Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles

By using the transfer matrix formalism, in this work it is presented the study of the optical properties of 1D photonic structures constructed with M periods of bilayers of dielectric material and slabs with gradient refractive index (GRIN) profile of two types: linear and quadratic. By varying the...

Full description

Autores:
Sánchez Cano, Robert
Calvo Velasco, Danny Manuel
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13565
Acceso en línea:
https://hdl.handle.net/10614/13565
Palabra clave:
Fotónica
Photonics
Gradient refractive index
Photonic system
Linear index profile
Quadratic index profile
Rights
openAccess
License
Derechos reservados - Elsevier, 2021
Description
Summary:By using the transfer matrix formalism, in this work it is presented the study of the optical properties of 1D photonic structures constructed with M periods of bilayers of dielectric material and slabs with gradient refractive index (GRIN) profile of two types: linear and quadratic. By varying the profile parameters, preserving the average value of the refractive index for the GRIN slab, the results show the formation of new photonic band gaps whose bandwidths depends on the slope and the curvature of the linear and quadratic profile respectively. Also, it can be observed the formation of omnidirectional photonic bandgaps for the TE and TM polarizations, one for the linear profile and three for the quadratic one, for which their bandwidths depend linearly on the slope and the curvature of the GRIN profiles. It is expected that the presented results could be useful in the construction of optical devices based in their optical response under oblique incidence