Superficial modification by alkalization of cellulose fibres obtained from fique leaf

The present study will focus on superficial modification by alkalization of cellulose fibres obtained from Fique leaf as reinforcement in polymer matrices to produce a natural fiber composite that can be suitable for industrial purposes. Fique fiber is a hard vegetable fiber derived from a Colombian...

Full description

Autores:
Aparicio Rojas, Gladis Miriam
Amelines Sarria, Oscar Felipe
Guzmán López, Rolando Enrique
Gómez, S.
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11362
Acceso en línea:
http://hdl.handle.net/10614/11362
https://iopscience.iop.org/article/10.1088/1757-899X/437/1/012015
Palabra clave:
Fibers
Polymers--Effect of reduced gravity on
Fibras
Polimeros-efecto de la gravedad reducida
Biomolecules
Chemical engineering
Biomoléculas
Ingeniería química
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_643867dc3c6bc076e2b71e7f80fe5c66
oai_identifier_str oai:red.uao.edu.co:10614/11362
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Superficial modification by alkalization of cellulose fibres obtained from fique leaf
title Superficial modification by alkalization of cellulose fibres obtained from fique leaf
spellingShingle Superficial modification by alkalization of cellulose fibres obtained from fique leaf
Fibers
Polymers--Effect of reduced gravity on
Fibras
Polimeros-efecto de la gravedad reducida
Biomolecules
Chemical engineering
Biomoléculas
Ingeniería química
title_short Superficial modification by alkalization of cellulose fibres obtained from fique leaf
title_full Superficial modification by alkalization of cellulose fibres obtained from fique leaf
title_fullStr Superficial modification by alkalization of cellulose fibres obtained from fique leaf
title_full_unstemmed Superficial modification by alkalization of cellulose fibres obtained from fique leaf
title_sort Superficial modification by alkalization of cellulose fibres obtained from fique leaf
dc.creator.fl_str_mv Aparicio Rojas, Gladis Miriam
Amelines Sarria, Oscar Felipe
Guzmán López, Rolando Enrique
Gómez, S.
dc.contributor.author.none.fl_str_mv Aparicio Rojas, Gladis Miriam
dc.contributor.author.spa.fl_str_mv Amelines Sarria, Oscar Felipe
Guzmán López, Rolando Enrique
Gómez, S.
dc.subject.lemb.eng.fl_str_mv Fibers
Polymers--Effect of reduced gravity on
topic Fibers
Polymers--Effect of reduced gravity on
Fibras
Polimeros-efecto de la gravedad reducida
Biomolecules
Chemical engineering
Biomoléculas
Ingeniería química
dc.subject.lemb.spa.fl_str_mv Fibras
Polimeros-efecto de la gravedad reducida
dc.subject.armarc.eng.fl_str_mv Biomolecules
Chemical engineering
dc.subject.armarc.spa.fl_str_mv Biomoléculas
Ingeniería química
description The present study will focus on superficial modification by alkalization of cellulose fibres obtained from Fique leaf as reinforcement in polymer matrices to produce a natural fiber composite that can be suitable for industrial purposes. Fique fiber is a hard vegetable fiber derived from a Colombian plant (Agave furcarea). An appropriate treatment, namely alkalization, of the fiber was chosen and carried out, but will be customized for this specific study to be more environmental-friendly and economical. A higher fiber-to-solution ratio as well as a low concentration would decrease the price of the treated fibers. The changes introduced to the surface morphology by the abovementioned treatment is then examined using a scanning electron microscope (SEM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC) and FTIR analysis, and untreated and treated samples were
publishDate 2018
dc.date.issued.spa.fl_str_mv 2018
dc.date.accessioned.spa.fl_str_mv 2019-10-31T18:06:21Z
dc.date.available.spa.fl_str_mv 2019-10-31T18:06:21Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Guzmán, R. E., Gómez, S., Amelines, O., & Aparicio, G. M. (2018, October). Superficial modification by alkalization of cellulose Fibres obtained from Fique leaf. In IOP Conference Series: Materials Science and Engineering (Vol. 437, No. 1, p. 012015). IOP Publishing
dc.identifier.issn.spa.fl_str_mv 1757-899X (en línea)
1757-8981 (impresa)
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/10614/11362
https://iopscience.iop.org/article/10.1088/1757-899X/437/1/012015
identifier_str_mv Guzmán, R. E., Gómez, S., Amelines, O., & Aparicio, G. M. (2018, October). Superficial modification by alkalization of cellulose Fibres obtained from Fique leaf. In IOP Conference Series: Materials Science and Engineering (Vol. 437, No. 1, p. 012015). IOP Publishing
1757-899X (en línea)
1757-8981 (impresa)
url http://hdl.handle.net/10614/11362
https://iopscience.iop.org/article/10.1088/1757-899X/437/1/012015
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.eng.fl_str_mv IOP Conference Series: Materials Science and Engineering, 3rd International Congress of Mechanical Engineering and Agricultural Science, CIIMCA 2017, volumen 437, issue 1, páginas 1-13, (25 octuber, 2018)
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv páginas 012015-
dc.coverage.spatial.spa.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Institute of Physics Publishing. IOP Publishing Limited
dc.source.spa.fl_str_mv instname:Universidad Autónoma de Occidente
reponame:Repositorio Institucional UAO
instname_str Universidad Autónoma de Occidente
institution Universidad Autónoma de Occidente
reponame_str Repositorio Institucional UAO
collection Repositorio Institucional UAO
dc.source.bibliographiccitation.spa.fl_str_mv Ministerio de Agricultura y Desarrollo Rural, TECHNIPETROL S.P.A. 1986 Propuesta de Diversification industrial de la fibra de Fique
Garavito C., Ramírez J., Garavito C. and Ramírez J. 2015 Cadena de FIQUE y su Agroindustria
Cadena Productiva Nacional del fique 2006 Guía ambiental del subsector fiquero (Cadena Pro. Colombia)
Chand Navin and Mohammed F. 2008 Tribology of natural fiber polymer composites Elsevier 12 45
Ganan P. 2005 Effect of Fiber Treatments on Mechanical Behavior of Short Fique Fiber-reinforced Polyacetal Composites J. Compos. Mater. 39 633-646
Gañán P. and Mondragon I. 2002 Surface modification of fique fibers. Effect on their physico-mechanical properties Polym. Compos. 23 383-394
Gañán P. and Mondragon I. 2004 Fique fiber-reinforced polyester composites: Effects of fiber surface treatments on mechanical behavior J. Mater. Sci. 39 3121-3128
Kalia S., Kaith B.S. and Kaur I. 2009 Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review Polym. Eng. Sci. 49 1253-1272 Jul.
Boopalan M., Umapathy M.J. and Jenyfer P. 2012 A Comparative Study on the Mechanical Properties of Jute and Sisal Fiber Reinforced Polymer Composites Silicon 4 145-149
Leite F.L., Herrmann P. S.P., Da Róz A. L., Ferreira F.C., Curvelo A. A.S. and Mattoso L.H.C. 2006 Investigation of sisal fibers by atomic force microscopy: morphological and adhesive characteristics J. Nanosci. Nanotechnol. 2354-2361
Li Y. and Mai Y.W. 2006 Interfacial Characteristics of Sisal Fiber and Polymeric Matrices J. Adhes. 82 527-554
Kaewkuk S., Sutapun W. and Jarukumjorn K. 2013 Effects of interfacial modification and fiber content on physical properties of sisal fiber/polypropylene composites Compos. Partq B Eng. 45 544-549
Fávaro S. L., Ganzerli T.A., de Carvalho Neto A. G. V, da Silva O. R. R. F. and Radovanovic E. 2010 Chemical, morphological and mechanical analysis of sisal fiber-reinforced recycled high-density polyethylene composites Express Polym. Lett. 4 465-473
Kim J. T. and Netravali A.N. 2010 Mercerization of sisal fibers: Effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites Compos. Part A 41 1245-1252
Panigrahi S. 2010 The Effect of Fiber Loading and Chemical Treatment on Mechanical and Thermal Properties of Jute Biocomposites SAE Technical Paper
Zhou Q., Cho D., Song B.K. and Kim H.-J. 2009 Novel Jute/Polycardanol Biocomposites: Effect of Fiber Surface Treatment on Their Properties Compos. Interfaces 16 781-795
Ahmed A.S., Islam M.S., Hassan A., Mohamad Haafiz M. K., Islam K.N. and Aijmandi R. 2014 Impact of succinic anhydride on the properties of jute fiber/polypropylene biocomposites Fibers Polym. 15
Khan J.A., Khan M.A. and Islam R. 2012 Effect of mercerization on mechanical, thermal and degradation characteristics of jute fabric-reinforced polypropylene composites Fibers Polym. 13
Gibeop N., Lee D.W., Prasad C.V., Toru F., Kim B.S. and Song J.I. 2013 Effect of plasma treatment on mechanical properties of jute fiber/poly (lactic acid) biodegradable composites Adv. Compos. Mater. 22
Jena H., Pandit M.K. and Pradhan A.K. 2013 Effect of cenosphere on mechanical properties of bamboo-epoxy composites J. Reinf. Plast. Compos. 32 794-801
He F., Gao C. and Ye S. 2011 Effect of Bamboo Fiber Modification on Tribological Performance of Brake Composites Adv. Mater. Res. 151-151 1801-1805
Khalil H. P. S.A., Bhat I. U.H., Jawaid M., Zaidon A., Hermawan D. and Hadi Y.S. 2012 Bamboo fibre reinforced biocomposites: A review Mater. Desing 42 353-368
Liu D., Song J., Anderson D.P., Chang P.R. and Hua Y. 2012 Bamboo fiber and its reinforced composites: Structure and properties Cellulose 19 1449-1480 Oct
Sarifuddin N. and Ismail H. 2015 Applications of Kenaf-Lignocellulosic Fiber in Polymer Blends Lignocellul. Polym. Compos. Process. Charact. Prop. 499-521
Azwa Z. N. and Yousif B.F. 2013 Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation Polym. Degrad. Stab. 98 2752-2759
Yunus W. M. Z. W. M. Z. W. et al 2011 Effect of chemical surface treatment on the mechanical properties of reinforced plasticized poly(lactic acid) biodegradable composites J. Reinf. Plast. Compos. 30 381-388
Anuar H. and Zuraida A. 2011 Improvement in mechanical properties of reinforced thermoplastic elastomer composite with kenaf bast fibre Compos. Part B Eng. 42 462-465
Hajiha H., Sain M. and Mei L.H. 2014 Modification and Characterization of Hemp and Sisal Fibers J. Nat. Fibers 11 144-168
Aziz S. H. and Ansell M.P. 2003 The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 - polyester resin matrix
Bledzki A. K. G. J. 1999 Composites reinforced with cellulose based fibers 1999 24 221-274
Gómez Hoyos C., Alvarez V.A., Rojo P.G. and Vázquez A. 2012 Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application Fibers Polym. 13 632-640
Then Y.Y., Ibrahim N.A., Zainuddin N., Chieng B.W., Ariffin H. and Wan Yunus W. M. Z. 2015 Effect of 3-Aminopropyltrimethoxysilane on Chemically Modified Oil Palm Mesocarp Fiber/Poly(butylene succinate) Biocomposite BioResources 10 3577-3601 Apr.
Xie Y., Hill C. A.S., Xiao Z., Militz H. and Mai C. 2010 Silane coupling agents used for natural fiber/polymer composites: A review Compos. Part A Appl. Sci. Manuf. 41 806-819
Vera F.L., Cortes H.A.M., Murcia C.V. and Galvis I.C. 2014 Modificación superficial de micro fibras de celulosa obtenidas a partir de bagazo de caña de azúcar usando silanización Rev. Inf. Técnico 78 106-114
Cho D., Lee H.S. and Han S.O. 2009 Effect of Fiber Surface Modification on the Interfacial and Mechanical Properties of Kenaf Fiber-Reinforced Thermoplastic and Thermosetting Polymer Composites Compos. Interfaces 16 711-729 2013
Huda M.S., Drzal L.T., Mohanty A.K. and Misra M. 2008 Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites Compos. Interfaces 15 169-191
Zhu J., Zhu H., Njuguna J. and Abhyankar H. 2013 Recent development of flax fibres and their reinforced composites based on different polymeric matrices Materials (Basel) 6 5171-5198
Zaman H. U. and Beg M. 2014 Preparation, structure, and properties of the coir fiber/polypropylene composites J. Compos. Mater. 48 3293-3301
Xie Y., Hill C.A.S., Xiao Z., Militz H. and Mai C. 2010 Silane coupling agents used for natural fiber/polymer composites: A review Compos. Part A Appl. Sci. Manuf. 41 806-819 Jul.
Corradini E., de Morais L., de M., Rosa F., Mazzetto S.E., Mattoso L.H.C. and Agnelli J.A.M. 2006 A preliminary study for the use of natural fibers as reinforcement in starch-gluten-glycerol matrix Macromol. Symp. 245 558-564
Castro C., Palencia A., Gutiérrez I., Vargas G. and Gañán P. 2007 Determination of optimal alkaline treatment conditions for fique fiber bundles as reinforcement of composites materials Rev. Téc. Ing. Univ. Zulia 30 136-142
Gañán P. and Mondragon I. 2004 Influence of Compatibilization Treatments on the Mechanical Properties of Fique Fiber Reinforced Polypropylene Composites Int. J. Polym. Mater. 53 997-1013
Shalwan A. and Yousif B.F. 2013 In state of art: Mechanical and tribological behaviour of polymeric composites based on natural fibres Mater. Des. 48 14-24
Hidalgo-Salazar M. A., Mina J.H. and Herrera-Franco P. J. 2013 The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials Compos. Part B Eng. 55 345-351
Ng H. M. et al 2015 Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers Compos. Part B Eng. 75 176-200
Mtibe A., Mandlevu Y., Linganiso L.Z. and Anandjiwala R.D. 2015 Extraction of cellulose nanowhiskers from flax fibres and their reinforcing effect on poly(furfuryl) alcohol J. BiobasedMater. Bioenergy 9
Asim M., Jawaid M., Abdan K. and Ishak M.R. 2016 Effect of Alkali and Silane Treatments on Mechanical and Fibre-matrix Bond Strength of Kenaf and Pineapple Leaf Fibres J. Bionic Eng. 13 426-435
Amiri A., Ulven C.A. and Huo S. 2015 Effect of chemical treatment of flax fiber and resin manipulation on service life of their Composites using time-temperature superposition Polymers (Basel) 7 1965-1978
Manalo A.C., Wani E., Zukarnain N.A., Karunasena W. and Lau K. 2015 Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre-polyester composites Compos. Part B Eng. 80 73-83
Khan J.A., Khan M.A. and Islam R. 2012 Effect of Mercerization on Mechanical, Thermal and Degradation Characteristics of Jute Fabric-reinforced Polypropylene Composites Fibers Polym. 13 1300-1309
Paul S.A., Boudenne A., Ibos L., Candau Y., Joseph K. and Thomas S. Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials
He F., Gao C. and Ye S. Effect of Bamboo Fiber Modification on Tribological Performance of Brake Composites
Atiqah A., Maleque M.A., Jawaid M. and Iqbal M. 2014 Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications Compos. Part B 56 68-73
Ferreira De Oliveira P., De Fatima M. and Marques V. 2015 Chemical treatment of natural Malva fibres and preparation of green composites with Poly(3-Hydroxybutyrate) Chem. Chem. Technol. 9
Nobuta K. et al 2016 Characterization of cellulose nanofiber sheets from different refining processes Cellulose 23
Lee S., Pan H., Hse C.Y., Gunasekaran A.R. and Shupe T.F. 2014 Characteristics of regenerated nanocellulosic fibers from cellulose dissolution in aqueous solutions for wood fiber/polypropylene composites J. Thermoplast. Compos. Mater. 27 558-570
Zarina S. and Ahmad I. 2014 Biodegradable Composite Films based on κ-carrageenan Reinforced by Cellulose Nanocrystal from Kenaf Fibers BioResources 10 256-271 Nov.
Faruk O., Bledzki A.K., Fink H.-P. and Sain M. 2012 Biocomposites reinforced with natural fibers: 2000-2010 Prog. Polym. Sci. 37 1552-1596
Zhao L., Xia W., Tarverdi K. and Song J. 2014 Biocomposite boards from wheat straw without addition of bonding agent Mater. Sci. Technol. (United Kingdom) 30
Boopalan M., Umapathy M.J. and Jenyfer P. 2012 A Comparative Study on the Mechanical Properties of Jute and Sisal Fiber Reinforced Polymer Composites Silicon 4 145-149 Jul.
Siyamak S., Ibrahim N.A., Abdolmohammadi S., Yunus W. M. Z.B.W. and Rahman M. Z. A.B. 2012 Enhancement of mechanical and thermal properties of oil palm empty fruit bunch fiber poly(butylene adipate-co-terephtalate) biocomposites by matrix esterification using succinic anhydride Molecules 17 1969-1991
Siyamak S., Ibrahim N.A., Abdolmohammadi S., Yunus W. M. Z. B.W. and Rahman M. Z.A. 2012 Enhancement of Mechanical and Thermal Properties of Oil Palm Empty Fruit Bunch Fiber Poly(butylene adipate-co-terephtalate) Biocomposites by Matrix Esterification Using Succinic Anhydride Molecules 17 1969-1991 Feb.
Restrepo P.G.A. and Bautista C. 2008 Influencia de modificaciones tipo esterificación, sobre el comportamiento hidrofílico de reforzantes celulósicos Investig. Apl. 3 9
Gañán P. and Mondragon I. 2003 Thermal and degradation behavior of fique fiber reinforced thermoplastic matrix composites J. Therm. Anal. Calorim. 73 783-795
Qian S., Mao H., Zarei E. and Sheng K. 2015 Preparation and Characterization of Maleic Anhydride Compatibilized Poly(lactic acid)/Bamboo Particles Biocomposites J. Polym. Environ. 23 341-347
Mishra S., Naik J.B. and Patil Y.P. 2000 The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites Compos. Sci. Technol. 60 1729-1735
Rana A.K., Singha A.S., Kumari M. and Kumar V. 2014 Effect of Chemical Functionalization on Functional Properties of Cellulosic Fiber-Reinforced Polymer Composites Lignocellul. Polym. Compos. 281-99
Campilho R. 2015 Natural Fiber Composites (CRC Press) Introduction to Natural Fiber Composites 1-34
Monteiro S.N., Calado V., Rodriguez R.J.S. and Margem F.M. 2012 Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers - An overview J. Mater. Res. Technol. 1 117-126
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/bee62072-4291-41be-a757-eb55d371a5ff/download
https://red.uao.edu.co/bitstreams/c9b99396-b490-4e8f-9680-8833796120a7/download
https://red.uao.edu.co/bitstreams/2f62a365-737d-4fdf-9c94-967f25953baa/download
https://red.uao.edu.co/bitstreams/08556852-4aef-4176-b746-2fe2870e03e5/download
https://red.uao.edu.co/bitstreams/4b13ce23-e66e-40d1-b8ac-8043ca5b898d/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
c7bfdd13c92a00cfd5422c3ca07f9a7f
83a673398c4ec8794086b47a08f6b2e9
5f1734cde4bf9ea15bc681c407513ec9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260005964087296
spelling Aparicio Rojas, Gladis Miriamvirtual::296-1Amelines Sarria, Oscar Felipeca804921b8cf0a18c6ce37d363f6ddd8-1Guzmán López, Rolando Enrique12d1f1f06803ed93969bbd1fcfe876d9-1Gómez, S.16dfa59c279087425b6fdfc9529c926a-1Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-10-31T18:06:21Z2019-10-31T18:06:21Z2018Guzmán, R. E., Gómez, S., Amelines, O., & Aparicio, G. M. (2018, October). Superficial modification by alkalization of cellulose Fibres obtained from Fique leaf. In IOP Conference Series: Materials Science and Engineering (Vol. 437, No. 1, p. 012015). IOP Publishing1757-899X (en línea)1757-8981 (impresa)http://hdl.handle.net/10614/11362https://iopscience.iop.org/article/10.1088/1757-899X/437/1/012015The present study will focus on superficial modification by alkalization of cellulose fibres obtained from Fique leaf as reinforcement in polymer matrices to produce a natural fiber composite that can be suitable for industrial purposes. Fique fiber is a hard vegetable fiber derived from a Colombian plant (Agave furcarea). An appropriate treatment, namely alkalization, of the fiber was chosen and carried out, but will be customized for this specific study to be more environmental-friendly and economical. A higher fiber-to-solution ratio as well as a low concentration would decrease the price of the treated fibers. The changes introduced to the surface morphology by the abovementioned treatment is then examined using a scanning electron microscope (SEM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC) and FTIR analysis, and untreated and treated samples wereapplication/pdfpáginas 012015-engInstitute of Physics Publishing. IOP Publishing LimitedIOP Conference Series: Materials Science and Engineering, 3rd International Congress of Mechanical Engineering and Agricultural Science, CIIMCA 2017, volumen 437, issue 1, páginas 1-13, (25 octuber, 2018)Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2instname:Universidad Autónoma de Occidentereponame:Repositorio Institucional UAOMinisterio de Agricultura y Desarrollo Rural, TECHNIPETROL S.P.A. 1986 Propuesta de Diversification industrial de la fibra de FiqueGaravito C., Ramírez J., Garavito C. and Ramírez J. 2015 Cadena de FIQUE y su AgroindustriaCadena Productiva Nacional del fique 2006 Guía ambiental del subsector fiquero (Cadena Pro. Colombia)Chand Navin and Mohammed F. 2008 Tribology of natural fiber polymer composites Elsevier 12 45Ganan P. 2005 Effect of Fiber Treatments on Mechanical Behavior of Short Fique Fiber-reinforced Polyacetal Composites J. Compos. Mater. 39 633-646Gañán P. and Mondragon I. 2002 Surface modification of fique fibers. Effect on their physico-mechanical properties Polym. Compos. 23 383-394Gañán P. and Mondragon I. 2004 Fique fiber-reinforced polyester composites: Effects of fiber surface treatments on mechanical behavior J. Mater. Sci. 39 3121-3128Kalia S., Kaith B.S. and Kaur I. 2009 Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review Polym. Eng. Sci. 49 1253-1272 Jul.Boopalan M., Umapathy M.J. and Jenyfer P. 2012 A Comparative Study on the Mechanical Properties of Jute and Sisal Fiber Reinforced Polymer Composites Silicon 4 145-149Leite F.L., Herrmann P. S.P., Da Róz A. L., Ferreira F.C., Curvelo A. A.S. and Mattoso L.H.C. 2006 Investigation of sisal fibers by atomic force microscopy: morphological and adhesive characteristics J. Nanosci. Nanotechnol. 2354-2361Li Y. and Mai Y.W. 2006 Interfacial Characteristics of Sisal Fiber and Polymeric Matrices J. Adhes. 82 527-554Kaewkuk S., Sutapun W. and Jarukumjorn K. 2013 Effects of interfacial modification and fiber content on physical properties of sisal fiber/polypropylene composites Compos. Partq B Eng. 45 544-549Fávaro S. L., Ganzerli T.A., de Carvalho Neto A. G. V, da Silva O. R. R. F. and Radovanovic E. 2010 Chemical, morphological and mechanical analysis of sisal fiber-reinforced recycled high-density polyethylene composites Express Polym. Lett. 4 465-473Kim J. T. and Netravali A.N. 2010 Mercerization of sisal fibers: Effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites Compos. Part A 41 1245-1252Panigrahi S. 2010 The Effect of Fiber Loading and Chemical Treatment on Mechanical and Thermal Properties of Jute Biocomposites SAE Technical PaperZhou Q., Cho D., Song B.K. and Kim H.-J. 2009 Novel Jute/Polycardanol Biocomposites: Effect of Fiber Surface Treatment on Their Properties Compos. Interfaces 16 781-795Ahmed A.S., Islam M.S., Hassan A., Mohamad Haafiz M. K., Islam K.N. and Aijmandi R. 2014 Impact of succinic anhydride on the properties of jute fiber/polypropylene biocomposites Fibers Polym. 15Khan J.A., Khan M.A. and Islam R. 2012 Effect of mercerization on mechanical, thermal and degradation characteristics of jute fabric-reinforced polypropylene composites Fibers Polym. 13Gibeop N., Lee D.W., Prasad C.V., Toru F., Kim B.S. and Song J.I. 2013 Effect of plasma treatment on mechanical properties of jute fiber/poly (lactic acid) biodegradable composites Adv. Compos. Mater. 22Jena H., Pandit M.K. and Pradhan A.K. 2013 Effect of cenosphere on mechanical properties of bamboo-epoxy composites J. Reinf. Plast. Compos. 32 794-801He F., Gao C. and Ye S. 2011 Effect of Bamboo Fiber Modification on Tribological Performance of Brake Composites Adv. Mater. Res. 151-151 1801-1805Khalil H. P. S.A., Bhat I. U.H., Jawaid M., Zaidon A., Hermawan D. and Hadi Y.S. 2012 Bamboo fibre reinforced biocomposites: A review Mater. Desing 42 353-368Liu D., Song J., Anderson D.P., Chang P.R. and Hua Y. 2012 Bamboo fiber and its reinforced composites: Structure and properties Cellulose 19 1449-1480 OctSarifuddin N. and Ismail H. 2015 Applications of Kenaf-Lignocellulosic Fiber in Polymer Blends Lignocellul. Polym. Compos. Process. Charact. Prop. 499-521Azwa Z. N. and Yousif B.F. 2013 Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation Polym. Degrad. Stab. 98 2752-2759Yunus W. M. Z. W. M. Z. W. et al 2011 Effect of chemical surface treatment on the mechanical properties of reinforced plasticized poly(lactic acid) biodegradable composites J. Reinf. Plast. Compos. 30 381-388Anuar H. and Zuraida A. 2011 Improvement in mechanical properties of reinforced thermoplastic elastomer composite with kenaf bast fibre Compos. Part B Eng. 42 462-465Hajiha H., Sain M. and Mei L.H. 2014 Modification and Characterization of Hemp and Sisal Fibers J. Nat. Fibers 11 144-168Aziz S. H. and Ansell M.P. 2003 The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 - polyester resin matrixBledzki A. K. G. J. 1999 Composites reinforced with cellulose based fibers 1999 24 221-274Gómez Hoyos C., Alvarez V.A., Rojo P.G. and Vázquez A. 2012 Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application Fibers Polym. 13 632-640Then Y.Y., Ibrahim N.A., Zainuddin N., Chieng B.W., Ariffin H. and Wan Yunus W. M. Z. 2015 Effect of 3-Aminopropyltrimethoxysilane on Chemically Modified Oil Palm Mesocarp Fiber/Poly(butylene succinate) Biocomposite BioResources 10 3577-3601 Apr.Xie Y., Hill C. A.S., Xiao Z., Militz H. and Mai C. 2010 Silane coupling agents used for natural fiber/polymer composites: A review Compos. Part A Appl. Sci. Manuf. 41 806-819Vera F.L., Cortes H.A.M., Murcia C.V. and Galvis I.C. 2014 Modificación superficial de micro fibras de celulosa obtenidas a partir de bagazo de caña de azúcar usando silanización Rev. Inf. Técnico 78 106-114Cho D., Lee H.S. and Han S.O. 2009 Effect of Fiber Surface Modification on the Interfacial and Mechanical Properties of Kenaf Fiber-Reinforced Thermoplastic and Thermosetting Polymer Composites Compos. Interfaces 16 711-729 2013Huda M.S., Drzal L.T., Mohanty A.K. and Misra M. 2008 Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites Compos. Interfaces 15 169-191Zhu J., Zhu H., Njuguna J. and Abhyankar H. 2013 Recent development of flax fibres and their reinforced composites based on different polymeric matrices Materials (Basel) 6 5171-5198Zaman H. U. and Beg M. 2014 Preparation, structure, and properties of the coir fiber/polypropylene composites J. Compos. Mater. 48 3293-3301Xie Y., Hill C.A.S., Xiao Z., Militz H. and Mai C. 2010 Silane coupling agents used for natural fiber/polymer composites: A review Compos. Part A Appl. Sci. Manuf. 41 806-819 Jul.Corradini E., de Morais L., de M., Rosa F., Mazzetto S.E., Mattoso L.H.C. and Agnelli J.A.M. 2006 A preliminary study for the use of natural fibers as reinforcement in starch-gluten-glycerol matrix Macromol. Symp. 245 558-564Castro C., Palencia A., Gutiérrez I., Vargas G. and Gañán P. 2007 Determination of optimal alkaline treatment conditions for fique fiber bundles as reinforcement of composites materials Rev. Téc. Ing. Univ. Zulia 30 136-142Gañán P. and Mondragon I. 2004 Influence of Compatibilization Treatments on the Mechanical Properties of Fique Fiber Reinforced Polypropylene Composites Int. J. Polym. Mater. 53 997-1013Shalwan A. and Yousif B.F. 2013 In state of art: Mechanical and tribological behaviour of polymeric composites based on natural fibres Mater. Des. 48 14-24Hidalgo-Salazar M. A., Mina J.H. and Herrera-Franco P. J. 2013 The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials Compos. Part B Eng. 55 345-351Ng H. M. et al 2015 Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers Compos. Part B Eng. 75 176-200Mtibe A., Mandlevu Y., Linganiso L.Z. and Anandjiwala R.D. 2015 Extraction of cellulose nanowhiskers from flax fibres and their reinforcing effect on poly(furfuryl) alcohol J. BiobasedMater. Bioenergy 9Asim M., Jawaid M., Abdan K. and Ishak M.R. 2016 Effect of Alkali and Silane Treatments on Mechanical and Fibre-matrix Bond Strength of Kenaf and Pineapple Leaf Fibres J. Bionic Eng. 13 426-435Amiri A., Ulven C.A. and Huo S. 2015 Effect of chemical treatment of flax fiber and resin manipulation on service life of their Composites using time-temperature superposition Polymers (Basel) 7 1965-1978Manalo A.C., Wani E., Zukarnain N.A., Karunasena W. and Lau K. 2015 Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre-polyester composites Compos. Part B Eng. 80 73-83Khan J.A., Khan M.A. and Islam R. 2012 Effect of Mercerization on Mechanical, Thermal and Degradation Characteristics of Jute Fabric-reinforced Polypropylene Composites Fibers Polym. 13 1300-1309Paul S.A., Boudenne A., Ibos L., Candau Y., Joseph K. and Thomas S. Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materialsHe F., Gao C. and Ye S. Effect of Bamboo Fiber Modification on Tribological Performance of Brake CompositesAtiqah A., Maleque M.A., Jawaid M. and Iqbal M. 2014 Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications Compos. Part B 56 68-73Ferreira De Oliveira P., De Fatima M. and Marques V. 2015 Chemical treatment of natural Malva fibres and preparation of green composites with Poly(3-Hydroxybutyrate) Chem. Chem. Technol. 9Nobuta K. et al 2016 Characterization of cellulose nanofiber sheets from different refining processes Cellulose 23Lee S., Pan H., Hse C.Y., Gunasekaran A.R. and Shupe T.F. 2014 Characteristics of regenerated nanocellulosic fibers from cellulose dissolution in aqueous solutions for wood fiber/polypropylene composites J. Thermoplast. Compos. Mater. 27 558-570Zarina S. and Ahmad I. 2014 Biodegradable Composite Films based on κ-carrageenan Reinforced by Cellulose Nanocrystal from Kenaf Fibers BioResources 10 256-271 Nov.Faruk O., Bledzki A.K., Fink H.-P. and Sain M. 2012 Biocomposites reinforced with natural fibers: 2000-2010 Prog. Polym. Sci. 37 1552-1596Zhao L., Xia W., Tarverdi K. and Song J. 2014 Biocomposite boards from wheat straw without addition of bonding agent Mater. Sci. Technol. (United Kingdom) 30Boopalan M., Umapathy M.J. and Jenyfer P. 2012 A Comparative Study on the Mechanical Properties of Jute and Sisal Fiber Reinforced Polymer Composites Silicon 4 145-149 Jul.Siyamak S., Ibrahim N.A., Abdolmohammadi S., Yunus W. M. Z.B.W. and Rahman M. Z. A.B. 2012 Enhancement of mechanical and thermal properties of oil palm empty fruit bunch fiber poly(butylene adipate-co-terephtalate) biocomposites by matrix esterification using succinic anhydride Molecules 17 1969-1991Siyamak S., Ibrahim N.A., Abdolmohammadi S., Yunus W. M. Z. B.W. and Rahman M. Z.A. 2012 Enhancement of Mechanical and Thermal Properties of Oil Palm Empty Fruit Bunch Fiber Poly(butylene adipate-co-terephtalate) Biocomposites by Matrix Esterification Using Succinic Anhydride Molecules 17 1969-1991 Feb.Restrepo P.G.A. and Bautista C. 2008 Influencia de modificaciones tipo esterificación, sobre el comportamiento hidrofílico de reforzantes celulósicos Investig. Apl. 3 9Gañán P. and Mondragon I. 2003 Thermal and degradation behavior of fique fiber reinforced thermoplastic matrix composites J. Therm. Anal. Calorim. 73 783-795Qian S., Mao H., Zarei E. and Sheng K. 2015 Preparation and Characterization of Maleic Anhydride Compatibilized Poly(lactic acid)/Bamboo Particles Biocomposites J. Polym. Environ. 23 341-347Mishra S., Naik J.B. and Patil Y.P. 2000 The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites Compos. Sci. Technol. 60 1729-1735Rana A.K., Singha A.S., Kumari M. and Kumar V. 2014 Effect of Chemical Functionalization on Functional Properties of Cellulosic Fiber-Reinforced Polymer Composites Lignocellul. Polym. Compos. 281-99Campilho R. 2015 Natural Fiber Composites (CRC Press) Introduction to Natural Fiber Composites 1-34Monteiro S.N., Calado V., Rodriguez R.J.S. and Margem F.M. 2012 Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers - An overview J. Mater. Res. Technol. 1 117-126Superficial modification by alkalization of cellulose fibres obtained from fique leafArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85FibersPolymers--Effect of reduced gravity onFibrasPolimeros-efecto de la gravedad reducidaBiomoleculesChemical engineeringBiomoléculasIngeniería químicaPublicationb4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::296-1b4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::296-1https://scholar.google.com/citations?user=WtTqM8IAAAAJ&hl=esvirtual::296-10000-0002-7158-1223virtual::296-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000112399virtual::296-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/bee62072-4291-41be-a757-eb55d371a5ff/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/c9b99396-b490-4e8f-9680-8833796120a7/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALSuperficial_modification_by_alkalization_of_cellulose_fibres.pdfapplication/pdf767006https://red.uao.edu.co/bitstreams/2f62a365-737d-4fdf-9c94-967f25953baa/downloadc7bfdd13c92a00cfd5422c3ca07f9a7fMD54TEXTSuperficial_modification_by_alkalization_of_cellulose_fibres.pdf.txtSuperficial_modification_by_alkalization_of_cellulose_fibres.pdf.txtExtracted texttext/plain37864https://red.uao.edu.co/bitstreams/08556852-4aef-4176-b746-2fe2870e03e5/download83a673398c4ec8794086b47a08f6b2e9MD55THUMBNAILSuperficial_modification_by_alkalization_of_cellulose_fibres.pdf.jpgSuperficial_modification_by_alkalization_of_cellulose_fibres.pdf.jpgGenerated Thumbnailimage/jpeg13562https://red.uao.edu.co/bitstreams/4b13ce23-e66e-40d1-b8ac-8043ca5b898d/download5f1734cde4bf9ea15bc681c407513ec9MD5610614/11362oai:red.uao.edu.co:10614/113622024-02-26 16:33:41.719https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K