451f5d7c857a4a8c2d8902e29da2be8d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260105360703488 |
spelling |
Sánchez Cano, Robertvirtual::4603-1Calvo Velasco, Danny Manuelda181d1ea9bca7cae290426665dc814eElsevier2022-01-21T18:39:01Z2022-01-21T18:39:01Z2021-1215671739https://hdl.handle.net/10614/13565By using the transfer matrix formalism, in this work it is presented the study of the optical properties of 1D photonic structures constructed with M periods of bilayers of dielectric material and slabs with gradient refractive index (GRIN) profile of two types: linear and quadratic. By varying the profile parameters, preserving the average value of the refractive index for the GRIN slab, the results show the formation of new photonic band gaps whose bandwidths depends on the slope and the curvature of the linear and quadratic profile respectively. Also, it can be observed the formation of omnidirectional photonic bandgaps for the TE and TM polarizations, one for the linear profile and three for the quadratic one, for which their bandwidths depend linearly on the slope and the curvature of the GRIN profiles. It is expected that the presented results could be useful in the construction of optical devices based in their optical response under oblique incidence6 páginasapplication/pdfengElsevierDerechos reservados - Elsevier, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S1567173921002959#Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profilesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85FotónicaPhotonicsGradient refractive indexPhotonic systemLinear index profileQuadratic index profile61Calvo Velasco, D.M., Sánchez Cano, R. (2021). Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles. Current Applied Physics, pp.1-6. https://doi.org/10.1016/j.cap.2021.12.013Current Applied Physics[1] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58 (May 1987) 2059–2062.[2] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58 (Jun 1987) 2486–2489.[3] L.-M. Zhao, Y.-S. Zhou, A.-H. Wang, Facile way to obtain multiple interface modes in a photonic crystal heterostructure, Opt. Lett. 43 (Jul 2018) 3216–3219.[4] M. Bellingeri, A. Chiasera, I. Kriegel, F. Scotognella, Optical properties of periodic, quasi-periodic, and disordered one-dimensional photonic structures, Opt. Mater. 72 (2017) 403–421.[5] F. Wang, Y.Z. Cheng, X. Wang, D. Qi, H. Luo, R.Z. Gong, Effective modulation of the photonic band gap based on Ge/ZnS one-dimensional photonic crystal at the infrared band, Opt. Mater. 75 (2018) 373–378.[6] A.H. Aly, D. Mohamed, The optical properties of metamaterial-superconductor photonic band gap with/without defect layer, J. Supercond. Nov. Magnetism 32 (2019) 1897–1902.[7] M. Bellingeri, S. Longhi, F. Scotognella, Transmission of light in crystals with different homogeneity: using shannon index in photonic media, J. Eur. Opt. Soc. Rapid Publ. 5 (2010), 0.[8] F. Wu, G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, H. Chen, Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials, Phys. Rev. Appl. 10 (Dec 2018), 064022.[9] B. Xu, D. Zhang, X. Zeng, Y. Wang, Z. Dong, Transmission characteristics of photonic crystal waveguide with array square Al2O3 rods lattice in millimeter wave, Opt. Mater. 97 (2019), 109364.[10] P. Russell, Photonic crystal fibers, Science 299 (5605) (2003) 358–362.[11] M. De, T.K. Gangopadhyay, V.K. Singh, Prospects of photonic crystal fiber as physical sensor: an overview, Sensors 19 (3) (2019).[12] T.-M. Luis, G. Amadeu, G.-R. Jaime, Slow light bimodal interferometry in onedimensional photonic crystal waveguides, Light Sci. Appl. 10 (2021).[13] D. Calvo-Velasco, N. Porras-Montenegro, Optical properties of one dimensional metal-air graded system, Phys. E Low-dimens. Syst. Nanostruct. 105 (2019) 224–230.[14] D. Qi, X. Wang, Y. Cheng, F. Chen, L. Liu, R. Gong, Quasi-periodic Photonic Crystal Fabry–Perot Optical Filter Based on Si/SiO2 for Visible-Laser Spectral Selectivity, vol. 51, may 2018, 225103.[15] F. Wang, Y.Z. Cheng, X. Wang, Y.N. Zhang, Y. Nie, R.Z. Gong, Narrow band filter at 1550 nm based on quasi-one-dimensional photonic crystal with a mirrorsymmetric heterostructure, Materials 11 (7) (2018).[16] F. Wang, Y.Z. Cheng, X. Wang, D. Qi, H. Luo, R.Z. Gong, Effective modulation of the photonic band gap based on Ge/ZnS one-dimensional photonic crystal at the infrared band, Opt. Mater. 75 (2018) 373–378.[17] G.V. Morozov, D.W.L. Sprung, J. Martorell, One-dimensional photonic crystals with a sawtooth refractive index: another exactly solvable potential, New J. Phys. 15 (oct 2013), 103009.[18] B.K. Singh, P. Kumar, P.C. Pandey, Tunable photonic band-gaps in one-dimensional photonic crystals containing linear graded index material, Appl. Phys. B 117 (3) (2014) 947–956.[19] B.K. Singh, M.K. Chaudhari, P.C. Pandey, Photonic and omnidirectional band gap engineering in one-dimensional photonic crystals consisting of linearly graded index material, J. Lightwave Technol. 34 (10) (2016) 2431–2438.[20] Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, E.L. Thomas, A dielectric omnidirectional reflector, Science 282 (5394) (1998) 1679–1682.[21] F. Wu, M. Chen, D. Liu, Y. Chen, Y. Long, Broadband omnidirectional near-infrared reflector based on an angle-insensitive photonic band gap, Appl. Opt. 59 (Oct 2020) 9621–9625.[22] C.-h. Xue, Y. Ding, H.-t. Jiang, Y. Li, Z.-s. Wang, Y.-w. Zhang, H. Chen, Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials, Phys. Rev. B 93 (Mar 2016), 125310.[23] F. Wu, M. Chen, Z. Chen, C. Yin, Omnidirectional terahertz photonic band gap broaden effect in one-dimensional photonic crystal containing few-layer graphene, Opt Commun. 490 (2021), 126898.[24] M. Skorobogatiy, J. Yang, Fundamentals of Photonic Crystal Guiding, Cambridge University Press, New York, 2009.[25] S. Roshan Entezar, Optical bistability in one-dimensional photonic band gap structure with nonlinear graded-index defect layer, Opt Commun. 287 (2013) 19–24Comunidad en generalPublication56129f5e-4a76-48d6-b925-bc429fd6d848virtual::4603-156129f5e-4a76-48d6-b925-bc429fd6d848virtual::4603-1https://scholar.google.com/citations?hl=es&user=WXol0WcAAAAJvirtual::4603-10000-0003-0906-4150virtual::4603-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000311405virtual::4603-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/3b8a2109-7648-4d93-9171-f6580b6b8bff/download20b5ba22b1117f71589c7318baa2c560MD52TEXTOmnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles.pdf.txtOmnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles.pdf.txtExtracted texttext/plain27664https://red.uao.edu.co/bitstreams/5d70c021-82fc-45ab-9b30-0f741fe59cb1/downloadf76392787506633dac30eebcaaf10610MD54THUMBNAILOmnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles.pdf.jpgOmnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles.pdf.jpgGenerated Thumbnailimage/jpeg15304https://red.uao.edu.co/bitstreams/7171b2d7-9321-4548-af8f-bfdafb07e0ca/download451f5d7c857a4a8c2d8902e29da2be8dMD5510614/13565oai:red.uao.edu.co:10614/135652024-03-14 16:44:27.531https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2021metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |