A neural network approach to reducing the costs of parameter-setting in the production of polyethylene oxide nanofibers
Nanofibers, which are formed by the electrospinning process, are used in a variety of applications. For this purpose, a specific diameter suited for each application is required, which is achieved by varying a set of parameters. This parameter adjustment process is empirical and Works by trial and e...
- Autores:
-
Solis-Rios, Daniel
Villarreal-Gómez, Luis Jesús
Goyes, Clara Eugenia
Cornejo-Bravo, José Manuel
Fong-Mata, María Berenice
Calderón Arenas, Jorge Mario
Martínez Rincón, Harold Alberto
Mejía-Medina, David Abdel
Fonthal Rico, Faruk
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/15901
- Acceso en línea:
- https://hdl.handle.net/10614/15901
https://doi.org/10.3390/mi14071410
https://red.uao.edu.co/
- Palabra clave:
- Artificial neural networks
PEO nanofibers
Electrospinning
- Rights
- openAccess
- License
- Derechos reservados - MDPI, 2023
id |
REPOUAO2_5cc25aba37cb2e84378acda35c7293af |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/15901 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A neural network approach to reducing the costs of parameter-setting in the production of polyethylene oxide nanofibers |
title |
A neural network approach to reducing the costs of parameter-setting in the production of polyethylene oxide nanofibers |
spellingShingle |
A neural network approach to reducing the costs of parameter-setting in the production of polyethylene oxide nanofibers Artificial neural networks PEO nanofibers Electrospinning |
title_short |
A neural network approach to reducing the costs of parameter-setting in the production of polyethylene oxide nanofibers |
title_full |
A neural network approach to reducing the costs of parameter-setting in the production of polyethylene oxide nanofibers |
title_fullStr |
A neural network approach to reducing the costs of parameter-setting in the production of polyethylene oxide nanofibers |
title_full_unstemmed |
A neural network approach to reducing the costs of parameter-setting in the production of polyethylene oxide nanofibers |
title_sort |
A neural network approach to reducing the costs of parameter-setting in the production of polyethylene oxide nanofibers |
dc.creator.fl_str_mv |
Solis-Rios, Daniel Villarreal-Gómez, Luis Jesús Goyes, Clara Eugenia Cornejo-Bravo, José Manuel Fong-Mata, María Berenice Calderón Arenas, Jorge Mario Martínez Rincón, Harold Alberto Mejía-Medina, David Abdel Fonthal Rico, Faruk |
dc.contributor.author.none.fl_str_mv |
Solis-Rios, Daniel Villarreal-Gómez, Luis Jesús Goyes, Clara Eugenia Cornejo-Bravo, José Manuel Fong-Mata, María Berenice Calderón Arenas, Jorge Mario Martínez Rincón, Harold Alberto Mejía-Medina, David Abdel Fonthal Rico, Faruk |
dc.subject.proposal.eng.fl_str_mv |
Artificial neural networks PEO nanofibers Electrospinning |
topic |
Artificial neural networks PEO nanofibers Electrospinning |
description |
Nanofibers, which are formed by the electrospinning process, are used in a variety of applications. For this purpose, a specific diameter suited for each application is required, which is achieved by varying a set of parameters. This parameter adjustment process is empirical and Works by trial and error, causing high input costs and wasting time and financial resources. In this work, an artificial neural network model is presented to predict the diameter of polyethylene nanofibers, based on the adjustment of 15 parameters. The model was trained from 105 records from data obtained from the literature and was then validated with nine nanofibers that were obtained and measured in the laboratory. The average error between the actual results was 2.29%. This result differs from those taken in an evaluation of the dataset. Therefore, the importance of increasing the dataset and the validation using independent data is highlighted |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-11-14T20:23:06Z |
dc.date.available.none.fl_str_mv |
2024-11-14T20:23:06Z |
dc.type.eng.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Solís-Ríos, D., et. al. (2023). A neural network approach to reducing the costs of parameter-setting in the production of polyethylene oxide nanofibers. Micromachines. 14(7). 16 p. https://doi.org/10.3390/mi14071410 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/15901 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.3390/mi14071410 |
dc.identifier.eissn.spa.fl_str_mv |
2072666X |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Respositorio Educativo Digital UAO |
dc.identifier.repourl.none.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
Solís-Ríos, D., et. al. (2023). A neural network approach to reducing the costs of parameter-setting in the production of polyethylene oxide nanofibers. Micromachines. 14(7). 16 p. https://doi.org/10.3390/mi14071410 2072666X Universidad Autónoma de Occidente Respositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/15901 https://doi.org/10.3390/mi14071410 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
16 |
dc.relation.citationissue.spa.fl_str_mv |
7 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
14 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Micromachines |
dc.relation.references.none.fl_str_mv |
1. Hong, J.; Yeo, M.; Yang, G.H.; Kim, G. Cell-Electrospinning and Its Application for Tissue Engineering. Int. J. Mol. Sci. 2019, 20, 6208. [CrossRef] [PubMed] 2. Niu, B.; Zhan, L.; Shao, P.; Xiang, N.; Sun, P.; Chen, H.; Gao, H. Electrospinning of Zein-Ethyl Cellulose Hybrid Nanofibers with ImprovedWater Resistance for Food Preservation. Int. J. Biol. Macromol. 2020, 142, 592–599. [CrossRef] 3. Tang, Y.; Cai, Z.; Sun, X.; Chong, C.; Yan, X.; Li, M.; Xu, J. Electrospun Nanofiber-Based Membranes for Water Treatment. Polymers 2022, 14, 2004. [CrossRef] 4. Torres-Martinez, E.J.; Cornejo Bravo, J.M.; Serrano Medina, A.; Pérez González, G.L.; Villarreal Gómez, L.J. A Summary of Electrospun Nanofibers as Drug Delivery System: Drugs Loaded and Biopolymers Used as Matrices. Curr. Drug Deliv. 2018, 15, 1360–1374. [CrossRef] [PubMed] 5. Ma, L.; Deng, L.; Chen, J. Applications of Poly(Ethylene Oxide) in Controlled Release Tablet Systems: A Review. Drug Dev. Ind. Pharm. 2014, 40, 845–851. [CrossRef] [PubMed] 6. Hawkins, B.C.; Burnett, E.; Chou, S.-F. Physicomechanical Properties and in Vitro Release Behaviors of Electro-spun Ibuprofen- Loaded Blend PEO/EC Fibers. Mater. Today Commun. 2022, 30, 103205. [CrossRef] [PubMed] 7. Rubert, M.; Dehli, J.; Li, Y.-F.; Taskin, M.B.; Xu, R.; Besenbacher, F.; Chen, M. Electro-spun PCL/PEO Coaxial Fibers for Basic Fibroblast Growth Factor Delivery. J. Mater. Chem. B 2014, 2, 8538–8546. [CrossRef] 8. Jovanska, L.; Chiu, C.-H.; Yeh, Y.-C.; Chiang, W.-D.; Hsieh, C.-C.; Wang, R. Development of a PCL-PEO Double Network Colorimetric PH Sensor Using Electro-spun Fibers Containing Hibiscus Rosa Sinensis Extract and Silver Nanoparticles for Food Monitoring. Food Chem. 2022, 368, 130813. [CrossRef] 9. Bhattacharya, S.; Roy, I.; Tice, A.; Chapman, C.; Udangawa, R.; Chakrapani, V.; Plawsky, J.L.; Linhardt, R.J. High-Conductivity and High-Capacitance Electro-spun Fibers for Supercapacitor Applications. ACS Appl. Mater. Interfaces 2020, 12, 19369–19376. [CrossRef] 10. de Carvalho, L.D.; Peres, B.U.; Maezono, H.; Shen, Y.; Haapasalo, M.; Jackson, J.; Carvalho, R.M.; Manso, A.P. Doxycycline Release and Antibacterial Activity from PMMA/PEO Electro-spun Fiber Mats. J. Appl. Oral Sci. 2019, 27, e20180663. [CrossRef] 11. El-hadi, A.; Al-Jabri, F. Influence of Electrospinning Parameters on Fiber Diameter and Mechanical Properties of Poly(3- Hydroxybutyrate) (PHB) and Polyanilines (PANI) Blends. Polymers 2016, 8, 97. [CrossRef] 12. Wong, S.-C.; Baji, A.; Leng, S. Effect of Fiber Diameter on Tensile Properties of Electro-spun Poly("-Caprolactone). Polymer 2008, 49, 4713–4722. [CrossRef] 13. Rebolledo, P.; Cloutier, A.; Yemele, M.-C. Effect of Density and Fiber Size on Porosity and Thermal Conductivity of Fiberboard Mats. Fibers 2018, 6, 81. [CrossRef] 14. Villarreal-Gómez, L.J.; Cornejo-Bravo, J.M.; Vera-Graziano, R.; Grande, D. Electrospinning as a Powerful Technique for Biomedical Applications: A Critically Selected Survey. J. Biomater. Sci. Polym. Ed. 2016, 27, 157–176. [CrossRef] 15. Pillay, V.; Dott, C.; Choonara, Y.E.; Tyagi, C.; Tomar, L.; Kumar, P.; du Toit, L.C.; Ndesendo, V.M.K. A Review of the Effect of Processing Variables on the Fabrication of Electro-spun Nanofibers for Drug Delivery Applications. J. Nanomater. 2013, 2013, 789289. [CrossRef] 16. Burden, F.; Winkler, D. Bayesian Regularization of Neural Networks. In Artificial Neural Networks; Livingstone, D.J., Ed.; Methods in Molecular BiologyTM; Humana Press: Totowa, NJ, USA, 2008; Volume 458, pp. 23–42, ISBN 978-1-58829-718-1. 17. Sarkar, K.; Ghalia, M.B.;Wu, Z.; Bose, S.C. A Neural Network Model for the Numerical Prediction of the Diameter of Electro-Spun Polyethylene Oxide Nanofibers. J. Mater. Process. Technol. 2009, 209, 3156–3165. [CrossRef] 18. Brooks, H.; Tucker, N. Electrospinning Predictions Using Artificial Neural Networks. Polymer 2015, 58, 22–29. [CrossRef] 19. Ketabchi, N.; Naghibzadeh, M.; Adabi, M.; Esnaashari, S.S.; Faridi-Majidi, R. Preparation and Optimization of Chitosan/ Polyethylene Oxide Nanofiber Diameter Using Artificial Neural Networks. Neural Comput. Appl. 2017, 28, 3131–3143. [CrossRef] 20. Chen, G.; Guo, J.; Nie, J.; Ma, G. Preparation, Characterization, and Application of PEO/HA Core Shell Nanofibers Based on Electric Field Induced Phase Separation during Electrospinning. Polymer 2016, 83, 12–19. [CrossRef] 21. Xu, Y.; Zou, L.; Lu, H.; Wei, Y.; Hua, J.; Chen, S. Preparation and Characterization of Electro-spun PHBV/PEO Mats: The Role of Solvent and PEO Component. J. Mater. Sci. 2016, 51, 5695–5711. [CrossRef] 22. Basu, P.; Repanas, A.; Chatterjee, A.; Glasmacher, B.; NarendraKumar, U.; Manjubala, I. PEO–CMC Blend Nanofibers Fabrication by Electrospinning for Soft Tissue Engineering Applications. Mater. Lett. 2017, 195, 10–13. [CrossRef] 23. Grothe, T.; Groaßerhode, C.; Hauser, T.; Kern, P.; Stute, K.; Ehrmann, A. Needleless Electrospinning of PEO Nanofiber Mats. In Proceedings of the Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017), Beijing, China, 14–16 April 2017; Atlantis Press: Beijing, China, 2017. 24. Yue, T.-T.; Li, X.; Wang, X.-X.; Yan, X.; Yu, M.; Ma, J.-W.; Zhou, Y.; Ramakrishna, S.; Long, Y.-Z. Electrospinning of Carboxymethyl Chitosan/Polyoxyethylene Oxide Nanofibers for Fruit Fresh-Keeping. Nanoscale Res. Lett. 2018, 13, 239. [CrossRef] [PubMed] 25. Togay, ¸S.M.; Bulbul, Y.E.; Tort, S.; Demirta¸s Korkmaz, F.; Acartürk, F.; Dilsiz, N. Fabrication of Doxycycline-Loaded Electro-spun PCL/PEO Membranes for a Potential Drug Delivery System. Int. J. Pharm. 2019, 565, 83–94. [CrossRef] [PubMed] 26. Serôdio, R.; Schickert, S.L.; Costa-Pinto, A.R.; Dias, J.R.; Granja, P.L.; Yang, F.; Oliveira, A.L. Ultrasound Sonication Prior to Electrospinning Tailors Silk Fibroin/PEO Membranes for Periodontal Regeneration. Mater. Sci. Eng. C 2019, 98, 969–981. [CrossRef] 27. ¸Sim¸sek, M.; Aldemir, S.D.; Gümü¸sderelio ˘ glu, M. Anticellular PEO Coatings on Titanium Surfaces by Sequential Electrospinning and Crosslinking Processes. Emergent Mater. 2019, 2, 169–179. [CrossRef] 28. Amiri, N.; Ajami, S.; Shahroodi, A.; Jannatabadi, N.; Amiri Darban, S.; Fazly Bazzaz, B.S.; Pishavar, E.; Kalalinia, F.; Movaffagh, J. Teicoplanin-Loaded Chitosan-PEO Nanofibers for Local Antibiotic Delivery and Wound Healing. Int. J. Biol. Macromol. 2020, 162, 645–656. [CrossRef] 29. Bulbul, Y.E.; Okur, M.; Demirtas-Korkmaz, F.; Dilsiz, N. Development of PCL/PEO Electro-spun Fibrous Membranes Blended with Silane-Modified Halloysite Nanotube as a Curcumin Release System. Appl. Clay Sci. 2020, 186, 105430. [CrossRef] 30. Cardenas Bates, I.I.; Loranger, É.; Chabot, B. Chitosan-PEO Nanofiber Mats for Copper Removal in Aqueous Solution Using a New Versatile Electrospinning Collector. SN Appl. Sci. 2020, 2, 1540. [CrossRef] 31. Govindasamy, K.; Dahlan, N.A.; Janarthanan, P.; Goh, K.L.; Chai, S.-P.; Pasbakhsh, P. Electro-spun Chitosan/Polyethylene-Oxide (PEO)/Halloysites (HAL) Membranes for Bone Regeneration Applications. Appl. Clay Sci. 2020, 190, 105601. [CrossRef] 32. Hernández-Martínez, D.; Nicho, M.E.; Alvarado-Tenorio, G.; García-Carvajal, S.; Castillo-Ortega, M.M.; Vásquez-López, C. Elaboration and Characterization of P3HT–PEO–SWCNT Fibers by Electrospinning Technique. SN Appl. Sci. 2020, 2, 462. [CrossRef] 33. Zaitoon, A.; Lim, L.-T. Effect of Poly(Ethylene Oxide) on the Electrospinning Behavior and Characteristics of Ethyl Cellulose Composite Fibers. Materialia 2020, 10, 100649. [CrossRef] 34. Darbasizadeh, B.; Mortazavi, S.A.; Kobarfard, F.; Jaafari, M.R.; Hashemi, A.; Farhadnejad, H.; Feyzi-barnaji, B. Electro-spun Doxorubicin-Loaded PEO/PCL Core/Sheath Nanofibers for Chemopreventive Action against Breast Cancer Cells. J. Drug Deliv. Sci. Technol. 2021, 64, 102576. [CrossRef] 35. Kharat, Z.; Sadri, M.; Kabiri, M. Herbal Extract Loaded Chitosan/PEO Nanocomposites as Antibacterial Coatings of Orthopaedic Implants. Fibers Polym. 2021, 22, 989–999. [CrossRef] 36. Pereao, O.; Uche, C.; Bublikov, P.S.; Bode-Aluko, C.; Rossouw, A.; Vinogradov, I.I.; Nechaev, A.N.; Opeolu, B.; Petrik, L. Chitosan/PEO Nanofibers Electro-spun on Metallized Track-Etched Membranes: Fabrication and Characterization. Mater. Today Chem. 2021, 20, 100416. [CrossRef] 37. Zheng, G.; Peng, H.; Jiang, J.; Kang, G.; Liu, J.; Zheng, J.; Liu, Y. Surface Functionalization of PEO Nanofibers Using a TiO2 Suspension as Sheath Fluid in a Modified Coaxial Electrospinning Process. Chem. Res. Chin. Univ. 2021, 37, 571–577. [CrossRef] 38. Goncalves, A.; Ray, P.; Soper, B.; Stevens, J.; Coyle, L.; Sales, A.P. Generation and Evaluation of Synthetic Patient Data. BMC Med. Res. Methodol. 2020, 20, 108. [CrossRef] [PubMed] 39. Le, T.A.; Baydin, A.G.; Zinkov, R.; Wood, F. Using Synthetic Data to Train Neural Networks Is Model-Based Reasoning. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017. [CrossRef] 40. Medeiros, G.B.; Lima, F.D.A.; De Almeida, D.S.; Guerra, V.G.; Aguiar, M.L. Modification and Functionalization of Fibers Formed by Electrospinning: A Review. Membranes 2022, 12, 861. [CrossRef] 41. Álvarez-Suarez, A.S.; López-Maldonado, E.A.; Graeve, O.A.; Martinez-Pallares, F.; Gómez-Pineda, L.E.; Oropeza-Guzmán, M.T.; Iglesias, A.L.; Ng, T.; Serena-Gómez, E.; Villarreal-Gómez, L.J. Fabrication of Porous Polymeric Structures Using a Simple Sonication Technique for Tissue Engineering. J. Polym. Eng. 2017, 37, 943–951. [CrossRef] 42. Gutiérrez González, J.; Fernández Leyes, M.D.; Ritacco, H.A.; Schroeder, W.F.; Zucchi, I.A. Long PEO-Based Nano-ribbons Generated in a Polystyrene Matrix through Reaction-Induced Microphase Separation Followed by a Fast Crystallization Process. Soft Matter 2021, 17, 2279–2289. [CrossRef] 43. Rabbi, A.; Nasouri, K.; Bahrambeygi, H.; Shoushtari, A.M.; Babaei, M.R. RSM and ANN Approaches for Modeling and Optimizing of Electro-spun Polyurethane Nanofibers Morphology. Fibers Polym. 2012, 13, 1007–1014. [CrossRef] 44. Karimi, M.A.; Pourhakkak, P.; Adabi, M.; Firoozi, S.; Adabi, M.; Naghibzadeh, M. Using an Artificial Neural Network for the Evaluation of the Parameters Controlling PVA/Chitosan Electro-spun Nanofibers Diameter. e-Polymers 2015, 15, 127–138. [CrossRef] 45. Khatti, T.; Naderi-Manesh, H.; Kalantar, S.M. Application of ANN and RSM Techniques for Modeling Electrospinning Process of Polycaprolactone. Neural Comput. Appl. 2019, 31, 239–248. [CrossRef] |
dc.rights.spa.fl_str_mv |
Derechos reservados - MDPI, 2023 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - MDPI, 2023 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
16 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
MDPI |
dc.publisher.place.eng.fl_str_mv |
Basel, Switzerland |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/98f09cac-a510-4376-8513-3ec726e7dced/download https://red.uao.edu.co/bitstreams/36b0bb27-a427-459e-a1ae-b39c28d27f75/download https://red.uao.edu.co/bitstreams/fa56cb0e-6d20-405d-aa9e-350349046e3c/download https://red.uao.edu.co/bitstreams/4f232af9-282b-4ffe-834d-7bfa0e8b2a5a/download |
bitstream.checksum.fl_str_mv |
41972a59de49f750b971f7435d1a9eb6 6987b791264a2b5525252450f99b10d1 163994c54ad867d47202537044647d7d 37b412e9c6de98f7b33d16cf890edc1e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1831928738286141440 |
spelling |
Solis-Rios, DanielVillarreal-Gómez, Luis JesúsGoyes, Clara EugeniaCornejo-Bravo, José ManuelFong-Mata, María BereniceCalderón Arenas, Jorge MarioMartínez Rincón, Harold AlbertoMejía-Medina, David AbdelFonthal Rico, Farukvirtual::5790-12024-11-14T20:23:06Z2024-11-14T20:23:06Z2023Solís-Ríos, D., et. al. (2023). A neural network approach to reducing the costs of parameter-setting in the production of polyethylene oxide nanofibers. Micromachines. 14(7). 16 p. https://doi.org/10.3390/mi14071410https://hdl.handle.net/10614/15901https://doi.org/10.3390/mi140714102072666XUniversidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/Nanofibers, which are formed by the electrospinning process, are used in a variety of applications. For this purpose, a specific diameter suited for each application is required, which is achieved by varying a set of parameters. This parameter adjustment process is empirical and Works by trial and error, causing high input costs and wasting time and financial resources. In this work, an artificial neural network model is presented to predict the diameter of polyethylene nanofibers, based on the adjustment of 15 parameters. The model was trained from 105 records from data obtained from the literature and was then validated with nine nanofibers that were obtained and measured in the laboratory. The average error between the actual results was 2.29%. This result differs from those taken in an evaluation of the dataset. Therefore, the importance of increasing the dataset and the validation using independent data is highlighted16 páginasapplication/pdfengMDPIBasel, SwitzerlandDerechos reservados - MDPI, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2A neural network approach to reducing the costs of parameter-setting in the production of polyethylene oxide nanofibersArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85167114Micromachines1. Hong, J.; Yeo, M.; Yang, G.H.; Kim, G. Cell-Electrospinning and Its Application for Tissue Engineering. Int. J. Mol. Sci. 2019, 20, 6208. [CrossRef] [PubMed]2. Niu, B.; Zhan, L.; Shao, P.; Xiang, N.; Sun, P.; Chen, H.; Gao, H. Electrospinning of Zein-Ethyl Cellulose Hybrid Nanofibers with ImprovedWater Resistance for Food Preservation. Int. J. Biol. Macromol. 2020, 142, 592–599. [CrossRef]3. Tang, Y.; Cai, Z.; Sun, X.; Chong, C.; Yan, X.; Li, M.; Xu, J. Electrospun Nanofiber-Based Membranes for Water Treatment. Polymers 2022, 14, 2004. [CrossRef]4. Torres-Martinez, E.J.; Cornejo Bravo, J.M.; Serrano Medina, A.; Pérez González, G.L.; Villarreal Gómez, L.J. A Summary of Electrospun Nanofibers as Drug Delivery System: Drugs Loaded and Biopolymers Used as Matrices. Curr. Drug Deliv. 2018, 15, 1360–1374. [CrossRef] [PubMed]5. Ma, L.; Deng, L.; Chen, J. Applications of Poly(Ethylene Oxide) in Controlled Release Tablet Systems: A Review. Drug Dev. Ind. Pharm. 2014, 40, 845–851. [CrossRef] [PubMed]6. Hawkins, B.C.; Burnett, E.; Chou, S.-F. Physicomechanical Properties and in Vitro Release Behaviors of Electro-spun Ibuprofen- Loaded Blend PEO/EC Fibers. Mater. Today Commun. 2022, 30, 103205. [CrossRef] [PubMed]7. Rubert, M.; Dehli, J.; Li, Y.-F.; Taskin, M.B.; Xu, R.; Besenbacher, F.; Chen, M. Electro-spun PCL/PEO Coaxial Fibers for Basic Fibroblast Growth Factor Delivery. J. Mater. Chem. B 2014, 2, 8538–8546. [CrossRef]8. Jovanska, L.; Chiu, C.-H.; Yeh, Y.-C.; Chiang, W.-D.; Hsieh, C.-C.; Wang, R. Development of a PCL-PEO Double Network Colorimetric PH Sensor Using Electro-spun Fibers Containing Hibiscus Rosa Sinensis Extract and Silver Nanoparticles for Food Monitoring. Food Chem. 2022, 368, 130813. [CrossRef]9. Bhattacharya, S.; Roy, I.; Tice, A.; Chapman, C.; Udangawa, R.; Chakrapani, V.; Plawsky, J.L.; Linhardt, R.J. High-Conductivity and High-Capacitance Electro-spun Fibers for Supercapacitor Applications. ACS Appl. Mater. Interfaces 2020, 12, 19369–19376. [CrossRef]10. de Carvalho, L.D.; Peres, B.U.; Maezono, H.; Shen, Y.; Haapasalo, M.; Jackson, J.; Carvalho, R.M.; Manso, A.P. Doxycycline Release and Antibacterial Activity from PMMA/PEO Electro-spun Fiber Mats. J. Appl. Oral Sci. 2019, 27, e20180663. [CrossRef]11. El-hadi, A.; Al-Jabri, F. Influence of Electrospinning Parameters on Fiber Diameter and Mechanical Properties of Poly(3- Hydroxybutyrate) (PHB) and Polyanilines (PANI) Blends. Polymers 2016, 8, 97. [CrossRef]12. Wong, S.-C.; Baji, A.; Leng, S. Effect of Fiber Diameter on Tensile Properties of Electro-spun Poly("-Caprolactone). Polymer 2008, 49, 4713–4722. [CrossRef]13. Rebolledo, P.; Cloutier, A.; Yemele, M.-C. Effect of Density and Fiber Size on Porosity and Thermal Conductivity of Fiberboard Mats. Fibers 2018, 6, 81. [CrossRef]14. Villarreal-Gómez, L.J.; Cornejo-Bravo, J.M.; Vera-Graziano, R.; Grande, D. Electrospinning as a Powerful Technique for Biomedical Applications: A Critically Selected Survey. J. Biomater. Sci. Polym. Ed. 2016, 27, 157–176. [CrossRef]15. Pillay, V.; Dott, C.; Choonara, Y.E.; Tyagi, C.; Tomar, L.; Kumar, P.; du Toit, L.C.; Ndesendo, V.M.K. A Review of the Effect of Processing Variables on the Fabrication of Electro-spun Nanofibers for Drug Delivery Applications. J. Nanomater. 2013, 2013, 789289. [CrossRef]16. Burden, F.; Winkler, D. Bayesian Regularization of Neural Networks. In Artificial Neural Networks; Livingstone, D.J., Ed.; Methods in Molecular BiologyTM; Humana Press: Totowa, NJ, USA, 2008; Volume 458, pp. 23–42, ISBN 978-1-58829-718-1.17. Sarkar, K.; Ghalia, M.B.;Wu, Z.; Bose, S.C. A Neural Network Model for the Numerical Prediction of the Diameter of Electro-Spun Polyethylene Oxide Nanofibers. J. Mater. Process. Technol. 2009, 209, 3156–3165. [CrossRef]18. Brooks, H.; Tucker, N. Electrospinning Predictions Using Artificial Neural Networks. Polymer 2015, 58, 22–29. [CrossRef]19. Ketabchi, N.; Naghibzadeh, M.; Adabi, M.; Esnaashari, S.S.; Faridi-Majidi, R. Preparation and Optimization of Chitosan/ Polyethylene Oxide Nanofiber Diameter Using Artificial Neural Networks. Neural Comput. Appl. 2017, 28, 3131–3143. [CrossRef]20. Chen, G.; Guo, J.; Nie, J.; Ma, G. Preparation, Characterization, and Application of PEO/HA Core Shell Nanofibers Based on Electric Field Induced Phase Separation during Electrospinning. Polymer 2016, 83, 12–19. [CrossRef]21. Xu, Y.; Zou, L.; Lu, H.; Wei, Y.; Hua, J.; Chen, S. Preparation and Characterization of Electro-spun PHBV/PEO Mats: The Role of Solvent and PEO Component. J. Mater. Sci. 2016, 51, 5695–5711. [CrossRef]22. Basu, P.; Repanas, A.; Chatterjee, A.; Glasmacher, B.; NarendraKumar, U.; Manjubala, I. PEO–CMC Blend Nanofibers Fabrication by Electrospinning for Soft Tissue Engineering Applications. Mater. Lett. 2017, 195, 10–13. [CrossRef]23. Grothe, T.; Groaßerhode, C.; Hauser, T.; Kern, P.; Stute, K.; Ehrmann, A. Needleless Electrospinning of PEO Nanofiber Mats. In Proceedings of the Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017), Beijing, China, 14–16 April 2017; Atlantis Press: Beijing, China, 2017.24. Yue, T.-T.; Li, X.; Wang, X.-X.; Yan, X.; Yu, M.; Ma, J.-W.; Zhou, Y.; Ramakrishna, S.; Long, Y.-Z. Electrospinning of Carboxymethyl Chitosan/Polyoxyethylene Oxide Nanofibers for Fruit Fresh-Keeping. Nanoscale Res. Lett. 2018, 13, 239. [CrossRef] [PubMed]25. Togay, ¸S.M.; Bulbul, Y.E.; Tort, S.; Demirta¸s Korkmaz, F.; Acartürk, F.; Dilsiz, N. Fabrication of Doxycycline-Loaded Electro-spun PCL/PEO Membranes for a Potential Drug Delivery System. Int. J. Pharm. 2019, 565, 83–94. [CrossRef] [PubMed]26. Serôdio, R.; Schickert, S.L.; Costa-Pinto, A.R.; Dias, J.R.; Granja, P.L.; Yang, F.; Oliveira, A.L. Ultrasound Sonication Prior to Electrospinning Tailors Silk Fibroin/PEO Membranes for Periodontal Regeneration. Mater. Sci. Eng. C 2019, 98, 969–981. [CrossRef]27. ¸Sim¸sek, M.; Aldemir, S.D.; Gümü¸sderelio ˘ glu, M. Anticellular PEO Coatings on Titanium Surfaces by Sequential Electrospinning and Crosslinking Processes. Emergent Mater. 2019, 2, 169–179. [CrossRef]28. Amiri, N.; Ajami, S.; Shahroodi, A.; Jannatabadi, N.; Amiri Darban, S.; Fazly Bazzaz, B.S.; Pishavar, E.; Kalalinia, F.; Movaffagh, J. Teicoplanin-Loaded Chitosan-PEO Nanofibers for Local Antibiotic Delivery and Wound Healing. Int. J. Biol. Macromol. 2020, 162, 645–656. [CrossRef]29. Bulbul, Y.E.; Okur, M.; Demirtas-Korkmaz, F.; Dilsiz, N. Development of PCL/PEO Electro-spun Fibrous Membranes Blended with Silane-Modified Halloysite Nanotube as a Curcumin Release System. Appl. Clay Sci. 2020, 186, 105430. [CrossRef]30. Cardenas Bates, I.I.; Loranger, É.; Chabot, B. Chitosan-PEO Nanofiber Mats for Copper Removal in Aqueous Solution Using a New Versatile Electrospinning Collector. SN Appl. Sci. 2020, 2, 1540. [CrossRef]31. Govindasamy, K.; Dahlan, N.A.; Janarthanan, P.; Goh, K.L.; Chai, S.-P.; Pasbakhsh, P. Electro-spun Chitosan/Polyethylene-Oxide (PEO)/Halloysites (HAL) Membranes for Bone Regeneration Applications. Appl. Clay Sci. 2020, 190, 105601. [CrossRef]32. Hernández-Martínez, D.; Nicho, M.E.; Alvarado-Tenorio, G.; García-Carvajal, S.; Castillo-Ortega, M.M.; Vásquez-López, C. Elaboration and Characterization of P3HT–PEO–SWCNT Fibers by Electrospinning Technique. SN Appl. Sci. 2020, 2, 462. [CrossRef]33. Zaitoon, A.; Lim, L.-T. Effect of Poly(Ethylene Oxide) on the Electrospinning Behavior and Characteristics of Ethyl Cellulose Composite Fibers. Materialia 2020, 10, 100649. [CrossRef]34. Darbasizadeh, B.; Mortazavi, S.A.; Kobarfard, F.; Jaafari, M.R.; Hashemi, A.; Farhadnejad, H.; Feyzi-barnaji, B. Electro-spun Doxorubicin-Loaded PEO/PCL Core/Sheath Nanofibers for Chemopreventive Action against Breast Cancer Cells. J. Drug Deliv. Sci. Technol. 2021, 64, 102576. [CrossRef]35. Kharat, Z.; Sadri, M.; Kabiri, M. Herbal Extract Loaded Chitosan/PEO Nanocomposites as Antibacterial Coatings of Orthopaedic Implants. Fibers Polym. 2021, 22, 989–999. [CrossRef]36. Pereao, O.; Uche, C.; Bublikov, P.S.; Bode-Aluko, C.; Rossouw, A.; Vinogradov, I.I.; Nechaev, A.N.; Opeolu, B.; Petrik, L. Chitosan/PEO Nanofibers Electro-spun on Metallized Track-Etched Membranes: Fabrication and Characterization. Mater. Today Chem. 2021, 20, 100416. [CrossRef]37. Zheng, G.; Peng, H.; Jiang, J.; Kang, G.; Liu, J.; Zheng, J.; Liu, Y. Surface Functionalization of PEO Nanofibers Using a TiO2 Suspension as Sheath Fluid in a Modified Coaxial Electrospinning Process. Chem. Res. Chin. Univ. 2021, 37, 571–577. [CrossRef]38. Goncalves, A.; Ray, P.; Soper, B.; Stevens, J.; Coyle, L.; Sales, A.P. Generation and Evaluation of Synthetic Patient Data. BMC Med. Res. Methodol. 2020, 20, 108. [CrossRef] [PubMed]39. Le, T.A.; Baydin, A.G.; Zinkov, R.; Wood, F. Using Synthetic Data to Train Neural Networks Is Model-Based Reasoning. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017. [CrossRef]40. Medeiros, G.B.; Lima, F.D.A.; De Almeida, D.S.; Guerra, V.G.; Aguiar, M.L. Modification and Functionalization of Fibers Formed by Electrospinning: A Review. Membranes 2022, 12, 861. [CrossRef]41. Álvarez-Suarez, A.S.; López-Maldonado, E.A.; Graeve, O.A.; Martinez-Pallares, F.; Gómez-Pineda, L.E.; Oropeza-Guzmán, M.T.; Iglesias, A.L.; Ng, T.; Serena-Gómez, E.; Villarreal-Gómez, L.J. Fabrication of Porous Polymeric Structures Using a Simple Sonication Technique for Tissue Engineering. J. Polym. Eng. 2017, 37, 943–951. [CrossRef]42. Gutiérrez González, J.; Fernández Leyes, M.D.; Ritacco, H.A.; Schroeder, W.F.; Zucchi, I.A. Long PEO-Based Nano-ribbons Generated in a Polystyrene Matrix through Reaction-Induced Microphase Separation Followed by a Fast Crystallization Process. Soft Matter 2021, 17, 2279–2289. [CrossRef]43. Rabbi, A.; Nasouri, K.; Bahrambeygi, H.; Shoushtari, A.M.; Babaei, M.R. RSM and ANN Approaches for Modeling and Optimizing of Electro-spun Polyurethane Nanofibers Morphology. Fibers Polym. 2012, 13, 1007–1014. [CrossRef]44. Karimi, M.A.; Pourhakkak, P.; Adabi, M.; Firoozi, S.; Adabi, M.; Naghibzadeh, M. Using an Artificial Neural Network for the Evaluation of the Parameters Controlling PVA/Chitosan Electro-spun Nanofibers Diameter. e-Polymers 2015, 15, 127–138. [CrossRef]45. Khatti, T.; Naderi-Manesh, H.; Kalantar, S.M. Application of ANN and RSM Techniques for Modeling Electrospinning Process of Polycaprolactone. Neural Comput. Appl. 2019, 31, 239–248. [CrossRef]Artificial neural networksPEO nanofibersElectrospinningComunidad generalPublication2bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::5790-12bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::5790-1https://scholar.google.com/citations?user=zxVYtU0AAAAJ&hl=envirtual::5790-10000-0002-9331-0491virtual::5790-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000895857virtual::5790-1ORIGINALA_Neural_Network_Approach_to_Reducing_the_Costs_of_Parameter-Setting_in_the_Production_of_Polyethylene_Oxide_Nanofibers.pdfA_Neural_Network_Approach_to_Reducing_the_Costs_of_Parameter-Setting_in_the_Production_of_Polyethylene_Oxide_Nanofibers.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf2693207https://red.uao.edu.co/bitstreams/98f09cac-a510-4376-8513-3ec726e7dced/download41972a59de49f750b971f7435d1a9eb6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/36b0bb27-a427-459e-a1ae-b39c28d27f75/download6987b791264a2b5525252450f99b10d1MD52TEXTA_Neural_Network_Approach_to_Reducing_the_Costs_of_Parameter-Setting_in_the_Production_of_Polyethylene_Oxide_Nanofibers.pdf.txtA_Neural_Network_Approach_to_Reducing_the_Costs_of_Parameter-Setting_in_the_Production_of_Polyethylene_Oxide_Nanofibers.pdf.txtExtracted texttext/plain69953https://red.uao.edu.co/bitstreams/fa56cb0e-6d20-405d-aa9e-350349046e3c/download163994c54ad867d47202537044647d7dMD53THUMBNAILA_Neural_Network_Approach_to_Reducing_the_Costs_of_Parameter-Setting_in_the_Production_of_Polyethylene_Oxide_Nanofibers.pdf.jpgA_Neural_Network_Approach_to_Reducing_the_Costs_of_Parameter-Setting_in_the_Production_of_Polyethylene_Oxide_Nanofibers.pdf.jpgGenerated Thumbnailimage/jpeg15337https://red.uao.edu.co/bitstreams/4f232af9-282b-4ffe-834d-7bfa0e8b2a5a/download37b412e9c6de98f7b33d16cf890edc1eMD5410614/15901oai:red.uao.edu.co:10614/159012024-11-16 03:01:34.63https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2023open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg== |