Optimización topológica en el diseño de elementos estructurales mecánicos
Este trabajo hace una revisión de la técnica de optimización topológica (OT) aplicada al diseño de estructuras de peso reducido. El problema consiste en encontrar la topología que tenga la mayor rigidez con una restricción en el volumen final del material, partiendo de un dominio bidimensional recta...
- Autores:
-
Meza Valencia, Carlos Alberto
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2013
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/4209
- Acceso en línea:
- http://hdl.handle.net/10614/4209
- Palabra clave:
- Ingeniería Mecánica
Método de elementos finitos
Topología
Optimización estructural
Finite element method
Topology
Structural optimization
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc/4.0/
id |
REPOUAO2_642642201558504bc012e375de879d9a |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/4209 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Optimización topológica en el diseño de elementos estructurales mecánicos |
title |
Optimización topológica en el diseño de elementos estructurales mecánicos |
spellingShingle |
Optimización topológica en el diseño de elementos estructurales mecánicos Ingeniería Mecánica Método de elementos finitos Topología Optimización estructural Finite element method Topology Structural optimization |
title_short |
Optimización topológica en el diseño de elementos estructurales mecánicos |
title_full |
Optimización topológica en el diseño de elementos estructurales mecánicos |
title_fullStr |
Optimización topológica en el diseño de elementos estructurales mecánicos |
title_full_unstemmed |
Optimización topológica en el diseño de elementos estructurales mecánicos |
title_sort |
Optimización topológica en el diseño de elementos estructurales mecánicos |
dc.creator.fl_str_mv |
Meza Valencia, Carlos Alberto |
dc.contributor.advisor.none.fl_str_mv |
Franco Guzmán, Ediguer Enrique |
dc.contributor.author.spa.fl_str_mv |
Meza Valencia, Carlos Alberto |
dc.subject.spa.fl_str_mv |
Ingeniería Mecánica Método de elementos finitos Topología Optimización estructural |
topic |
Ingeniería Mecánica Método de elementos finitos Topología Optimización estructural Finite element method Topology Structural optimization |
dc.subject.eng.fl_str_mv |
Finite element method Topology Structural optimization |
description |
Este trabajo hace una revisión de la técnica de optimización topológica (OT) aplicada al diseño de estructuras de peso reducido. El problema consiste en encontrar la topología que tenga la mayor rigidez con una restricción en el volumen final del material, partiendo de un dominio bidimensional rectangular con las restricciones y cargas correspondientes. El trabajo se divide en tres partes generales: revisión del estado del arte, implementación de un código en Matlab y reproducción de los resultados reportados en la literatura, y aplicación de la técnica al diseño de una pieza mecánica de peso reducido. El trabajo comienza con el estudio de la formulación del elemento Q4 (elemento plano de 4 nodos y 2 grados de libertad por nodo con interpolación lineal) para el problema elástico, y su implementación numérica. El siguiente paso es el estudio del planteamiento del problema de optimización y su solución por medio de PLS (Programación Lineal Secuencial). PLS es un método que soluciona un problema de optimización no lineal convirtiéndolo en una serie de problemas lineales. La linealización del problema se hace por medio de la serie de Taylor y cada problema lineal se soluciona usando programación lineal, con algoritmos bien conocidos como el Simplex o el Karmarkar |
publishDate |
2013 |
dc.date.accessioned.spa.fl_str_mv |
2013-01-22T15:56:44Z |
dc.date.available.spa.fl_str_mv |
2013-01-22T15:56:44Z |
dc.date.issued.spa.fl_str_mv |
2013-01-22 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.uri.spa.fl_str_mv |
http://hdl.handle.net/10614/4209 |
url |
http://hdl.handle.net/10614/4209 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Mecánica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Energética y Mecánica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.source.spa.fl_str_mv |
instname:Universidad Autónoma de Occidente reponame:Repositorio Institucional UAO |
instname_str |
Universidad Autónoma de Occidente |
institution |
Universidad Autónoma de Occidente |
reponame_str |
Repositorio Institucional UAO |
collection |
Repositorio Institucional UAO |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/4f6a2504-85be-4016-9b22-dc8db8ee4093/download https://red.uao.edu.co/bitstreams/9400f0a6-12d7-4576-95ad-c8bfaeda0c8e/download https://red.uao.edu.co/bitstreams/eb7e2fee-7186-4853-afdf-c189f433e5a2/download https://red.uao.edu.co/bitstreams/504642d1-59fa-41f5-a3fc-f07869f0dc5b/download |
bitstream.checksum.fl_str_mv |
dbe546acfe7ad7de4b0cda6a2d3b8bb5 681d790601b8a9bb443804717ec65e6f e2dd342f2c351b678ff0101de2d0e3d8 ef91aa615628668d5864e88126220798 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259851801395200 |
spelling |
Franco Guzmán, Ediguer Enriquevirtual::1816-1Meza Valencia, Carlos Alberto91e6cc7bf314d961d42cc8d8c3c5d812-1Ingeniero MecánicoUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2013-01-22T15:56:44Z2013-01-22T15:56:44Z2013-01-22http://hdl.handle.net/10614/4209Este trabajo hace una revisión de la técnica de optimización topológica (OT) aplicada al diseño de estructuras de peso reducido. El problema consiste en encontrar la topología que tenga la mayor rigidez con una restricción en el volumen final del material, partiendo de un dominio bidimensional rectangular con las restricciones y cargas correspondientes. El trabajo se divide en tres partes generales: revisión del estado del arte, implementación de un código en Matlab y reproducción de los resultados reportados en la literatura, y aplicación de la técnica al diseño de una pieza mecánica de peso reducido. El trabajo comienza con el estudio de la formulación del elemento Q4 (elemento plano de 4 nodos y 2 grados de libertad por nodo con interpolación lineal) para el problema elástico, y su implementación numérica. El siguiente paso es el estudio del planteamiento del problema de optimización y su solución por medio de PLS (Programación Lineal Secuencial). PLS es un método que soluciona un problema de optimización no lineal convirtiéndolo en una serie de problemas lineales. La linealización del problema se hace por medio de la serie de Taylor y cada problema lineal se soluciona usando programación lineal, con algoritmos bien conocidos como el Simplex o el KarmarkarProyecto de Grado (Ingeniero Mecánico)-- Universidad Autónoma de Occidente, 2012PregradoIngeniero(a) Mecánico(a)application/pdfspaUniversidad Autónoma de OccidenteIngeniería MecánicaDepartamento de Energética y MecánicaFacultad de IngenieríaEL AUTOR autoriza a la Universidad Autónoma de Occidente, de forma indefinida, para que en los términos establecidos en la Ley 23 de 1982, la Ley 44 de 1993, la Decisión andina 351 de 1993, el Decreto 460 de 1995 y demás leyes y jurisprudencia vigente al respecto, haga publicación de este con fines educativos. PARÁGRAFO: Esta autorización además de ser válida para las facultades y derechos de uso sobre la obra en formato o soporte material, también para formato digital, electrónico, virtual, para usos en red, Internet, extranet, intranet, biblioteca digital y demás para cualquier formato conocido o por conocer. EL AUTOR, expresa que el documento (trabajo de grado, pasantía, casos o tesis) objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, el documento (trabajo de grado, pasantía, casos o tesis) es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRADO: en caso de presentarse alguna reclamación o acción por parte de un tercero, referente a los derechos de autor sobre el documento (Trabajo de grado, Pasantía, casos o tesis) en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Universidad Autónoma de Occidente actúa como un tercero de buena fe. Toda persona que consulte ya sea en la biblioteca o en medio electrónico podrá copiar apartes del texto citando siempre la fuente, es decir el título del trabajo y el autor. Esta autorización no implica renuncia a la facultad que tengo de publicar total o parcialmente la obra.https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_abf2instname:Universidad Autónoma de Occidentereponame:Repositorio Institucional UAOIngeniería MecánicaMétodo de elementos finitosTopologíaOptimización estructuralFinite element methodTopologyStructural optimizationOptimización topológica en el diseño de elementos estructurales mecánicosTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Publicationhttps://scholar.google.com/citations?user=4paPIoAAAAAJ&hl=esvirtual::1816-10000-0001-7518-704Xvirtual::1816-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001243730virtual::1816-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::1816-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::1816-1THUMBNAILTME01179.pdf.jpgTME01179.pdf.jpgGenerated Thumbnailimage/jpeg5227https://red.uao.edu.co/bitstreams/4f6a2504-85be-4016-9b22-dc8db8ee4093/downloaddbe546acfe7ad7de4b0cda6a2d3b8bb5MD54ORIGINALTME01179.pdfTME01179.pdfapplication/pdf3824501https://red.uao.edu.co/bitstreams/9400f0a6-12d7-4576-95ad-c8bfaeda0c8e/download681d790601b8a9bb443804717ec65e6fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-816237https://red.uao.edu.co/bitstreams/eb7e2fee-7186-4853-afdf-c189f433e5a2/downloade2dd342f2c351b678ff0101de2d0e3d8MD52TEXTTME01179.pdf.txtTME01179.pdf.txtExtracted texttext/plain102476https://red.uao.edu.co/bitstreams/504642d1-59fa-41f5-a3fc-f07869f0dc5b/downloadef91aa615628668d5864e88126220798MD5310614/4209oai:red.uao.edu.co:10614/42092024-03-05 10:57:51.089https://creativecommons.org/licenses/by-nc/4.0/EL AUTOR autoriza a la Universidad Autónoma de Occidente, de forma indefinida, para que en los términos establecidos en la Ley 23 de 1982, la Ley 44 de 1993, la Decisión andina 351 de 1993, el Decreto 460 de 1995 y demás leyes y jurisprudencia vigente al respecto, haga publicación de este con fines educativos. PARÁGRAFO: Esta autorización además de ser válida para las facultades y derechos de uso sobre la obra en formato o soporte material, también para formato digital, electrónico, virtual, para usos en red, Internet, extranet, intranet, biblioteca digital y demás para cualquier formato conocido o por conocer. EL AUTOR, expresa que el documento (trabajo de grado, pasantía, casos o tesis) objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, el documento (trabajo de grado, pasantía, casos o tesis) es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRADO: en caso de presentarse alguna reclamación o acción por parte de un tercero, referente a los derechos de autor sobre el documento (Trabajo de grado, Pasantía, casos o tesis) en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Universidad Autónoma de Occidente actúa como un tercero de buena fe. Toda persona que consulte ya sea en la biblioteca o en medio electrónico podrá copiar apartes del texto citando siempre la fuente, es decir el título del trabajo y el autor. Esta autorización no implica renuncia a la facultad que tengo de publicar total o parcialmente la obra.open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPGh0bWw+CjxoZWFkPgo8dGl0bGU+Q3JlYXRpdmUgQ29tbW9ucyBDb2xvbWJpYTwvdGl0bGU+CjwvaGVhZD4KPGJvZHkgPgoKPGRpdiBpZD0iZGVlZCI+Cjxici8+Cgo8dGQgYWxpZ249Imp1c3RpZnkiPgo8cD48c3Ryb25nPlBhcmEgdGVuZXIgbcOhcyBpbmZvcm1hY2nDs24gdmlzaXRlOjwvc3Ryb25nPjwvcD4KPHA+Q3JlYXRpdmUgQ29tbW9ucyBDb2xvbWJpYSAKPGEgaHJlZj0iaHR0cDovL2NvLmNyZWF0aXZlY29tbW9ucy5vcmcvIiBUQVJHRVQ9Il9uZXciPmh0dHA6Ly9jby5jcmVhdGl2ZWNvbW1vbnMub3JnLwo8L2E+PC9wPgo8cD5DcmVhdGl2ZSBDb21tb25zCjxhIGhyZWY9Imh0dHA6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnLyIgVEFSR0VUPSJfbmV3Ij5odHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy88L2E+CjwvcD48YnI+Cgo8ZGl2IHN0eWxlPSJ3aWR0aDo4MDBweDtoZWlnaHQ6MjQyMHB4O2JvcmRlcjoycHggZG91YmxlICMxOTU4OTc7Ij4KCjxwIGFsaWduPSJjZW50ZXIiPjxzdHJvbmc+TGljZW5jaWEgPC9zdHJvbmc+PC9wPgoKICA8cD48Zm9udCBzaXplPSIxIj5MQSBPQlJBIChUQUwgWSBDT01PIFNFIERFRklORSBNw4FTIEFERUxBTlRFKSBTRSBPVE9SR0EgQkFKTyBMT1MgVEVSTUlOT1MgREUgRVNUQSBMSUNFTkNJQSBQw5pCTElDQSBERSBDUkVBVElWRSBDT01NT05TICjigJxMUEND4oCdIE8g4oCcTElDRU5DSUHigJ0pLiBMQSBPQlJBIEVTVMOBIFBST1RFR0lEQSBQT1IgREVSRUNIT1MgREUgQVVUT1IgWS9VIE9UUkFTIExFWUVTIEFQTElDQUJMRVMuIFFVRURBIFBST0hJQklETyBDVUFMUVVJRVIgVVNPIFFVRSBTRSBIQUdBIERFIExBIE9CUkEgUVVFIE5PIENVRU5URSBDT04gTEEgQVVUT1JJWkFDScOTTiBQRVJUSU5FTlRFIERFIENPTkZPUk1JREFEIENPTiBMT1MgVMOJUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgWSBERSBMQSBMRVkgREUgREVSRUNITyBERSBBVVRPUi48L3A+CgogIDxwPk1FRElBTlRFIEVMIEVKRVJDSUNJTyBERSBDVUFMUVVJRVJBIERFIExPUyBERVJFQ0hPUyBRVUUgU0UgT1RPUkdBTiBFTiBFU1RBIExJQ0VOQ0lBLCBVU1RFRCBBQ0VQVEEgWSBBQ1VFUkRBIFFVRURBUiBPQkxJR0FETyBFTiBMT1MgVEVSTUlOT1MgUVVFIFNFIFNFw5FBTEFOIEVOIEVMTEEuIEVMIExJQ0VOQ0lBTlRFIENPTkNFREUgQSBVU1RFRCBMT1MgREVSRUNIT1MgQ09OVEVOSURPUyBFTiBFU1RBIExJQ0VOQ0lBIENPTkRJQ0lPTkFET1MgQSBMQSBBQ0VQVEFDScOTTiBERSBTVVMgVEVSTUlOT1MgWSBDT05ESUNJT05FUy4gPC9mb250PjwvcD4KCiAgPHA+PHN0cm9uZz4xLiBEZWZpbmljaW9uZXMgPC9zdHJvbmc+PC9wPgoKICA8b2wgdHlwZT0nYSc+CgogICAgPGxpPjxzdHJvbmc+T2JyYSBDb2xlY3RpdmEgPC9zdHJvbmc+IGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4gPC9saT4KCiAgPGxpPjxzdHJvbmc+T2JyYSBEZXJpdmFkYSA8L3N0cm9uZz4gc2lnbmlmaWNhIHVuYSBvYnJhIGJhc2FkYSBlbiBsYSBvYnJhIG9iamV0byBkZSBlc3RhIGxpY2VuY2lhIG8gZW4gw6lzdGEgeSBvdHJhcyBvYnJhcyBwcmVleGlzdGVudGVzLCB0YWxlcyBjb21vIHRyYWR1Y2Npb25lcywgYXJyZWdsb3MgbXVzaWNhbGVzLCBkcmFtYXRpemFjaW9uZXMsIOKAnGZpY2Npb25hbGl6YWNpb25lc+KAnSwgdmVyc2lvbmVzIHBhcmEgY2luZSwg4oCcZ3JhYmFjaW9uZXMgZGUgc29uaWRv4oCdLCByZXByb2R1Y2Npb25lcyBkZSBhcnRlLCByZXPDum1lbmVzLCBjb25kZW5zYWNpb25lcywgbyBjdWFscXVpZXIgb3RyYSBlbiBsYSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgdHJhbnNmb3JtYWRhLCBjYW1iaWFkYSBvIGFkYXB0YWRhLCBleGNlcHRvIGFxdWVsbGFzIHF1ZSBjb25zdGl0dXlhbiB1bmEgb2JyYSBjb2xlY3RpdmEsIGxhcyBxdWUgbm8gc2Vyw6FuIGNvbnNpZGVyYWRhcyB1bmEgb2JyYSBkZXJpdmFkYSBwYXJhIGVmZWN0b3MgZGUgZXN0YSBsaWNlbmNpYS4gKFBhcmEgZXZpdGFyIGR1ZGFzLCBlbiBlbCBjYXNvIGRlIHF1ZSBsYSBPYnJhIHNlYSB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWwgbyB1bmEgZ3JhYmFjacOzbiBzb25vcmEsIHBhcmEgbG9zIGVmZWN0b3MgZGUgZXN0YSBMaWNlbmNpYSBsYSBzaW5jcm9uaXphY2nDs24gdGVtcG9yYWwgZGUgbGEgT2JyYSBjb24gdW5hIGltYWdlbiBlbiBtb3ZpbWllbnRvIHNlIGNvbnNpZGVyYXLDoSB1bmEgT2JyYSBEZXJpdmFkYSBwYXJhIGxvcyBmaW5lcyBkZSBlc3RhIGxpY2VuY2lhKS4gPC9saT4KCiAgPGxpPjxzdHJvbmc+TGljZW5jaWFudGUsIDwvc3Ryb25nPiBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIDwvbGk+CgogIDxsaT48c3Ryb25nPkF1dG9yIG9yaWdpbmFsLCA8L3N0cm9uZz5lcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuIDwvbGk+CgogIDxsaT48c3Ryb25nPk9icmE8L3N0cm9uZz4sIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEgPC9saT4KCiAgPGxpPjxzdHJvbmc+VXN0ZWQ8L3N0cm9uZz4sIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuIDwvbGk+CgogIDwvb2w+CgogIDxwPjxzdHJvbmc+Mi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuIDwvc3Ryb25nPjwvcD4KCiAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuIDwvcD4KCiAgPHA+PHN0cm9uZz4zLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLiA8L3N0cm9uZz48L3A+CgogIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246IDwvcD4KCiAgPG9sIHR5cGU9J2EnPgoKICAgIDxsaT4gUmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhczsgPC9saT4KCiAgPGxpPiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGE7IDwvbGk+CgogIDxsaT4gRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gPC9saT4KCiAgPC9vbD4KCiAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4gPC9wPgoKICA8cD48c3Ryb25nPjQuIFJlc3RyaWNjaW9uZXMuIDwvc3Ryb25nPjwvcD4KCiAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6IDwvcD4KCiAgPG9sIHR5cGU9J2EnPgoKICAgIDxsaT4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLiA8L2xpPgoKICA8bGk+IFVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4gPC9saT4KCiAgPGxpPiBTaSB1c3RlZCBkaXN0cmlidXllLCBleGhpYmUgcMO6YmxpY2FtZW50ZSwgZWplY3V0YSBww7pibGljYW1lbnRlIG8gZWplY3V0YSBww7pibGljYW1lbnRlIGVuIGZvcm1hIGRpZ2l0YWwgbGEgT2JyYSBvIGN1YWxxdWllciBPYnJhIERlcml2YWRhIHUgT2JyYSBDb2xlY3RpdmEsIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0YSB0b2RhIGxhIGluZm9ybWFjacOzbiBkZSBkZXJlY2hvIGRlIGF1dG9yIGRlIGxhIE9icmEgeSBwcm9wb3JjaW9uYXIsIGRlIGZvcm1hIHJhem9uYWJsZSBzZWfDum4gZWwgbWVkaW8gbyBtYW5lcmEgcXVlIFVzdGVkIGVzdMOpIHV0aWxpemFuZG86IChpKSBlbCBub21icmUgZGVsIEF1dG9yIE9yaWdpbmFsIHNpIGVzdMOhIHByb3Zpc3RvIChvIHNldWTDs25pbW8sIHNpIGZ1ZXJlIGFwbGljYWJsZSksIHkvbyAoaWkpIGVsIG5vbWJyZSBkZSBsYSBwYXJ0ZSBvIGxhcyBwYXJ0ZXMgcXVlIGVsIEF1dG9yIE9yaWdpbmFsIHkvbyBlbCBMaWNlbmNpYW50ZSBodWJpZXJlbiBkZXNpZ25hZG8gcGFyYSBsYSBhdHJpYnVjacOzbiAodi5nLiwgdW4gaW5zdGl0dXRvIHBhdHJvY2luYWRvciwgZWRpdG9yaWFsLCBwdWJsaWNhY2nDs24pIGVuIGxhIGluZm9ybWFjacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGVsIExpY2VuY2lhbnRlLCB0w6lybWlub3MgZGUgc2VydmljaW9zIG8gZGUgb3RyYXMgZm9ybWFzIHJhem9uYWJsZXM7IGVsIHTDrXR1bG8gZGUgbGEgT2JyYSBzaSBlc3TDoSBwcm92aXN0bzsgZW4gbGEgbWVkaWRhIGRlIGxvIHJhem9uYWJsZW1lbnRlIGZhY3RpYmxlIHksIHNpIGVzdMOhIHByb3Zpc3RvLCBlbCBJZGVudGlmaWNhZG9yIFVuaWZvcm1lIGRlIFJlY3Vyc29zIChVbmlmb3JtIFJlc291cmNlIElkZW50aWZpZXIpIHF1ZSBlbCBMaWNlbmNpYW50ZSBlc3BlY2lmaWNhIHBhcmEgc2VyIGFzb2NpYWRvIGNvbiBsYSBPYnJhLCBzYWx2byBxdWUgdGFsIFVSSSBubyBzZSByZWZpZXJhIGEgbGEgbm90YSBzb2JyZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgbyBhIGxhIGluZm9ybWFjacOzbiBzb2JyZSBlbCBsaWNlbmNpYW1pZW50byBkZSBsYSBPYnJhOyB5IGVuIGVsIGNhc28gZGUgdW5hIE9icmEgRGVyaXZhZGEsIGF0cmlidWlyIGVsIGNyw6lkaXRvIGlkZW50aWZpY2FuZG8gZWwgdXNvIGRlIGxhIE9icmEgZW4gbGEgT2JyYSBEZXJpdmFkYSAodi5nLiwgIlRyYWR1Y2Npw7NuIEZyYW5jZXNhIGRlIGxhIE9icmEgZGVsIEF1dG9yIE9yaWdpbmFsLCIgbyAiR3Vpw7NuIENpbmVtYXRvZ3LDoWZpY28gYmFzYWRvIGVuIGxhIE9icmEgb3JpZ2luYWwgZGVsIEF1dG9yIE9yaWdpbmFsIikuIFRhbCBjcsOpZGl0byBwdWVkZSBzZXIgaW1wbGVtZW50YWRvIGRlIGN1YWxxdWllciBmb3JtYSByYXpvbmFibGU7IGVuIGVsIGNhc28sIHNpbiBlbWJhcmdvLCBkZSBPYnJhcyBEZXJpdmFkYXMgdSBPYnJhcyBDb2xlY3RpdmFzLCB0YWwgY3LDqWRpdG8gYXBhcmVjZXLDoSwgY29tbyBtw61uaW1vLCBkb25kZSBhcGFyZWNlIGVsIGNyw6lkaXRvIGRlIGN1YWxxdWllciBvdHJvIGF1dG9yIGNvbXBhcmFibGUgeSBkZSB1bmEgbWFuZXJhLCBhbCBtZW5vcywgdGFuIGRlc3RhY2FkYSBjb21vIGVsIGNyw6lkaXRvIGRlIG90cm8gYXV0b3IgY29tcGFyYWJsZS4gPC9saT4KCiAgPGxpPiBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKCiAgICA8b2wgdHlwZT0naSc+CgogICAgICA8bGk+IFJlZ2Fsw61hcyBwb3IgaW50ZXJwcmV0YWNpw7NuIHkgZWplY3VjacOzbiBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMuIEVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBleGNsdXNpdm8gZGUgYXV0b3JpemFyIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgbyBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSB5IGRlIHJlY29sZWN0YXIsIHNlYSBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBTQVlDTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgbyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvIFdlYmNhc3QpIGxpY2VuY2lhZGEgYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLCBzaSBsYSBpbnRlcnByZXRhY2nDs24gbyBlamVjdWNpw7NuIGRlIGxhIG9icmEgZXN0w6EgcHJpbW9yZGlhbG1lbnRlIG9yaWVudGFkYSBwb3IgbyBkaXJpZ2lkYSBhIGxhIG9idGVuY2nDs24gZGUgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuIDwvbGk+CgogICAgPGxpPiBSZWdhbMOtYXMgcG9yIEZvbm9ncmFtYXMuIEVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBleGNsdXNpdm8gZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCB1bmEgYWdlbmNpYSBkZSBkZXJlY2hvcyBtdXNpY2FsZXMgbyBhbGfDum4gYWdlbnRlIGRlc2lnbmFkbywgbGFzIHJlZ2Fsw61hcyBwb3IgY3VhbHF1aWVyIGZvbm9ncmFtYSBxdWUgVXN0ZWQgY3JlZSBhIHBhcnRpciBkZSBsYSBvYnJhICjigJx2ZXJzacOzbiBjb3ZlcuKAnSkgeSBkaXN0cmlidXlhLCBlbiBsb3MgdMOpcm1pbm9zIGRlbCByw6lnaW1lbiBkZSBkZXJlY2hvcyBkZSBhdXRvciwgc2kgbGEgY3JlYWNpw7NuIG8gZGlzdHJpYnVjacOzbiBkZSBlc2EgdmVyc2nDs24gY292ZXIgZXN0w6EgcHJpbW9yZGlhbG1lbnRlIGRlc3RpbmFkYSBvIGRpcmlnaWRhIGEgb2J0ZW5lciB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gPC9saT4KCiAgICA8L29sPjwvbGk+CgogIDxsaT4gR2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFjaW5wcm8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiA8L2xpPgoKICAgIAoKICA8L29sPgoKICA8cD48c3Ryb25nPjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLiA8L3N0cm9uZz48L3A+CgogIDxwPjxmb250IHNpemU9IjEiPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuIDwvcD4KCiAgPHA+PHN0cm9uZz42LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuIDwvc3Ryb25nPjwvcD4KCiAgPHA+QSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4gPC9mb250PjwvcD4KCiAgPHA+PHN0cm9uZz43LiBUw6lybWlubzwvc3Ryb25nPi4gPHN0cm9uZz48L3N0cm9uZz48L3A+CgogIDxvbCB0eXBlPSdhJz4KCiAgICA8bGk+RXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuIDwvbGk+CgogICAgPGxpPlN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLiA8L2xpPgoKICA8L29sPgoKICA8cD48c3Ryb25nPjguIFZhcmlvcy4gPC9zdHJvbmc+PC9wPgoKICA8b2wgdHlwZT0nYSc+CgogICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuIDwvbGk+CgogIDxsaT5TaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyA8c3Ryb25nPjwvc3Ryb25nPnBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLiA8L2xpPgoKICA8bGk+TmluZ8O6biB0w6lybWlubyBvIGRpc3Bvc2ljacOzbiBkZSBlc3RhIExpY2VuY2lhIHNlIGVzdGltYXLDoSByZW51bmNpYWRhIHkgbmluZ3VuYSB2aW9sYWNpw7NuIGRlIGVsbGEgc2Vyw6EgY29uc2VudGlkYSBhIG1lbm9zIHF1ZSBlc2EgcmVudW5jaWEgbyBjb25zZW50aW1pZW50byBzZWEgb3RvcmdhZG8gcG9yIGVzY3JpdG8geSBmaXJtYWRvIHBvciBsYSBwYXJ0ZSBxdWUgcmVudW5jaWUgbyBjb25zaWVudGEuIDwvbGk+CgogIDxsaT5Fc3RhIExpY2VuY2lhIHJlZmxlamEgZWwgYWN1ZXJkbyBwbGVubyBlbnRyZSBsYXMgcGFydGVzIHJlc3BlY3RvIGEgbGEgT2JyYSBhcXXDrSBsaWNlbmNpYWRhLiBObyBoYXkgYXJyZWdsb3MsIGFjdWVyZG9zIG8gZGVjbGFyYWNpb25lcyByZXNwZWN0byBhIGxhIE9icmEgcXVlIG5vIGVzdMOpbiBlc3BlY2lmaWNhZG9zIGVuIGVzdGUgZG9jdW1lbnRvLiBFbCBMaWNlbmNpYW50ZSBubyBzZSB2ZXLDoSBsaW1pdGFkbyBwb3IgbmluZ3VuYSBkaXNwb3NpY2nDs24gYWRpY2lvbmFsIHF1ZSBwdWVkYSBzdXJnaXIgZW4gYWxndW5hIGNvbXVuaWNhY2nDs24gZW1hbmFkYSBkZSBVc3RlZC4gRXN0YSBMaWNlbmNpYSBubyBwdWVkZSBzZXIgbW9kaWZpY2FkYSBzaW4gZWwgY29uc2VudGltaWVudG8gbXV0dW8gcG9yIGVzY3JpdG8gZGVsIExpY2VuY2lhbnRlIHkgVXN0ZWQuIDwvbGk+CgogIDwvb2w+Cgo8L2Rpdj4KPC9ib2R5Pgo8L2h0bWw+Cg== |