A saliency-based bottom-up visual attention model for dynamicscenes analysis
This work proposes a model of visual bottom-up attention for dynamic scene analysis. Our work addsmotion saliency calculations to a neural network model withrealistic temporal dynamics [(e.g., building motion salienceon top of De Brecht and Saiki Neural Networks 19:1467–1474, (2006)]. The resulting...
- Autores:
-
Ramírez Moreno, David Fernando
Schwartz, Odelia
Ramirez Villegas, Juan Felipe
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2013
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11584
- Acceso en línea:
- http://red.uao.edu.co//handle/10614/11584
- Palabra clave:
- Redes neuronales (Computadores)
Neural networks (Computer science)
Visual attention
Saliency map
Motion saliency
Neural network
Synaptic depression
Neural latency
Asymmetry phenomenon
Lyapunov stabilit
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_67deb9a1dd8ac8113c02c954d32214a2 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11584 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A saliency-based bottom-up visual attention model for dynamicscenes analysis |
title |
A saliency-based bottom-up visual attention model for dynamicscenes analysis |
spellingShingle |
A saliency-based bottom-up visual attention model for dynamicscenes analysis Redes neuronales (Computadores) Neural networks (Computer science) Visual attention Saliency map Motion saliency Neural network Synaptic depression Neural latency Asymmetry phenomenon Lyapunov stabilit |
title_short |
A saliency-based bottom-up visual attention model for dynamicscenes analysis |
title_full |
A saliency-based bottom-up visual attention model for dynamicscenes analysis |
title_fullStr |
A saliency-based bottom-up visual attention model for dynamicscenes analysis |
title_full_unstemmed |
A saliency-based bottom-up visual attention model for dynamicscenes analysis |
title_sort |
A saliency-based bottom-up visual attention model for dynamicscenes analysis |
dc.creator.fl_str_mv |
Ramírez Moreno, David Fernando Schwartz, Odelia Ramirez Villegas, Juan Felipe |
dc.contributor.author.none.fl_str_mv |
Ramírez Moreno, David Fernando Schwartz, Odelia Ramirez Villegas, Juan Felipe |
dc.subject.armarc.spa.fl_str_mv |
Redes neuronales (Computadores) |
topic |
Redes neuronales (Computadores) Neural networks (Computer science) Visual attention Saliency map Motion saliency Neural network Synaptic depression Neural latency Asymmetry phenomenon Lyapunov stabilit |
dc.subject.armarc.eng.fl_str_mv |
Neural networks (Computer science) |
dc.subject.proposal.eng.fl_str_mv |
Visual attention Saliency map Motion saliency Neural network Synaptic depression Neural latency Asymmetry phenomenon Lyapunov stabilit |
description |
This work proposes a model of visual bottom-up attention for dynamic scene analysis. Our work addsmotion saliency calculations to a neural network model withrealistic temporal dynamics [(e.g., building motion salienceon top of De Brecht and Saiki Neural Networks 19:1467–1474, (2006)]. The resulting network elicits strong transientresponses to moving objects and reaches stability withina biologically plausible time interval. The responses arestatistically different comparing between earlier and latermotion neural activity; and between moving and non-movingobjects. We demonstrate the network on a number of syn-thetic and real dynamical movie examples. We show thatthe model captures the motion saliency asymmetry phenom-enon. In addition, the motion salience computation enablessudden-onset moving objects that are less salient in the staticscene to rise above others. Finally, we include strong consid-eration for the neural latencies, the Lyapunov stability, andthe neural properties being reproduced by the model |
publishDate |
2013 |
dc.date.issued.none.fl_str_mv |
2013 |
dc.date.accessioned.none.fl_str_mv |
2019-11-27T15:08:19Z |
dc.date.available.none.fl_str_mv |
2019-11-27T15:08:19Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.eng.fl_str_mv |
Ramirez Moreno, D. F; Schwartz, O; Ramirez Villegas, J. F. A saliency-based bottom-up visual attention model for dynamicscenes analysis. Biological Cybernetics. 107(2) (enero 2013). DOI: 10.1007/s00422-012-0542-2 |
dc.identifier.uri.none.fl_str_mv |
http://red.uao.edu.co//handle/10614/11584 |
dc.identifier.doi.spa.fl_str_mv |
10.1007/s00422-012-0542-2 |
identifier_str_mv |
Ramirez Moreno, D. F; Schwartz, O; Ramirez Villegas, J. F. A saliency-based bottom-up visual attention model for dynamicscenes analysis. Biological Cybernetics. 107(2) (enero 2013). DOI: 10.1007/s00422-012-0542-2 10.1007/s00422-012-0542-2 |
url |
http://red.uao.edu.co//handle/10614/11584 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.eng.fl_str_mv |
Biological Cybernetics. Volumen 107, número 2 (enero 2013) |
dc.relation.citationendpage.none.fl_str_mv |
160 |
dc.relation.citationstartpage.none.fl_str_mv |
141 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Biological cybernetics |
dc.relation.references.none.fl_str_mv |
Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275:220–224 Bergen JR, Julesz B (1983) Parallel versus serial processing in rapid pattern discrimination. Nature 303:696–698 Bollman M, Hoischen R, Mertsching B (1997) In: Berlin et al. (ed) Integration of static and dynamic scene features guiding visual attention. Springer, Berlin, pp 483–490 Borst A (2000) Models of motion detection. Nature neuroscience 3:1168 Burt PJ (1988) Proceedings of the 9th international conference on attention mechanisms for vision in dynamic world. Patt Recog 1:977–987 Burt PJ, Adelson EH (1983) The Laplacian pyramid as a compact image code. IEEE Trans Commun 31:532–540 Cauller L (1995) Layer I of primary sensory neocortex:where top–down converges upon bottom-up. Behav Brain Res 71:163–170 Chen B (2005) Mathematical models of motion detection in the fly’s visual cortex. Dissertation, Texas Tech University, Texas Chen LQ, Xie X, Fan X, MaWY, Zhang HJ, Zhou HQ (2003) A visual attention model for adapting images on small displays. Multimed Syst 9:1–12 Coen-Cagli R, Dayan P, Schwartz O (2012) Cortical surround interactions and perceptual salience via natural scene statistics. PLoS Comput Biol 8(3):e1002405 Connor CE, Egeth HE, Yantis S (2004) Visual attention: bottom-up versus top–down. Curr Biol 14:R850–R852 Conway BR (2001) Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1). J Neurosci 21:2768–2783 Conway BR (2009) Color vision, cones and color-coding in the cortex. The Neuroscientist 15:274–290 De Brecht M, Saiki J (2006) A neural network implementation of a saliency map model. Neural Networks 19:1467–1474 Deco G, Rolls ET (2004) A neurodyamical cortical model of visual attention and invariant object recognition. Vis Res 44:621–642 Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Ann Rev Neurosci 18:193–222 Desimone R, Ungerleider LG (1989) Neural mechanisms of visual processing in monkeys. Elsevier, New York, pp 267–299 EC Funded CAVIAR project/IST 2001 37540 http://homepages.inf.ed.ac.uk/rbf/CAVIAR/. Accessed Jan 2011 Engel S, Zhang X, Wandell B (1997) Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature 388:68–71 Fahy FL, Riches IP, Brown MW (1993) Neuronal activity related to visual recognition memory: long-term memory and the encoding of recency and familiarity information in the primate anterior and medial inferior and rhinal cortex. Exp Brain Res 96:457–472 Fix J, Rougier N, Alexandre F (2010) A dynamic neural field approach to the covert and overt deployment of spatial attention. Cogn Comput 3:279–293 Gao D, Vasconcelos N (2007) Bottom-up saliency is a discriminant process. Proceedings of the IEEE international conference on computer vision, Rio de Janeiro Gonzalez Andino SL, de Peralta Grave (2012) Coding of saliency by ensemble bursting in the amygdala of primates. Front Behav Neurosci 6(38):1–16 Greenspan H, Belongie S, Goodman R, Perona P, Rakshit S, Anderson CH (1994) Overcomplete steerable pyramid filters and rotation invariance. Proc IEEE Comput Vis Patt Recog 1:222–228 Hamker FH (2004) A dynamic model of how feature cues guide spatial attention. Vis Res 44:501–521 Hamker FH (2006) Modeling feature-based attention as an active top– down inference process. BioSystems 86:91–99 Horowitz TS, Wolfe JM, DiMase JS, Klieger SB (2007) Visual search for type of motion is based on simple motion primitives. Perception 36:1624–1634 Ibbotson M (2001) Identification of mechanisms underlying motion detection in mammals. Springer, Berlin Itti L (2004) Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans Image Proc 13:1304–1318 Itti L, Koch C (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vis Res 40:1489–1506 Itti L, Koch C (2001) Computational modeling of visual attention. Nat Rev Neurosci 2:194–203 Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Patt Anal Mach Intel 20:1254–1259 Jonides J,Yantis S (1988) Uniqueness of abrupt visual onset in capturing attention. Percept Psychophys 43:346–354 Kusunoki M, Gottlieb J, Goldberg ME (2000) The lateral intraparietal area as a salience map: the representation of abrupt onset, stimulus motion, and task relevance. Vis Res 40:1459–1468 Li Z (1999) Contextual influences in V1 as a basis for pop out and asymmetry in visual search. ProcNatlAcad Sci 96(18):10530–10535 Li Z (2002) A saliency map in primary visual cortex. Trend Cogn Sci 6:9–16 Liu T, Sun J, Zheng NN, Tang X, Shum HY (2007) Learning to detect a salient object. Proceedings of IEEE computer society conference on computer and vision pattern recognition, Providence López MT, Fenández-Caballero A, Fernández MA, Mira J, Delgado AE (2006) Motion features to enhance scene segmentation in active visual attention. Patt Recog Lett 27:469–478 Mahadevan V, Vasconcelos N (2010) Spatiotemporal saliency in dynamic scenes. IEEE Trans Pattern Anal Mach Intell 32: 171–177 Matsuno T, Tomonaga M (2006) Visual search for moving and stationary items in chimpanzees (Pan troglodytes) and humans (Homo sapiens). Behav Brain Res 172:219–232 Maunsell JHR, Treue S (2006) Feature-based attention in visual cortex. Trends Neurosci 29:317–322 Meso AI, Zanker JM (2009) Speed encoding in correlation motion detectors as a consequence of spatial structure. Biological Cybern 100:361–370 Mira J, Delgado AE, Lopez MT, Fernandez-Caballero A, FernandezMA (2006) A conceptual frame with two neural mechanisms to model selective visual attention processes. Neurocomputing 71:704–720 Mundhenk TN, Itti L (2005) Computational modeling and exploration of contour integration for visual saliency. Biol Cybern 93:188–212 Nagy AL, Cone SM (1996) Asymmetries in simple feature searches for color. Vis Res 36:2837–2847 NavalpakkamV, Itti L (2002)Agoal oriented attention guidancemodel. Lect Notes Comput Sci 2525:453–461 Navalpakkam V, Itti L (2005) Modeling the influence of task on attention. Vision Res. 45:205–231 Navalpakkam V, Itti L (2006) Modeling the influence of task on attention. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 1:1–8 Nothdurft H (2000) Salience from feature contrast: additivity across dimensions. Vis Res 40:1183–1201 Oliva A, Torralba A, CastelhanoMS, Henderson JM (2003) Top–down control of visual attention in object detection. Proc Int Conf Image Proc 1:253–256 Park SJ, An KH, Lee M (2002) Saliency map model with adaptive masking based on independent component analysis. Neurocomputing 49:417–422 Peters RJ, Iyer A, Itti L, Koch C (2005) Components of bottom-up gaze allocation in natural images. Vis Res 45:2397–2416 Pointing Gestures: Video Sequence Database (ICPR Workshop, Cambridge, United Kingdom). http://www.cvmt.dk/. Accessed Jan 2011 Pomplun M (2007) Advancing area activation towards a general model of eye movements in visual search. In: Gray WD (ed) Integrated models of cognitive systems. Oxford University Press, New York, pp 120–131 Ramirez-Villegas JF, Ramirez-Moreno DF (2012) Color coding in the cortex: a modified approach to bottom-up visual attention. Biol Cybern. doi:10.1007/s00422-012-0522-6. Accessed on 28 Sept 2012 Rapantzikos K, Tsapatsoulis N, Avrithis Y, Kollias S (2007) Bottom-up spatiotemporal visual attentionmodel for video analysis. Image Proc IET 1:237–248 Reynolds JH, Heeger DJ (2009) The normalization model of attention. Neuron 61:168–185 Royden CS, Wolfe JM, Klempen N (2001) Visual search asymmetries in motion and optic flow fields. Percept Psychophys 63:436–444 Santos A, Mier D, Kirsch P, Meyer-Lindenberg A (2011) Evidence for a general face salience signal in human amygdala. Neuroimage 54:3111–3116 Schrater PR, Knill DC, Simoncelli EP (2000) Mechanisms of visual motion detection. Nature Neuroscience 3:64–68 Sejnowski TJ, Koch C, Churchland PS (1988) Computational neuroscience. Science 241:1299–1306 Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T (2006) Robust object recognition with cortex-like mechanisms. IEEE Trans Patt Anal Mach Intell 29:1–17 Shen K, Martin P (2007) Neuronal activity in superior colliculus signals both stimulus identity and saccade goals during visual conjunction search. J Vis 7(5):15: 1–13 Shormaker PA, O’Carroll DC, Straw AD (2001) Implementation of visual motion detection with contrast adaptation. Proc SPIE 4591:316–327 Sobel KV, Pickard MD, Acklin WT (2009) Using feature preview to investigate the roles of top-down and bottom-up processing in conjunction search. Acta Psychol 132:22–30 Thompson KG, Bichot NP (2005) A visual salience map in the primate frontal eye field. Prog Brain Res 147:251–262 T’so DY, Gilbert CD (1988) The organization of chromatic and spatial interactions in the primate striate cortex. J Neurosci 8:1712–1727 Torralba A, Castelhano MS, Oliva A, Henderson JM (2006) Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol Rev 113:766–786 Trapp S, Schroll H, Hamker FH (2012). Open and closed loops: A computational approach to attention and consciousness. Adv Cogn Psychol 8(1):1–8. doi:10.2478/v10053-008-0096-y Treisman A, Sykes M, Gelade G (1977) Selective attention stimulus integration. In: Dornic S (ed) Attention and performance VI. Lawrence Erlbaum Associates, New Jersey, pp 333–361 Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12:97–136 Treisman AM, Gormican S (1988) Feature analysis in early vision: evidence from search asymmetries. Psychol Rev 95:15–48 Tsodyks M, Pawelzik K, Markram H (1998) Neural networks with dynamic synapses. Neural Comput 10:821–835 Tsotsos JK (2001) Motion uniderstanding: task-directed attention and representation that link perception with action. Int J Comput Vis 45:265–280 Tsotsos JK, Liu Y, Matinez-Trujillo JC, Pomplun M, Simine E, Zhou K (2005) Attending to visual motion. Comput Vis Image Underst 100:3–40 Walther D, Koch C (2006) Modeling attention to salient proto-objects. Neural Networks 19:1395–1407 Wilson HR (2004) Spikes, decisions and actions: the dynamical foundations of neuroscience. Oxford University Press, New York Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous system. Kybernetik 13:55–80 Wolfe J, Butcher SJ, Lee C, HyleM(2003) Changing your mind: on the contributions of top-down and bottom-up guidance in visual search for feature singletons. J Exp Psychol Hum Percept Perform 29:483–502 Wolfe JM (2001) Asymmetries in visual search: an introduction. Percept Psychophys 63:381–389 Yantis S (1993) Stimulus-driven attentional capture and attentional control settings. J Exp Psychol Hum Percept Perform 19:676–681 Zhaoping L (2006) Theoretical understanding of the early visual processes by data compression and data selection. Network: Comput Neural Syst 17:301–334 |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.eng.fl_str_mv |
Springer |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/e00712d7-cc72-4a79-a2a5-db156a38bf38/download https://red.uao.edu.co/bitstreams/7a607b63-af38-43fb-813c-9a59073b301a/download https://red.uao.edu.co/bitstreams/15bcb638-7e11-4e09-ad5e-dde120a1eecf/download https://red.uao.edu.co/bitstreams/39cbd36d-ad6d-4710-9a8a-98bc78cca0d6/download https://red.uao.edu.co/bitstreams/23ccf28b-57ca-494a-9e9f-d3abd5ab36a0/download |
bitstream.checksum.fl_str_mv |
fc9f5849f933af0fd44ccf616bdf85af 225a2bce853b13497375639381528572 2f59fd57b892a1f2ba9339305c461fe9 4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260237557825536 |
spelling |
Ramírez Moreno, David Fernandovirtual::4308-1Schwartz, Odeliacfbc0dfdb128f8537c95b0409dcd92e6Ramirez Villegas, Juan Felipede4a5d2f855a047341c6903be500d787Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-27T15:08:19Z2019-11-27T15:08:19Z2013Ramirez Moreno, D. F; Schwartz, O; Ramirez Villegas, J. F. A saliency-based bottom-up visual attention model for dynamicscenes analysis. Biological Cybernetics. 107(2) (enero 2013). DOI: 10.1007/s00422-012-0542-2http://red.uao.edu.co//handle/10614/1158410.1007/s00422-012-0542-2This work proposes a model of visual bottom-up attention for dynamic scene analysis. Our work addsmotion saliency calculations to a neural network model withrealistic temporal dynamics [(e.g., building motion salienceon top of De Brecht and Saiki Neural Networks 19:1467–1474, (2006)]. The resulting network elicits strong transientresponses to moving objects and reaches stability withina biologically plausible time interval. The responses arestatistically different comparing between earlier and latermotion neural activity; and between moving and non-movingobjects. We demonstrate the network on a number of syn-thetic and real dynamical movie examples. We show thatthe model captures the motion saliency asymmetry phenom-enon. In addition, the motion salience computation enablessudden-onset moving objects that are less salient in the staticscene to rise above others. Finally, we include strong consid-eration for the neural latencies, the Lyapunov stability, andthe neural properties being reproduced by the modelapplication/pdfengSpringerBiological Cybernetics. Volumen 107, número 2 (enero 2013)160141Biological cyberneticsAbbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275:220–224Bergen JR, Julesz B (1983) Parallel versus serial processing in rapid pattern discrimination. Nature 303:696–698Bollman M, Hoischen R, Mertsching B (1997) In: Berlin et al. (ed) Integration of static and dynamic scene features guiding visual attention. Springer, Berlin, pp 483–490Borst A (2000) Models of motion detection. Nature neuroscience 3:1168 Burt PJ (1988) Proceedings of the 9th international conference on attention mechanisms for vision in dynamic world. Patt Recog 1:977–987Burt PJ, Adelson EH (1983) The Laplacian pyramid as a compact image code. IEEE Trans Commun 31:532–540Cauller L (1995) Layer I of primary sensory neocortex:where top–down converges upon bottom-up. Behav Brain Res 71:163–170Chen B (2005) Mathematical models of motion detection in the fly’s visual cortex. Dissertation, Texas Tech University, TexasChen LQ, Xie X, Fan X, MaWY, Zhang HJ, Zhou HQ (2003) A visual attention model for adapting images on small displays. Multimed Syst 9:1–12Coen-Cagli R, Dayan P, Schwartz O (2012) Cortical surround interactions and perceptual salience via natural scene statistics. PLoS Comput Biol 8(3):e1002405Connor CE, Egeth HE, Yantis S (2004) Visual attention: bottom-up versus top–down. Curr Biol 14:R850–R852Conway BR (2001) Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1). J Neurosci 21:2768–2783Conway BR (2009) Color vision, cones and color-coding in the cortex. The Neuroscientist 15:274–290De Brecht M, Saiki J (2006) A neural network implementation of a saliency map model. Neural Networks 19:1467–1474Deco G, Rolls ET (2004) A neurodyamical cortical model of visual attention and invariant object recognition. Vis Res 44:621–642Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Ann Rev Neurosci 18:193–222Desimone R, Ungerleider LG (1989) Neural mechanisms of visual processing in monkeys. Elsevier, New York, pp 267–299EC Funded CAVIAR project/IST 2001 37540 http://homepages.inf.ed.ac.uk/rbf/CAVIAR/. Accessed Jan 2011Engel S, Zhang X, Wandell B (1997) Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature 388:68–71Fahy FL, Riches IP, Brown MW (1993) Neuronal activity related to visual recognition memory: long-term memory and the encoding of recency and familiarity information in the primate anterior and medial inferior and rhinal cortex. Exp Brain Res 96:457–472Fix J, Rougier N, Alexandre F (2010) A dynamic neural field approach to the covert and overt deployment of spatial attention. Cogn Comput 3:279–293Gao D, Vasconcelos N (2007) Bottom-up saliency is a discriminant process. Proceedings of the IEEE international conference on computer vision, Rio de JaneiroGonzalez Andino SL, de Peralta Grave (2012) Coding of saliency by ensemble bursting in the amygdala of primates. Front Behav Neurosci 6(38):1–16Greenspan H, Belongie S, Goodman R, Perona P, Rakshit S, Anderson CH (1994) Overcomplete steerable pyramid filters and rotation invariance. Proc IEEE Comput Vis Patt Recog 1:222–228Hamker FH (2004) A dynamic model of how feature cues guide spatial attention. Vis Res 44:501–521Hamker FH (2006) Modeling feature-based attention as an active top– down inference process. BioSystems 86:91–99Horowitz TS, Wolfe JM, DiMase JS, Klieger SB (2007) Visual search for type of motion is based on simple motion primitives. Perception 36:1624–1634Ibbotson M (2001) Identification of mechanisms underlying motion detection in mammals. Springer, BerlinItti L (2004) Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans Image Proc 13:1304–1318Itti L, Koch C (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vis Res 40:1489–1506Itti L, Koch C (2001) Computational modeling of visual attention. Nat Rev Neurosci 2:194–203Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Patt Anal Mach Intel 20:1254–1259Jonides J,Yantis S (1988) Uniqueness of abrupt visual onset in capturing attention. Percept Psychophys 43:346–354Kusunoki M, Gottlieb J, Goldberg ME (2000) The lateral intraparietal area as a salience map: the representation of abrupt onset, stimulus motion, and task relevance. Vis Res 40:1459–1468Li Z (1999) Contextual influences in V1 as a basis for pop out and asymmetry in visual search. ProcNatlAcad Sci 96(18):10530–10535Li Z (2002) A saliency map in primary visual cortex. Trend Cogn Sci 6:9–16Liu T, Sun J, Zheng NN, Tang X, Shum HY (2007) Learning to detect a salient object. Proceedings of IEEE computer society conference on computer and vision pattern recognition, ProvidenceLópez MT, Fenández-Caballero A, Fernández MA, Mira J, Delgado AE (2006) Motion features to enhance scene segmentation in active visual attention. Patt Recog Lett 27:469–478Mahadevan V, Vasconcelos N (2010) Spatiotemporal saliency in dynamic scenes. IEEE Trans Pattern Anal Mach Intell 32: 171–177Matsuno T, Tomonaga M (2006) Visual search for moving and stationary items in chimpanzees (Pan troglodytes) and humans (Homo sapiens). Behav Brain Res 172:219–232Maunsell JHR, Treue S (2006) Feature-based attention in visual cortex. Trends Neurosci 29:317–322Meso AI, Zanker JM (2009) Speed encoding in correlation motion detectors as a consequence of spatial structure. Biological Cybern 100:361–370Mira J, Delgado AE, Lopez MT, Fernandez-Caballero A, FernandezMA (2006) A conceptual frame with two neural mechanisms to model selective visual attention processes. Neurocomputing 71:704–720Mundhenk TN, Itti L (2005) Computational modeling and exploration of contour integration for visual saliency. Biol Cybern 93:188–212Nagy AL, Cone SM (1996) Asymmetries in simple feature searches for color. Vis Res 36:2837–2847 NavalpakkamV, Itti L (2002)Agoal oriented attention guidancemodel. Lect Notes Comput Sci 2525:453–461Navalpakkam V, Itti L (2005) Modeling the influence of task on attention. Vision Res. 45:205–231Navalpakkam V, Itti L (2006) Modeling the influence of task on attention. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 1:1–8Nothdurft H (2000) Salience from feature contrast: additivity across dimensions. Vis Res 40:1183–1201Oliva A, Torralba A, CastelhanoMS, Henderson JM (2003) Top–down control of visual attention in object detection. Proc Int Conf Image Proc 1:253–256Park SJ, An KH, Lee M (2002) Saliency map model with adaptive masking based on independent component analysis. Neurocomputing 49:417–422Peters RJ, Iyer A, Itti L, Koch C (2005) Components of bottom-up gaze allocation in natural images. Vis Res 45:2397–2416Pointing Gestures: Video Sequence Database (ICPR Workshop, Cambridge, United Kingdom). http://www.cvmt.dk/. Accessed Jan 2011Pomplun M (2007) Advancing area activation towards a general model of eye movements in visual search. In: Gray WD (ed) Integrated models of cognitive systems. Oxford University Press, New York, pp 120–131Ramirez-Villegas JF, Ramirez-Moreno DF (2012) Color coding in the cortex: a modified approach to bottom-up visual attention. Biol Cybern. doi:10.1007/s00422-012-0522-6. Accessed on 28 Sept 2012Rapantzikos K, Tsapatsoulis N, Avrithis Y, Kollias S (2007) Bottom-up spatiotemporal visual attentionmodel for video analysis. Image Proc IET 1:237–248Reynolds JH, Heeger DJ (2009) The normalization model of attention. Neuron 61:168–185Royden CS, Wolfe JM, Klempen N (2001) Visual search asymmetries in motion and optic flow fields. Percept Psychophys 63:436–444Santos A, Mier D, Kirsch P, Meyer-Lindenberg A (2011) Evidence for a general face salience signal in human amygdala. Neuroimage 54:3111–3116Schrater PR, Knill DC, Simoncelli EP (2000) Mechanisms of visual motion detection. Nature Neuroscience 3:64–68Sejnowski TJ, Koch C, Churchland PS (1988) Computational neuroscience. Science 241:1299–1306Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T (2006) Robust object recognition with cortex-like mechanisms. IEEE Trans Patt Anal Mach Intell 29:1–17Shen K, Martin P (2007) Neuronal activity in superior colliculus signals both stimulus identity and saccade goals during visual conjunction search. J Vis 7(5):15: 1–13Shormaker PA, O’Carroll DC, Straw AD (2001) Implementation of visual motion detection with contrast adaptation. Proc SPIE 4591:316–327Sobel KV, Pickard MD, Acklin WT (2009) Using feature preview to investigate the roles of top-down and bottom-up processing in conjunction search. Acta Psychol 132:22–30Thompson KG, Bichot NP (2005) A visual salience map in the primate frontal eye field. Prog Brain Res 147:251–262T’so DY, Gilbert CD (1988) The organization of chromatic and spatial interactions in the primate striate cortex. J Neurosci 8:1712–1727Torralba A, Castelhano MS, Oliva A, Henderson JM (2006) Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol Rev 113:766–786Trapp S, Schroll H, Hamker FH (2012). Open and closed loops: A computational approach to attention and consciousness. Adv Cogn Psychol 8(1):1–8. doi:10.2478/v10053-008-0096-yTreisman A, Sykes M, Gelade G (1977) Selective attention stimulus integration. In: Dornic S (ed) Attention and performance VI. Lawrence Erlbaum Associates, New Jersey, pp 333–361Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12:97–136Treisman AM, Gormican S (1988) Feature analysis in early vision: evidence from search asymmetries. Psychol Rev 95:15–48Tsodyks M, Pawelzik K, Markram H (1998) Neural networks with dynamic synapses. Neural Comput 10:821–835Tsotsos JK (2001) Motion uniderstanding: task-directed attention and representation that link perception with action. Int J Comput Vis 45:265–280Tsotsos JK, Liu Y, Matinez-Trujillo JC, Pomplun M, Simine E, Zhou K (2005) Attending to visual motion. Comput Vis Image Underst 100:3–40Walther D, Koch C (2006) Modeling attention to salient proto-objects. Neural Networks 19:1395–1407Wilson HR (2004) Spikes, decisions and actions: the dynamical foundations of neuroscience. Oxford University Press, New YorkWilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous system. Kybernetik 13:55–80Wolfe J, Butcher SJ, Lee C, HyleM(2003) Changing your mind: on the contributions of top-down and bottom-up guidance in visual search for feature singletons. J Exp Psychol Hum Percept Perform 29:483–502Wolfe JM (2001) Asymmetries in visual search: an introduction. Percept Psychophys 63:381–389Yantis S (1993) Stimulus-driven attentional capture and attentional control settings. J Exp Psychol Hum Percept Perform 19:676–681Zhaoping L (2006) Theoretical understanding of the early visual processes by data compression and data selection. Network: Comput Neural Syst 17:301–334Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2A saliency-based bottom-up visual attention model for dynamicscenes analysisArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Redes neuronales (Computadores)Neural networks (Computer science)Visual attentionSaliency mapMotion saliencyNeural networkSynaptic depressionNeural latencyAsymmetry phenomenonLyapunov stabilitPublication61e20236-82c5-4dcc-b05c-0eaa9ac06b11virtual::4308-161e20236-82c5-4dcc-b05c-0eaa9ac06b11virtual::4308-1https://scholar.google.com/citations?user=RTce1fkAAAAJ&hl=esvirtual::4308-10000-0003-2372-3554virtual::4308-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000353744virtual::4308-1TEXTA0217.pdf.txtA0217.pdf.txtExtracted texttext/plain75536https://red.uao.edu.co/bitstreams/e00712d7-cc72-4a79-a2a5-db156a38bf38/downloadfc9f5849f933af0fd44ccf616bdf85afMD54THUMBNAILA0217.pdf.jpgA0217.pdf.jpgGenerated Thumbnailimage/jpeg13731https://red.uao.edu.co/bitstreams/7a607b63-af38-43fb-813c-9a59073b301a/download225a2bce853b13497375639381528572MD55ORIGINALA0217.pdfA0217.pdfapplication/pdf1357295https://red.uao.edu.co/bitstreams/15bcb638-7e11-4e09-ad5e-dde120a1eecf/download2f59fd57b892a1f2ba9339305c461fe9MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/39cbd36d-ad6d-4710-9a8a-98bc78cca0d6/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/23ccf28b-57ca-494a-9e9f-d3abd5ab36a0/download20b5ba22b1117f71589c7318baa2c560MD5310614/11584oai:red.uao.edu.co:10614/115842024-03-13 16:34:19.446https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |