Component-Based microservices for flexible and scalable automation of industrial bioprocesses

Industry 4.0 involves the digital transformation of the industry with the integration and digitization of all industrial processes that make up the value chain, which is characterized by adaptability, flexibility, and efficiency to meet the needs of customers in today’s market. Therefore, the adapta...

Full description

Autores:
Ibarra-Junquera, Vrani
González, Apolinar
Paredes, Carlos Mario
Martínez Castro, Diego
Nuñez, Rubi
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13891
Acceso en línea:
https://hdl.handle.net/10614/13891
https://red.uao.edu.co/
Palabra clave:
Automatización industrial
Industry 4.0
Distributed industrial automation systems,
Interoperability
Middleware
Industrial cyber-physical systems
Rights
openAccess
License
Derechos Reservados IEEE Access, 2021
id REPOUAO2_62f1c41816a027379d7b7164564bc9cd
oai_identifier_str oai:red.uao.edu.co:10614/13891
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Component-Based microservices for flexible and scalable automation of industrial bioprocesses
title Component-Based microservices for flexible and scalable automation of industrial bioprocesses
spellingShingle Component-Based microservices for flexible and scalable automation of industrial bioprocesses
Automatización industrial
Industry 4.0
Distributed industrial automation systems,
Interoperability
Middleware
Industrial cyber-physical systems
title_short Component-Based microservices for flexible and scalable automation of industrial bioprocesses
title_full Component-Based microservices for flexible and scalable automation of industrial bioprocesses
title_fullStr Component-Based microservices for flexible and scalable automation of industrial bioprocesses
title_full_unstemmed Component-Based microservices for flexible and scalable automation of industrial bioprocesses
title_sort Component-Based microservices for flexible and scalable automation of industrial bioprocesses
dc.creator.fl_str_mv Ibarra-Junquera, Vrani
González, Apolinar
Paredes, Carlos Mario
Martínez Castro, Diego
Nuñez, Rubi
dc.contributor.author.none.fl_str_mv Ibarra-Junquera, Vrani
González, Apolinar
Paredes, Carlos Mario
Martínez Castro, Diego
Nuñez, Rubi
dc.subject.spa.fl_str_mv Automatización industrial
topic Automatización industrial
Industry 4.0
Distributed industrial automation systems,
Interoperability
Middleware
Industrial cyber-physical systems
dc.subject.proposal.eng.fl_str_mv Industry 4.0
Distributed industrial automation systems,
Interoperability
Middleware
Industrial cyber-physical systems
description Industry 4.0 involves the digital transformation of the industry with the integration and digitization of all industrial processes that make up the value chain, which is characterized by adaptability, flexibility, and efficiency to meet the needs of customers in today’s market. Therefore, the adaptations of the new bioprocess industry require a lot of flexibility to react quickly and constantly to market changes and to be able to offer more specialized, customized products with high operational efficiency. This paper presents a flexible, scalable, and robust framework based on software components, container technology, microservice concepts, and the publish/subscribe paradigm. This framework allows new components to be added or removed online, without the need for system reconfiguration, while maintaining temporal and functional constraints in industrial automation systems. The main objective of the framework proposed is the use of components based on microservices, allowing easy implementation, scalability, and fast maintenance, without losing or degrading the robustness from previous developments. Finally, the effectiveness of the proposed framework was verified in two case studies (1) a soursop soda making process is presented, with a fuzzy controller implemented to keep the pasteurizer output flow constant (UHT) and (2) an automatic storage tank selection and filling process with actuated valves to direct the fluid to the corresponding tank at the time to start the process. The results showed that the platform provided a high-fidelity design, analysis, and testing environment for the flow of cyber information and its effect on the physical operation in a beverage processing plant with high demand for flexibility, scalability, and robustness of its processes, as they were experimentally verified in a real production process
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-04
dc.date.accessioned.none.fl_str_mv 2022-05-19T14:33:01Z
dc.date.available.none.fl_str_mv 2022-05-19T14:33:01Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 21693536
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13891
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 21693536
Universidad Autónoma de Occidente
Repositorio Educativo Digital
url https://hdl.handle.net/10614/13891
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 58207
dc.relation.citationstartpage.spa.fl_str_mv 58192
dc.relation.citationvolume.spa.fl_str_mv 9
dc.relation.cites.eng.fl_str_mv Junquera, V. I., González Potes, A., Paredes, C. M., Martínez Castro, D., Nuñez Vizcaino, R. A. (2021). Component-based microservices for flexible and scalable automation of industrial bioprocesses. IEEE. IEEE Access. Vol. 9, pp. 58192- 58207. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9399423&tag=1
dc.relation.ispartofjournal.eng.fl_str_mv IEEE Access
dc.relation.references.none.fl_str_mv [1] O. Cardin, ``Classi cation of cyber-physical production systems applications: Proposition of an analysis framework,'' Comput. Ind., vol. 104, pp. 11 21, Jan. 2019.
[2] I. Ungurean and N. C. Gaitan, ``A software architecture for the industrial Internet of Things A conceptual model,'' Sensors, vol. 20, no. 19, pp. 1 19, 2020.
[3] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, ``Edge computing: A survey,'' Future Gener. Comput. Syst., vol. 97, pp. 219 235, Aug. 2019.
[4] S. Aheleroff, X. Xu, Y. Lu, M. Aristizabal, J. P. Velásquez, B. Joa, and Y. Valencia, ``IoT-enabled smart appliances under industry 4.0: A case study,'' Adv. Eng. Informat., vol. 43, Jan. 2020, Art. no. 101043.
[5] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, ``Smart factory of industry 4.0: Key technologies, application case, and challenges,'' IEEE Access, vol. 6, pp. 6505 6519, 2018.
[6] W. Dai, P. Wang, W. Sun, X. Wu, H. Zhang, V. Vyatkin, and G. Yang, “Semantic integration of plug-and-play software components for industrial edges based on microservices,” IEEE Access, vol. 7, pp. 125882 125892, 2019.
[7] M. Alam, J. Ru no, J. Ferreira, S. H. Ahmed, N. Shah, and Y. Chen, ``Orchestration of microservices for IoT using docker and edge computing,'' IEEE Commun. Mag., vol. 56, no. 9, pp. 118 123, Sep. 2018.
[8] R. P. Pontarolli, J. A. Bigheti, M. M. Fernandes, F. O. Domingues, S. L. Risso, and E. P. Godoy, ``Microservice orchestration for process control in industry 4.0,'' in Proc. IEEE Int. Workshop Metrol. Ind. 4.0 IoT, Jun. 2020, pp. 245 249.
[9] A. Benayache, A. Bilami, S. Barkat, P. Lorenz, and H. Taleb, ``MsM: A microservice middleware for smart WSN-based IoT application,'' J. Netw. Comput. Appl., vol. 144, pp. 138 154, Oct. 2019.
[10] M. Krämer, S. Frese, and A. Kuijper, ``Implementing secure applications in smart city clouds using microservices,'' Future Gener. Comput. Syst., vol. 99, pp. 308 320, Oct. 2019.
[11] W. Dai, P. Zhou, D. Zhao, S. Lu, and T. Chai, ``Hardware-in-the-loop simulation platform for supervisory control of mineral grinding process,'' Powder Technol., vol. 288, pp. 422 434, Jan. 2016.
[12] W. Dai, G. Huang, F. Chu, and T. Chai, ``Con gurable platform for optimal-setting control of grinding processes,'' IEEE Access, vol. 5, pp. 26722 26733, 2017.
[13] F. Januario, A. Cardoso, and P. Gil, ``A distributed multi-agent framework for resilience enhancement in cyber-physical systems,'' IEEE Access, vol. 7, pp. 31342 31357, 2019.
[14] T. Goldschmidt, S. Hauck-Stattelmann, S. Malakuti, and S. Grüner, ``Container-based architecture for exible industrial control applications,'' J. Syst. Archit., vol. 84, pp. 28 36, Mar. 2018.
[15] F. Hofer, M. A. Sehr, A. Sangiovanni-Vincentelli, and B. Russo, ``Industrial control via application containers: Maintaining determinism in IAAS,'' 2020, arXiv:2005.01890. [Online]. Available: https://arxiv. org/abs/2005.01890
[16] P. González-Nalda, I. Etxeberria-Agiriano, I. Calvo, and M. C. Otero, ``A modular CPS architecture design based on ROS and docker,'' Int. J. Interact. Des. Manuf., vol. 11, no. 4, pp. 949 955, Nov. 2017.
[17] X. Wan, X. Guan, T. Wang, G. Bai, and B.-Y. Choi, ``Application deployment using microservice and docker containers: Framework and optimization,'' J. Netw. Comput. Appl., vol. 119, pp. 97 109, Oct. 2018.
[18] L. Abeni, A. Balsini, and T. Cucinotta, ``Container-based real-time scheduling in the linux kernel,'' ACM SIGBED Rev., vol. 16, no. 3, pp. 33 38, Nov. 2019.
[19] T. Caraza-Harter and M. M. Swift, Blending Containers and Virtual Machines: A Study of Firecracker and Gvisor. New York, NY, USA: Association for Computing Machinery, 2020.
[20] Z. Kozhirbayev and R. O. Sinnott, ``A performance comparison of container-based technologies for the cloud,'' Future Gener. Comput. Syst., vol. 68, pp. 175 182, Mar. 2017.
[21] H. L. Ren and Y. P. Jiao, ``Study on the distributed real-time and embedded system middleware based on the DDS,'' Adv. Mater. Res., vols. 433 440, pp. 7522 7525, Feb. 2012.
[22] B. Almadani and S. M. Mostafa, ``IIoT based multimodal communication model for agriculture and agro-industries,'' IEEE Access, vol. 9, pp. 10070 10088, 2021.
[23] M. El Hariri, T. Youssef, M. Saleh, S. Faddel, H. Habib, and O. A. Mohammed, ``Aframework for analyzing and testing cyber physical interactions for smart grid applications,'' Electronics, vol. 8, no. 12, p. 1455, Dec. 2019.
[24] I. Ungurean, N. C. Gaitan, and V. G. Gaitan, ``A middleware based architecture for the industrial Internet of Things,'' KSII Trans. Internet Inf. Syst., vol. 10, no. 7, pp. 2874 2891, 2016.
[25] T. Coito, M. S. E. Martins, J. L. Viegas, B. Firme, J. Figueiredo, S. M. Vieira, and J. M. C. Sousa, ``A middleware platform for intelligent automation: An industrial prototype implementation,'' Comput. Ind., vol. 123, Dec. 2020, Art. no. 103329.
[26] R. Beregi, G. Pedone, and I. Mezgár, ``A novel uid architecture for cyberphysical production systems,'' Int. J. Comput. Integr. Manuf., vol. 32, nos. 4 5, pp. 340 351, May 2019.
[27] G. Chen, P. Wang, B. Feng, Y. Li, and D. Liu, ``The framework design of smart factory in discrete manufacturing industry based on cyber-physical system,'' Int. J. Comput. Integr. Manuf., vol. 33, no. 1, pp. 79 101, Jan. 2020.
[28] M. Merdan, T. Hoebert, E. List, and W. Lepuschitz, ``Knowledge-based cyber-physical systems for assembly automation,'' Prod. Manuf. Res., vol. 7, no. 1, pp. 223 254, Jan. 2019.
[29] A. González-Potes, W. A. Mata-López, V. Ibarra-Junquera, A. M. Ochoa-Brust, D. Martínez-Castro, and A. Crespo, ``Distributed multi-agent architecture for real-time wireless control networks of multiple plants,'' Eng. Appl. Artif. Intell., vol. 56, pp. 142 156, Nov. 2016.
[30] G. M. Kurtzer, V. Sochat, and M. W. Bauer, ``Singularity: Scienti c containers for mobility of compute,'' PLoS ONE, vol. 12, no. 5, May 2017, Art. no. e0177459.
dc.rights.spa.fl_str_mv Derechos Reservados IEEE Access, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados IEEE Access, 2021
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 16 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv IEEE Access
dc.source.eng.fl_str_mv https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9399423&tag=1
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/326bbecd-cb23-4f3f-99f5-502a438f6a36/download
https://red.uao.edu.co/bitstreams/063135b7-610b-4afa-920e-91898ec4c287/download
https://red.uao.edu.co/bitstreams/451e71a7-0559-4e77-9b41-19551cc84abf/download
https://red.uao.edu.co/bitstreams/21cbfd40-794d-4f10-bcca-0ad8bee366db/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
c9235980bc29f03d9c83856e6cec11a7
b7442cd7395df37ebcb93c120f6236eb
007045034a5503ecb96853df0f99604a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260127258116096
spelling Ibarra-Junquera, Vrani775c0fcd76dad13f53399833b2132d2aGonzález, Apolinarc71d2127efe309f1c72ed360a78af749Paredes, Carlos Mario13e0d405db634d5a5e2f79d519b07faeMartínez Castro, Diegovirtual::2998-1Nuñez, Rubif8efd36590332a3256c4742de3c933792022-05-19T14:33:01Z2022-05-19T14:33:01Z2021-0421693536https://hdl.handle.net/10614/13891Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/Industry 4.0 involves the digital transformation of the industry with the integration and digitization of all industrial processes that make up the value chain, which is characterized by adaptability, flexibility, and efficiency to meet the needs of customers in today’s market. Therefore, the adaptations of the new bioprocess industry require a lot of flexibility to react quickly and constantly to market changes and to be able to offer more specialized, customized products with high operational efficiency. This paper presents a flexible, scalable, and robust framework based on software components, container technology, microservice concepts, and the publish/subscribe paradigm. This framework allows new components to be added or removed online, without the need for system reconfiguration, while maintaining temporal and functional constraints in industrial automation systems. The main objective of the framework proposed is the use of components based on microservices, allowing easy implementation, scalability, and fast maintenance, without losing or degrading the robustness from previous developments. Finally, the effectiveness of the proposed framework was verified in two case studies (1) a soursop soda making process is presented, with a fuzzy controller implemented to keep the pasteurizer output flow constant (UHT) and (2) an automatic storage tank selection and filling process with actuated valves to direct the fluid to the corresponding tank at the time to start the process. The results showed that the platform provided a high-fidelity design, analysis, and testing environment for the flow of cyber information and its effect on the physical operation in a beverage processing plant with high demand for flexibility, scalability, and robustness of its processes, as they were experimentally verified in a real production process16 páginasapplication/pdfengIEEE AccessDerechos Reservados IEEE Access, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9399423&tag=1Automatización industrialIndustry 4.0Distributed industrial automation systems,InteroperabilityMiddlewareIndustrial cyber-physical systemsComponent-Based microservices for flexible and scalable automation of industrial bioprocessesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8558207581929Junquera, V. I., González Potes, A., Paredes, C. M., Martínez Castro, D., Nuñez Vizcaino, R. A. (2021). Component-based microservices for flexible and scalable automation of industrial bioprocesses. IEEE. IEEE Access. Vol. 9, pp. 58192- 58207. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9399423&tag=1IEEE Access[1] O. Cardin, ``Classi cation of cyber-physical production systems applications: Proposition of an analysis framework,'' Comput. Ind., vol. 104, pp. 11 21, Jan. 2019.[2] I. Ungurean and N. C. Gaitan, ``A software architecture for the industrial Internet of Things A conceptual model,'' Sensors, vol. 20, no. 19, pp. 1 19, 2020.[3] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, ``Edge computing: A survey,'' Future Gener. Comput. Syst., vol. 97, pp. 219 235, Aug. 2019.[4] S. Aheleroff, X. Xu, Y. Lu, M. Aristizabal, J. P. Velásquez, B. Joa, and Y. Valencia, ``IoT-enabled smart appliances under industry 4.0: A case study,'' Adv. Eng. Informat., vol. 43, Jan. 2020, Art. no. 101043.[5] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, ``Smart factory of industry 4.0: Key technologies, application case, and challenges,'' IEEE Access, vol. 6, pp. 6505 6519, 2018.[6] W. Dai, P. Wang, W. Sun, X. Wu, H. Zhang, V. Vyatkin, and G. Yang, “Semantic integration of plug-and-play software components for industrial edges based on microservices,” IEEE Access, vol. 7, pp. 125882 125892, 2019.[7] M. Alam, J. Ru no, J. Ferreira, S. H. Ahmed, N. Shah, and Y. Chen, ``Orchestration of microservices for IoT using docker and edge computing,'' IEEE Commun. Mag., vol. 56, no. 9, pp. 118 123, Sep. 2018.[8] R. P. Pontarolli, J. A. Bigheti, M. M. Fernandes, F. O. Domingues, S. L. Risso, and E. P. Godoy, ``Microservice orchestration for process control in industry 4.0,'' in Proc. IEEE Int. Workshop Metrol. Ind. 4.0 IoT, Jun. 2020, pp. 245 249.[9] A. Benayache, A. Bilami, S. Barkat, P. Lorenz, and H. Taleb, ``MsM: A microservice middleware for smart WSN-based IoT application,'' J. Netw. Comput. Appl., vol. 144, pp. 138 154, Oct. 2019.[10] M. Krämer, S. Frese, and A. Kuijper, ``Implementing secure applications in smart city clouds using microservices,'' Future Gener. Comput. Syst., vol. 99, pp. 308 320, Oct. 2019.[11] W. Dai, P. Zhou, D. Zhao, S. Lu, and T. Chai, ``Hardware-in-the-loop simulation platform for supervisory control of mineral grinding process,'' Powder Technol., vol. 288, pp. 422 434, Jan. 2016.[12] W. Dai, G. Huang, F. Chu, and T. Chai, ``Con gurable platform for optimal-setting control of grinding processes,'' IEEE Access, vol. 5, pp. 26722 26733, 2017.[13] F. Januario, A. Cardoso, and P. Gil, ``A distributed multi-agent framework for resilience enhancement in cyber-physical systems,'' IEEE Access, vol. 7, pp. 31342 31357, 2019.[14] T. Goldschmidt, S. Hauck-Stattelmann, S. Malakuti, and S. Grüner, ``Container-based architecture for exible industrial control applications,'' J. Syst. Archit., vol. 84, pp. 28 36, Mar. 2018.[15] F. Hofer, M. A. Sehr, A. Sangiovanni-Vincentelli, and B. Russo, ``Industrial control via application containers: Maintaining determinism in IAAS,'' 2020, arXiv:2005.01890. [Online]. Available: https://arxiv. org/abs/2005.01890[16] P. González-Nalda, I. Etxeberria-Agiriano, I. Calvo, and M. C. Otero, ``A modular CPS architecture design based on ROS and docker,'' Int. J. Interact. Des. Manuf., vol. 11, no. 4, pp. 949 955, Nov. 2017.[17] X. Wan, X. Guan, T. Wang, G. Bai, and B.-Y. Choi, ``Application deployment using microservice and docker containers: Framework and optimization,'' J. Netw. Comput. Appl., vol. 119, pp. 97 109, Oct. 2018.[18] L. Abeni, A. Balsini, and T. Cucinotta, ``Container-based real-time scheduling in the linux kernel,'' ACM SIGBED Rev., vol. 16, no. 3, pp. 33 38, Nov. 2019.[19] T. Caraza-Harter and M. M. Swift, Blending Containers and Virtual Machines: A Study of Firecracker and Gvisor. New York, NY, USA: Association for Computing Machinery, 2020.[20] Z. Kozhirbayev and R. O. Sinnott, ``A performance comparison of container-based technologies for the cloud,'' Future Gener. Comput. Syst., vol. 68, pp. 175 182, Mar. 2017.[21] H. L. Ren and Y. P. Jiao, ``Study on the distributed real-time and embedded system middleware based on the DDS,'' Adv. Mater. Res., vols. 433 440, pp. 7522 7525, Feb. 2012.[22] B. Almadani and S. M. Mostafa, ``IIoT based multimodal communication model for agriculture and agro-industries,'' IEEE Access, vol. 9, pp. 10070 10088, 2021.[23] M. El Hariri, T. Youssef, M. Saleh, S. Faddel, H. Habib, and O. A. Mohammed, ``Aframework for analyzing and testing cyber physical interactions for smart grid applications,'' Electronics, vol. 8, no. 12, p. 1455, Dec. 2019.[24] I. Ungurean, N. C. Gaitan, and V. G. Gaitan, ``A middleware based architecture for the industrial Internet of Things,'' KSII Trans. Internet Inf. Syst., vol. 10, no. 7, pp. 2874 2891, 2016.[25] T. Coito, M. S. E. Martins, J. L. Viegas, B. Firme, J. Figueiredo, S. M. Vieira, and J. M. C. Sousa, ``A middleware platform for intelligent automation: An industrial prototype implementation,'' Comput. Ind., vol. 123, Dec. 2020, Art. no. 103329.[26] R. Beregi, G. Pedone, and I. Mezgár, ``A novel uid architecture for cyberphysical production systems,'' Int. J. Comput. Integr. Manuf., vol. 32, nos. 4 5, pp. 340 351, May 2019.[27] G. Chen, P. Wang, B. Feng, Y. Li, and D. Liu, ``The framework design of smart factory in discrete manufacturing industry based on cyber-physical system,'' Int. J. Comput. Integr. Manuf., vol. 33, no. 1, pp. 79 101, Jan. 2020.[28] M. Merdan, T. Hoebert, E. List, and W. Lepuschitz, ``Knowledge-based cyber-physical systems for assembly automation,'' Prod. Manuf. Res., vol. 7, no. 1, pp. 223 254, Jan. 2019.[29] A. González-Potes, W. A. Mata-López, V. Ibarra-Junquera, A. M. Ochoa-Brust, D. Martínez-Castro, and A. Crespo, ``Distributed multi-agent architecture for real-time wireless control networks of multiple plants,'' Eng. Appl. Artif. Intell., vol. 56, pp. 142 156, Nov. 2016.[30] G. M. Kurtzer, V. Sochat, and M. W. Bauer, ``Singularity: Scienti c containers for mobility of compute,'' PLoS ONE, vol. 12, no. 5, May 2017, Art. no. e0177459.Comunidad generalPublication16469e35-6f18-4e0c-acfe-e8a2e314fedfvirtual::2998-116469e35-6f18-4e0c-acfe-e8a2e314fedfvirtual::2998-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000195928virtual::2998-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/326bbecd-cb23-4f3f-99f5-502a438f6a36/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALComponent-based microservices for flexible and scalable automation of industrial bioprocesses.pdfComponent-based microservices for flexible and scalable automation of industrial bioprocesses.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf5307070https://red.uao.edu.co/bitstreams/063135b7-610b-4afa-920e-91898ec4c287/downloadc9235980bc29f03d9c83856e6cec11a7MD53TEXTComponent-based microservices for flexible and scalable automation of industrial bioprocesses.pdf.txtComponent-based microservices for flexible and scalable automation of industrial bioprocesses.pdf.txtExtracted texttext/plain66012https://red.uao.edu.co/bitstreams/451e71a7-0559-4e77-9b41-19551cc84abf/downloadb7442cd7395df37ebcb93c120f6236ebMD54THUMBNAILComponent-based microservices for flexible and scalable automation of industrial bioprocesses.pdf.jpgComponent-based microservices for flexible and scalable automation of industrial bioprocesses.pdf.jpgGenerated Thumbnailimage/jpeg17019https://red.uao.edu.co/bitstreams/21cbfd40-794d-4f10-bcca-0ad8bee366db/download007045034a5503ecb96853df0f99604aMD5510614/13891oai:red.uao.edu.co:10614/138912024-03-07 16:47:43.801https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados IEEE Access, 2021open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K