Optimization of physical, optical and barrier properties of films made from cassava starch and rosemary oil

In this study, films from cassava starch and rosemary oil were prepared by using the casting method. Glycerol was used as plasticizer and tween 80 as surfactant. The influence of Cassava starch (Cs), Rosemary oil (Ro), Surfactant (Sf) concentrations and Thickness of film (Tf) on the mechanical, opti...

Full description

Autores:
Gordillo Suárez, Marisol
Navia Porras, Diana Paola
Hernández Umaña, Joaquín
Poveda Perdomo, Luis Gabriel
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11389
Acceso en línea:
http://hdl.handle.net/10614/11389
https://doi.org/10.1007/s10924-018-1316-2
Palabra clave:
Almidón
Starch
Cassava starch
Rosemary oil
Biobased films
Bioplastics
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_6346954e12cb76b43fdcc73f13b36e17
oai_identifier_str oai:red.uao.edu.co:10614/11389
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Optimization of physical, optical and barrier properties of films made from cassava starch and rosemary oil
title Optimization of physical, optical and barrier properties of films made from cassava starch and rosemary oil
spellingShingle Optimization of physical, optical and barrier properties of films made from cassava starch and rosemary oil
Almidón
Starch
Cassava starch
Rosemary oil
Biobased films
Bioplastics
title_short Optimization of physical, optical and barrier properties of films made from cassava starch and rosemary oil
title_full Optimization of physical, optical and barrier properties of films made from cassava starch and rosemary oil
title_fullStr Optimization of physical, optical and barrier properties of films made from cassava starch and rosemary oil
title_full_unstemmed Optimization of physical, optical and barrier properties of films made from cassava starch and rosemary oil
title_sort Optimization of physical, optical and barrier properties of films made from cassava starch and rosemary oil
dc.creator.fl_str_mv Gordillo Suárez, Marisol
Navia Porras, Diana Paola
Hernández Umaña, Joaquín
Poveda Perdomo, Luis Gabriel
dc.contributor.author.none.fl_str_mv Gordillo Suárez, Marisol
Navia Porras, Diana Paola
Hernández Umaña, Joaquín
Poveda Perdomo, Luis Gabriel
dc.subject.lemb.spa.fl_str_mv Almidón
topic Almidón
Starch
Cassava starch
Rosemary oil
Biobased films
Bioplastics
dc.subject.lemb.eng.fl_str_mv Starch
dc.subject.proposal.eng.fl_str_mv Cassava starch
Rosemary oil
Biobased films
Bioplastics
description In this study, films from cassava starch and rosemary oil were prepared by using the casting method. Glycerol was used as plasticizer and tween 80 as surfactant. The influence of Cassava starch (Cs), Rosemary oil (Ro), Surfactant (Sf) concentrations and Thickness of film (Tf) on the mechanical, optical, and barrier properties of cassava starch films was studied applying the Response Surface Methodology. The response variables were optimized by using second order polynomial models with satisfactory fit and coefficient of determination (R2) values (> 81%). The optimized conditions with the goal of maximizing mechanical properties and minimizing barrier and optical properties and desirability function (0.9796) were Cs = 3 g/100 g solution, Ro = 4 g/100 g Cs, Sf = 69 g/100 g Ro and Tf = 0.05 ± 0.001 mm. The films produced under these conditions displayed high mechanical strength (16.7 MPa), young´s modulus (2911.4 MPa), low elongation at break (0.2%), low water vapor transmission (0.8 × 10−14 g/Pa s m), low solubility (33.24%), and low opacity (16%). These results provided good mechanical, barrier, and optical properties, compared to films based on other starch resources
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-11-07
dc.date.accessioned.none.fl_str_mv 2019-11-01T20:57:39Z
dc.date.available.none.fl_str_mv 2019-11-01T20:57:39Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1566-2543
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/10614/11389
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/s10924-018-1316-2
identifier_str_mv 1566-2543
url http://hdl.handle.net/10614/11389
https://doi.org/10.1007/s10924-018-1316-2
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 140
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 127
dc.relation.citationvolume.none.fl_str_mv 27
dc.relation.cites.eng.fl_str_mv Porras, D. P. N., Suárez, M. G., Umaña, J. H., & Perdomo, L. G. P. (2019). Optimization of Physical, Optical and Barrier Properties of Films Made from Cassava Starch and Rosemary Oil. Journal of Polymers and the Environment, 27(1), 127-140
dc.relation.ispartofjournal.eng.fl_str_mv Polymers And The Environment, volumen 27, issue 1, páginas 127-140, 2018
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 14 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Springer Nature
dc.source.spa.fl_str_mv reponame:Repositorio Institucional UAO
institution Universidad Autónoma de Occidente
reponame_str Repositorio Institucional UAO
collection Repositorio Institucional UAO
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/2c6cf724-592f-4b66-a8bc-35f6d3dd092e/download
https://red.uao.edu.co/bitstreams/2789ee4b-e0a0-4c18-8560-f90fd65aed4e/download
https://red.uao.edu.co/bitstreams/af169917-c9af-4109-be05-124d15bb14b5/download
https://red.uao.edu.co/bitstreams/c92b5cdf-0190-44df-8859-3166fe4b85b8/download
https://red.uao.edu.co/bitstreams/1f462dfa-eb34-4732-b04a-f92419d1518e/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
8cd8f27ff7c37bbf2aa772fee7af066a
53b887888e790942a8212496f5847491
181787d70947337096b1318cf47ccac9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259934352637952
spelling Gordillo Suárez, Marisolvirtual::2013-1Navia Porras, Diana Paola9e5bbf93712859c44d8a898d7fdb6673Hernández Umaña, Joaquín2b6e138d13d86a3ff81afedfc173ff45Poveda Perdomo, Luis Gabriel08489ff52918a506e406b45903cf3ee7Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-01T20:57:39Z2019-11-01T20:57:39Z2018-11-071566-2543http://hdl.handle.net/10614/11389https://doi.org/10.1007/s10924-018-1316-2In this study, films from cassava starch and rosemary oil were prepared by using the casting method. Glycerol was used as plasticizer and tween 80 as surfactant. The influence of Cassava starch (Cs), Rosemary oil (Ro), Surfactant (Sf) concentrations and Thickness of film (Tf) on the mechanical, optical, and barrier properties of cassava starch films was studied applying the Response Surface Methodology. The response variables were optimized by using second order polynomial models with satisfactory fit and coefficient of determination (R2) values (> 81%). The optimized conditions with the goal of maximizing mechanical properties and minimizing barrier and optical properties and desirability function (0.9796) were Cs = 3 g/100 g solution, Ro = 4 g/100 g Cs, Sf = 69 g/100 g Ro and Tf = 0.05 ± 0.001 mm. The films produced under these conditions displayed high mechanical strength (16.7 MPa), young´s modulus (2911.4 MPa), low elongation at break (0.2%), low water vapor transmission (0.8 × 10−14 g/Pa s m), low solubility (33.24%), and low opacity (16%). These results provided good mechanical, barrier, and optical properties, compared to films based on other starch resourcesapplication/pdf14 páginasengSpringer NatureDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)1. Gutiérrez TJ, Álvarez K (2016) Physico-chemical properties and in vitro digestibility of edible films made from plantain flour with added Aloe vera gel. J Funct Foods 26:750–7622. Podshivalov A, Zakharova M, Glazacheva E, Uspenskaya M (2017) Gelatin/potato starch edible biocomposite films: correlation between morphology and physical properties. Carbohydr Polym 157:1162–11723. Tian H, Yan J, Rajulu AV, Xiang A, Luo X (2017) Fabrication and properties of polyvinyl alcohol/starch blend films: effect of composition and humidity. Int J Biol Macromol 96:518–5234. Debiagi F, Kobayashi RKT, Nakazato G, Panagio LA (2014) Biodegradable active packaging based on cassava bagasse, polyvinyl alcohol and essential oils. Ind Crop Prod 52:664–6705. Mukurumbira AR, Mellem JJ, Amonsou EO (2017) Effects of amadumbe starch nanocrystals on the physicochemical properties of starch biocomposite films. Carbohydr Polym 165:142–1486. Ghasemlou M, Aliheidari N, Fahmi R, Shojaee-Aliabadi S (2013) Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydr Polym 98:1117–11267. Medina C, Gutiérrez TJ, Goyanes S, Bernal C, Famá L (2016) Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydr Polym 151:150–1598. Xie F, Pollet E, Halley PJ, Avérous L (2013) Starch-based nanobiocomposites. Prog Polym Sci 38:1590–16289. Acosta S, Chiralt A, Santamarina P, Rosello J (2016) Antifungal films based on starch-gelatin blend, containing essential oils. Food Hydrocoll 61:233–24010. Kenny M, Peponi L, Sessini V, Arrieta MP (2016) Processing of edible films based on nanoreinforced gelatinized starch. Polym Degrad Stab 132:157–16811. Liu B, Xu H, Zhao H, Liu W, Zhao L, Li Y (2017) Preparation and characterization of intelligent starch / PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. Carbohydr Polym 157:842–84912. Mohammad S, Hashemi B, Mousavi A (2017) Characterization of novel basil-seed gum active edible films and coatings containing oregano essential oil. Prog Org Coatings 110:35–4113. Souza AC, Goto GEO, Mainardi JA, Coelho ACV, Tadini CC (2013) Cassava starch composite films incorporated with cinnamon essential oil: antimicrobial activity, microstructure, mechanical and barrier properties. LWT 54:346–35214. Ruiz-Navajas Y, Viuda-Martos M, Sendra E, Perez-Alvarez JA, Fernández-López J (2013) In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control 30:386–39215. Pranoto Y, Rakshit SKÃ, Salokhe VM (2005) Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT 38:859–86516. Saberi B et al (2016) Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum. Ind Crop Prod 86:342–35217. Wood DF, Velazquez G (2016) Physical characterization of biodegradable films based on chitosan, polyvinyl alcohol and Opuntia mucilage. J Polym Environ 25:683–69118. ASTM. Standard Test Method for Tensile Properties of Thin Plastic Sheeting 1. no. C. pp. 1–10. (2010)19. Farahnaky A, Saberi B, Majzoobi M (2013) Effect of glycerol on physical and mechanical properties of wheat starch edible films. J Texture Stud 44:176–18620. Daudt RM et al (2016) Comparative study on properties of edible films based on pinhão (Araucaria angustifolia) starch and flour. Food Hydrocoll 60:279–28721. Castillo ED, Montgomery DC, McCarville DR (1996) Modified desirability functions for multiple response optimization. J Qual Technol 52:337–34522. Chiumarelli M, Hubinger MD (2014) Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocoll 38:20–2723. Pelissari F, Andrade-Mahecha MM, José P, Cecilia F (2013) Optimization of process conditions for the production of films based on the flour from plantain bananas (Musa paradisiaca). LWT 52:1–1124. Castaño J, Guadarrama-Lezama AY, Hernández J, Colín-Cruz M (2016) Preparation, characterization and antifungal properties of polysaccharide—polysaccharide and polysaccharide—protein films. J Mater Sci 52:353–36625. Jiménez A, Fabra MJ, Talens P, Chiralt A (2013) Phase transitions in starch based films containing fatty acids. Effect on water sorption and mechanical behaviour. Food Hydrocoll 30:408–41826. Basiak E, Lenart A, Debeaufort F (2017) Effect of starch type on the physico-chemical properties of edible films. Int J Biol Macromol 98:348–35627. Biduski B et al (2017) Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films. Food Chem 214:53–6028. Romani VP, Prentice-Hernández C, Martins VG (2017) Active and sustainable materials from rice starch, fish protein and oregano essential oil for food packaging. Ind Crop Prod 97:268–27429. Brandelero RPH, Yamashita F, Victória M, Grossmann E (2010) The effect of surfactant Tween 80 on the hydrophilicity, wáter vapor permeation, and the mechanical properties of cassava starch and poly (butylene adipate-co-terephthalate) (PBAT) blend films. Carbohydr Polym 82:1102–110930. Rodríguez M, Osés J, Ziani K, Maté JI (2006) Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Res Int 39:840–84631. Fakhreddin S, Rezaei M, Zandi M, Farahmand F (2013) Preparation and functional properties of fish gelatin–chitosan blend edible films. Food Chem 136:1490–149532. Medina-jaramillo C, Alex L, Goyanes S (2017) Cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocoll 63:488–49533. Colivet J, Carvalho RA (2017) Hydrophilicity and physicochemical properties of chemically modified cassava starch films. Ind Crop Prod 95:599–60734. Souza AC, Benze R, Ferrão ES, Ditch C, Coelho ACV, Tadini CC (2012) Cassava starch biodegradable films: Influence of glicerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT 46:110–11735. Chiralt R, Villalobos, Herna P (2006) Effect of surfactants on water sorption and barrier properties of hydroxypropyl methylcellulose films. Food Hydrocoll 20:502–50936. Shen XL, Min J, Chen Y, Zhao G (2010) Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocoll 24:285–29037. Belibi PC, Daou TJ, Ndjaka JMB, Nsom B, Michelin L, Durand B (2014) A comparative study of some properties of cassava and tree cassava starch films. Phys Procedia 55:220–22638. Kavoosi G, Mohammad S, Dadfar M, Purfard AM (2013) Antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. J Food Sci 78:244–25039. Navia DP, Ayala AA, Villada HS (2014) Water vapor adsorption of flour bioplastics made from two varieties of cassava (Manihot esculenta Crantz). Inf Tecnológica 25:23–3240. Andrade-mahecha MM, Tapia-blácido DR, Cecilia F (2012) Development and optimization of biodegradable films based on achira flour. Carbohydr Polym 88:449–45841. Abreu AS et al (2015) Antimicrobial nanostructured starch based films for packaging. Carbohydr Polym 129:127–134http://purl.org/coar/access_right/c_abf2reponame:Repositorio Institucional UAOOptimization of physical, optical and barrier properties of films made from cassava starch and rosemary oilArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85AlmidónStarchCassava starchRosemary oilBiobased filmsBioplastics140112727Porras, D. P. N., Suárez, M. G., Umaña, J. H., & Perdomo, L. G. P. (2019). Optimization of Physical, Optical and Barrier Properties of Films Made from Cassava Starch and Rosemary Oil. Journal of Polymers and the Environment, 27(1), 127-140Polymers And The Environment, volumen 27, issue 1, páginas 127-140, 2018Publicationef737148-ed0f-4f64-af7e-d275f09fb3ebvirtual::2013-1ef737148-ed0f-4f64-af7e-d275f09fb3ebvirtual::2013-1https://scholar.google.com/citations?user=lj0tkLsAAAAJ&hl=es&oi=sravirtual::2013-10000-0003-1602-5547virtual::2013-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000472255virtual::2013-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/2c6cf724-592f-4b66-a8bc-35f6d3dd092e/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/2789ee4b-e0a0-4c18-8560-f90fd65aed4e/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALOptimization of physical, optical and barrier properties of films made from Cassava starch and Rosemary oil.pdfOptimization of physical, optical and barrier properties of films made from Cassava starch and Rosemary oil.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1729386https://red.uao.edu.co/bitstreams/af169917-c9af-4109-be05-124d15bb14b5/download8cd8f27ff7c37bbf2aa772fee7af066aMD54TEXTOptimization of physical, optical and barrier properties of films made from Cassava starch and Rosemary oil.pdf.txtOptimization of physical, optical and barrier properties of films made from Cassava starch and Rosemary oil.pdf.txtExtracted texttext/plain50804https://red.uao.edu.co/bitstreams/c92b5cdf-0190-44df-8859-3166fe4b85b8/download53b887888e790942a8212496f5847491MD55THUMBNAILOptimization of physical, optical and barrier properties of films made from Cassava starch and Rosemary oil.pdf.jpgOptimization of physical, optical and barrier properties of films made from Cassava starch and Rosemary oil.pdf.jpgGenerated Thumbnailimage/jpeg15697https://red.uao.edu.co/bitstreams/1f462dfa-eb34-4732-b04a-f92419d1518e/download181787d70947337096b1318cf47ccac9MD5610614/11389oai:red.uao.edu.co:10614/113892024-03-05 16:17:14.808https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K