Fiber optic fabry-perot micro-displacement sensor based on low-cost polymer film
This manuscript experimentally validates a thin-film polymer andmultimode fiber optic interaction-based low-cost optical fiber displacement sensor. The sensing setup is operated by deflecting a commerciallyMylar® polymer film using multimode optical fiber. The sensor exhibits a higher sensitivity of...
- Autores:
-
Gutierrez Rivera, Miguel
Almanee, M.
Rojas Laguna, R.
Jauregui Vázquez, Daniel
Garcia Mina, Diego Felipe
Sierra Hernández, Juan M.
Estudillo-Ayala, Julián Moisés
Rojas Laguna, Roberto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13397
- Acceso en línea:
- https://hdl.handle.net/10614/13397
- Palabra clave:
- Fibra óptica
Polímeros
Displacement measurement
Optical fiber sensors
Polymers
- Rights
- openAccess
- License
- Derechos reservados - IEEE, 2020
id |
REPOUAO2_594706fbf393e735eecbb83e33a50917 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13397 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Fiber optic fabry-perot micro-displacement sensor based on low-cost polymer film |
title |
Fiber optic fabry-perot micro-displacement sensor based on low-cost polymer film |
spellingShingle |
Fiber optic fabry-perot micro-displacement sensor based on low-cost polymer film Fibra óptica Polímeros Displacement measurement Optical fiber sensors Polymers |
title_short |
Fiber optic fabry-perot micro-displacement sensor based on low-cost polymer film |
title_full |
Fiber optic fabry-perot micro-displacement sensor based on low-cost polymer film |
title_fullStr |
Fiber optic fabry-perot micro-displacement sensor based on low-cost polymer film |
title_full_unstemmed |
Fiber optic fabry-perot micro-displacement sensor based on low-cost polymer film |
title_sort |
Fiber optic fabry-perot micro-displacement sensor based on low-cost polymer film |
dc.creator.fl_str_mv |
Gutierrez Rivera, Miguel Almanee, M. Rojas Laguna, R. Jauregui Vázquez, Daniel Garcia Mina, Diego Felipe Sierra Hernández, Juan M. Estudillo-Ayala, Julián Moisés Rojas Laguna, Roberto |
dc.contributor.author.spa.fl_str_mv |
Gutierrez Rivera, Miguel Almanee, M. Rojas Laguna, R. Jauregui Vázquez, Daniel Garcia Mina, Diego Felipe Sierra Hernández, Juan M. Estudillo-Ayala, Julián Moisés Rojas Laguna, Roberto |
dc.contributor.corporatename.spa.fl_str_mv |
IEEE Sensors Journal |
dc.subject.armarc.spa.fl_str_mv |
Fibra óptica Polímeros |
topic |
Fibra óptica Polímeros Displacement measurement Optical fiber sensors Polymers |
dc.subject.proposal.eng.fl_str_mv |
Displacement measurement Optical fiber sensors Polymers |
description |
This manuscript experimentally validates a thin-film polymer andmultimode fiber optic interaction-based low-cost optical fiber displacement sensor. The sensing setup is operated by deflecting a commerciallyMylar® polymer film using multimode optical fiber. The sensor exhibits a higher sensitivity of 24nm/μmand resolution of 41.6nm. The sensor’s analyses also demonstrate good polynomial approximation, with a maximal adjusted square of R = 0.9801, and high stability, in which minimal power (0.4dB-Hour) and wavelength (<2nm-Hour) variations are observed. Moreover, thermal experiments prove that the sensor has lower temperature traits (0.05μm/ C), and this parameter can be distinguished considering the wavelength shifting direction. The simplicity of the scheme, as well as the cost of the elements involved, make this technique a reliable alternative to detect microdisplacements. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-05-01 |
dc.date.accessioned.none.fl_str_mv |
2021-11-03T21:18:43Z |
dc.date.available.none.fl_str_mv |
2021-11-03T21:18:43Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
15581748 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13397 |
dc.identifier.doi.none.fl_str_mv |
10.1109/JSEN.2019.2944998 |
identifier_str_mv |
15581748 10.1109/JSEN.2019.2944998 |
url |
https://hdl.handle.net/10614/13397 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Volumen 20, número 9 (2020) |
dc.relation.citationendpage.spa.fl_str_mv |
4725 |
dc.relation.citationissue.spa.fl_str_mv |
9 |
dc.relation.citationstartpage.spa.fl_str_mv |
4719 |
dc.relation.citationvolume.spa.fl_str_mv |
20 |
dc.relation.cites.eng.fl_str_mv |
Gutiérrez Rivera, M., Jauregui Vázquez, D., García Mina, D. F., Sierra Hernández, J. M., Estudillo Ayala, J. M., Almanee, M., Rojas Laguna, R. (2020). Fiber optic fabry-perot micro-displacement sensor based on low-cost polymer film. IEEE Sensors Journal. (Vol. 20 (9), pp. 4719-4725. doi: 10.1109/JSEN.2019.2944998 |
dc.relation.ispartofjournal.eng.fl_str_mv |
IEEE Sensors Journal |
dc.relation.references.none.fl_str_mv |
[1] Y. Zhao, Y. Yuan, W. Gan, and M. Yang, “Optical fiber Fabry–Pérot humidity sensor based on polyimide membrane: Sensitivity and adsorption kinetics,” Sens. Actuators A, Phys., vol. 281, pp. 48–54, Oct. 2018. [2] Y. Yu et al., “Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling,” Opt. Express, vol. 18, no. 15, pp. 15383–15388, 2010. [3] Z. Zhu, L. Liu, Z. Liu, Y. Zhang, and Y. Zhang, “High-precision microdisplacement optical-fiber sensor based on surface plasmon resonance,” Opt. Lett., vol. 42, no. 10, pp. 1982–1985, 2017. [4] Y. Wei et al., “A new application of optical fiber surface plasmon resonance for micro-displacement measurement,” Sens. Actuators A, Phys., vol. 285, pp. 216–223, Jan. 2019. [5] P. Zu, C. C. Chan, T. Gong, Y. Jin, W. C.Wong, and X. Dong, “Magnetooptical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid,” Appl. Phys. Lett., vol. 101, no. 24, 2012, Art. no. 241118. [6] J. N. Dash, R. Jha, and S. Dass, “Ultrasensitive displacement sensor based on photonic crystal fiber modal interferometer,” in Proc. Adv. Photon., 2014, vol. 40, no. 4, pp. 1–3. [7] J. Chen, J. Zhou, and Z. Jia, “High-sensitivity displacement sensor based on a bent fiber Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett., vol. 25, no. 23, pp. 2354–2357, Dec. 1, 2013. [8] X. Dong, Y. Liu, Z. Liu, and X. Dong, “Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor,” Opt. Commun., vol. 192, nos. 3–6, pp. 213–217, Jun. 2001. [9] R. Fan, Y. Luo, L. Li, Q. Wu, Z. Ren, and B. Peng, “Large-range fiber microsphere micro-displacement sensor,” Opt. Fiber Technol., vol. 48, pp. 173–178, Mar. 2019. [10] D. Su, X. Qiao, W. Bao, F. Chen, and Q. Rong, “Orientation-dependent fiber-optics displacement sensor by a grating inscription within fourmode fiber,” Opt. Laser Technol., vol. 115, no. Nov. 2018, pp. 229–232, 2019. [11] A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interferencebased fiber-optic displacement sensor,” IEEE Photon. Technol. Lett., vol. 15, no. 8, pp. 1129–1131, Aug. 2003. [12] H. A. Rahman, S. W. Harun, M. Yasin, and H. Ahmad, “Fiber-optic salinity sensor using fiber-optic displacement measurement with flat and concave mirror,” IEEE J. Sel. Topics Quantum Electron., vol. 18, no. 5, pp. 1529–1533, Sep. 2012. [13] H. A. Rahman, S. W. Harun, N. Saidin, M. Yasin, and H. Ahmad, “Fiber optic displacement sensor for temperature measurement,” IEEE Sensors J., vol. 12, no. 5, pp. 1361–1364, May 2012. [14] H. A. Rahman, S. W. Harun, M. Batumalay, F. A. Muttalib, and H. Ahmad, “Fiber optic displacement sensor using multimode plastic fiber probe and tooth surface,” IEEE Sensors J., vol. 13, no. 1, pp. 294–298, Jan. 2013. [15] P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett., vol. 94, no. 13, Mar. 2009, Art. no. 131110. [16] Z. Fang, K. Chin, R. Qu, H. Cai, and K. Chang “Extrinsic fiber Fabry–Pérot interferometer sensor,” in Fundamentals of Optical Fiber Sensors. Hoboken, NJ, USA: Wiley, 2012, pp. 395–426. [17] K. T. V. Grattan, L. S. Grattan, and B. T. Meggitt, Optical Fiber Sensor Technology: Fundamentals. New York, NY, USA: Springer, 2000. [18] D. A. Krohn, Fiber Optic Sensors: Fundamentals and Applications. Paris, France: ISA, 2000. [19] W.-H. Tsai and C.-J. Lin, “A novel structure for the intrinsic Fabry–Pérot fiber-optic temperature sensor,” J. Lightw. Technol., vol. 19, no. 5, pp. 682–686, May 2001. [20] C. Belleville and G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett., vol. 18, no. 1, pp. 78–80, 1993. [21] A. Koch and R. Ulrich, “Fiber-optic displacement sensor with 0.02 μm resolution by white-light interferometry,” Sens. Actuators A, Phys., vol. 25, nos. 1–3, pp. 201–207, 1990. [22] Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Pérot interferometric sensors,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 75–77, Jan. 15, 2008. [23] M. Han and A. Wang, “Mode power distribution effect in white-light multimode fiber extrinsic Fabry–Pérot interferometric sensor systems,” Opt. Lett., vol. 31, no. 9, pp. 1202–1204, 2006. [24] X. Wu and O. Solgaard, “Short-cavity multimode fiber-tip Fabry–Pérot sensors,” Opt. Express, vol. 21, no. 12, pp. 14487–14499, 2013. [25] M. Han and A. Wang, “Exact analysis of low-finesse multimode fiber extrinsic Fabry–Pérot interferometers,” Appl. Opt., vol. 43, no. 24, pp. 4659–4666, 2004. [26] B. H. Lee et al., “Interferometric fiber optic sensors,” Sensors, vol. 12, no. 3, pp. 2467–2486, 2012. [27] D. Hu, R. Y.-N. Wong, and P. P. Shum, Photonic Crystal Fiber-Based Interferometric Sensors. London, U.K.: IntechOpen Limited, 2018. [28] J. G. V. Teixeira, I. T. Leite, S. Silva, and O. Frazão, “Advanced fiberoptic acoustic sensors,” Photon. Sensors, vol. 4, no. 3, pp. 198–208, Sep. 2014. [29] M. Hernaez, R. C. Zamarreño, S. Melendi-Espina, L. R. Bird, A. G. Mayes, and F. J. Arregui, “Optical fibre sensors using graphenebased materials: A review,” Sensors, vol. 17, no. 1, p. 155, 2017. [30] E. Cibula and D. Ðonlagi´c, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt., vol. 44, no. 14, pp. 2736–2744, 2005. [31] Q. Wang and Q. Yu, “Polymer diaphragm based sensitive fiber optic Fabry–Pérot acoustic sensor,” Chin. Opt. Lett., vol. 8, no. 3, pp. 266–269, 2010. [32] P. C. Beard and T. N. Mills, “Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry–Pérot interferometer,” Appl. Opt., vol. 35, no. 4, pp. 663–675, 1996. [33] F. Xu et al., “High-sensitivity Fabry–Pérot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett., vol. 37, no. 2, pp. 133–135, 2012. [34] J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett., vol. 30, no. 24, pp. 3269–3271, Dec. 2005. [35] Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 447–449, Feb. 2005. [36] É. Pinet, E. Cibula, and D. Ðonlagi´c, “Ultra-miniature all-glass Fabry–Pérot pressure sensor manufactured at the tip of a multimode optical fiber,” Proc. SPIE, vol. 6770, Sep. 2007, Art. no. 67700U. [37] K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng., vol. 15, no. 1, pp. 71–75, Oct. 2004. [38] R. G. Minasamudram, P. Arora, G. Gandhi, A. S. Daryoush, M. A. El-Sherif, and P. A. Lewin, “Thin film metal coated fiber optic hydrophone probe,” Appl. Opt., vol. 48, no. 31, pp. G77–G82, 2009. [39] J. N. Reddy, Theory and Analysis of Elastic Plates and Shells. Boca Raton, FL, USA: CRC Press, 2006. [40] W. Urba´nczyk and K. Pietraszkiewicz, “Measurements of stress anisotropy in fiber preform: Modification of the dynamic spatial filtering technique,” Appl. Opt., vol. 27, no. 19, pp. 4117–4122, 1988. [41] F. Sanaâ, J. F. Palierne, and M. Gharbia, “Channelled spectrum method for birefringence dispersion measurement of anisotropic Mylar film,” Opt. Mater., vol. 57, pp. 193–201, Jul. 2016. [42] L. Qi, C.-L. Zhao, Y. Wang, J. Kang, Z. Zhang, and S. Jin, “Compact micro-displacement sensor with high sensitivity based on a longperiod fiber grating with an air-cavity,” Opt. Express, vol. 21, no. 3, pp. 3193–3200, 2013. [43] B. Song et al., “Liquid-crystal based Fabry–Pérot interferometer displacement sensor,” Appl. Opt., vol. 58, no. 2, pp. 410–414, 2019. [44] C. Teng et al., “Displacement sensor based on a small U-shaped singlemode fiber,” Sensors, vol. 19, no. 11, p. 2531, 2019. [45] X. Yin, Y. Shen, W. Wang, Z. Shao, and Q. Rong, “Highly sensitive displacement sensor using open fiber-optics air bubbles,” IEEE Sensors J., vol. 19, no. 20, pp. 9249–9254, Oct. 2019. doi: 10.1109/JSEN. 2019.2924646. [46] V. Venkatraman and B.-K. Alsberg, “Designing high-refractive index polymers using materials informatics,” Polymers, vol. 10, no. 1, p. 103, 2018. [47] H. Gao, Y. Jiang, Y. Cui, L. Zhang, J. Jia, and L. Jiang, “Investigation on the thermo-optic coefficient of silica fiber within a wide temperature range,” J. Lightw. Technol., vol. 36, no. 24, pp. 5881–5886, Dec. 2018. |
dc.rights.spa.fl_str_mv |
Derechos reservados - IEEE, 2020 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - IEEE, 2020 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
7 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
IEEE |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://dspace7-uao.metacatalogo.com/bitstreams/49497c16-1744-4783-a6c2-c560ea71ddc2/download https://dspace7-uao.metacatalogo.com/bitstreams/d124080b-af08-4cef-8e47-dac3d598c761/download https://dspace7-uao.metacatalogo.com/bitstreams/aaeced52-552a-4acd-a662-2c1244fb97c9/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 6414e94c1ce36c2e03086f292381aa9c be25cb7ea48e5f0663228d7ac561c0d1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UAO |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260089098338304 |
spelling |
Gutierrez Rivera, Miguelb2ca226eed598d402db7af36dc4677f7Almanee, M.2ae07807402c4f13a0caf42ff87e377dRojas Laguna, R.ca2d3df9383296613d02826b28993106Jauregui Vázquez, Danielc494c17e452c1a34df17211ac819bb05Garcia Mina, Diego Felipec444e6cc93186e7c24a52a7b8e4a1f2dSierra Hernández, Juan M.6d11dc7cf47b0943f7768749225b8534Estudillo-Ayala, Julián Moisés461f2baa86eadf7985584ff6e523f461Rojas Laguna, Roberto4213cb36bc1eaa42436b76ac9e2b4953IEEE Sensors Journal2021-11-03T21:18:43Z2021-11-03T21:18:43Z2020-05-0115581748https://hdl.handle.net/10614/1339710.1109/JSEN.2019.2944998This manuscript experimentally validates a thin-film polymer andmultimode fiber optic interaction-based low-cost optical fiber displacement sensor. The sensing setup is operated by deflecting a commerciallyMylar® polymer film using multimode optical fiber. The sensor exhibits a higher sensitivity of 24nm/μmand resolution of 41.6nm. The sensor’s analyses also demonstrate good polynomial approximation, with a maximal adjusted square of R = 0.9801, and high stability, in which minimal power (0.4dB-Hour) and wavelength (<2nm-Hour) variations are observed. Moreover, thermal experiments prove that the sensor has lower temperature traits (0.05μm/ C), and this parameter can be distinguished considering the wavelength shifting direction. The simplicity of the scheme, as well as the cost of the elements involved, make this technique a reliable alternative to detect microdisplacements.7 páginasapplication/pdfengIEEEDerechos reservados - IEEE, 2020https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Fiber optic fabry-perot micro-displacement sensor based on low-cost polymer filmArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Fibra ópticaPolímerosDisplacement measurementOptical fiber sensorsPolymersVolumen 20, número 9 (2020)47259471920Gutiérrez Rivera, M., Jauregui Vázquez, D., García Mina, D. F., Sierra Hernández, J. M., Estudillo Ayala, J. M., Almanee, M., Rojas Laguna, R. (2020). Fiber optic fabry-perot micro-displacement sensor based on low-cost polymer film. IEEE Sensors Journal. (Vol. 20 (9), pp. 4719-4725. doi: 10.1109/JSEN.2019.2944998IEEE Sensors Journal[1] Y. Zhao, Y. Yuan, W. Gan, and M. Yang, “Optical fiber Fabry–Pérot humidity sensor based on polyimide membrane: Sensitivity and adsorption kinetics,” Sens. Actuators A, Phys., vol. 281, pp. 48–54, Oct. 2018.[2] Y. Yu et al., “Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling,” Opt. Express, vol. 18, no. 15, pp. 15383–15388, 2010.[3] Z. Zhu, L. Liu, Z. Liu, Y. Zhang, and Y. Zhang, “High-precision microdisplacement optical-fiber sensor based on surface plasmon resonance,” Opt. Lett., vol. 42, no. 10, pp. 1982–1985, 2017.[4] Y. Wei et al., “A new application of optical fiber surface plasmon resonance for micro-displacement measurement,” Sens. Actuators A, Phys., vol. 285, pp. 216–223, Jan. 2019.[5] P. Zu, C. C. Chan, T. Gong, Y. Jin, W. C.Wong, and X. Dong, “Magnetooptical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid,” Appl. Phys. Lett., vol. 101, no. 24, 2012, Art. no. 241118.[6] J. N. Dash, R. Jha, and S. Dass, “Ultrasensitive displacement sensor based on photonic crystal fiber modal interferometer,” in Proc. Adv. Photon., 2014, vol. 40, no. 4, pp. 1–3.[7] J. Chen, J. Zhou, and Z. Jia, “High-sensitivity displacement sensor based on a bent fiber Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett., vol. 25, no. 23, pp. 2354–2357, Dec. 1, 2013.[8] X. Dong, Y. Liu, Z. Liu, and X. Dong, “Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor,” Opt. Commun., vol. 192, nos. 3–6, pp. 213–217, Jun. 2001.[9] R. Fan, Y. Luo, L. Li, Q. Wu, Z. Ren, and B. Peng, “Large-range fiber microsphere micro-displacement sensor,” Opt. Fiber Technol., vol. 48, pp. 173–178, Mar. 2019.[10] D. Su, X. Qiao, W. Bao, F. Chen, and Q. Rong, “Orientation-dependent fiber-optics displacement sensor by a grating inscription within fourmode fiber,” Opt. Laser Technol., vol. 115, no. Nov. 2018, pp. 229–232, 2019.[11] A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interferencebased fiber-optic displacement sensor,” IEEE Photon. Technol. Lett., vol. 15, no. 8, pp. 1129–1131, Aug. 2003.[12] H. A. Rahman, S. W. Harun, M. Yasin, and H. Ahmad, “Fiber-optic salinity sensor using fiber-optic displacement measurement with flat and concave mirror,” IEEE J. Sel. Topics Quantum Electron., vol. 18, no. 5, pp. 1529–1533, Sep. 2012.[13] H. A. Rahman, S. W. Harun, N. Saidin, M. Yasin, and H. Ahmad, “Fiber optic displacement sensor for temperature measurement,” IEEE Sensors J., vol. 12, no. 5, pp. 1361–1364, May 2012.[14] H. A. Rahman, S. W. Harun, M. Batumalay, F. A. Muttalib, and H. Ahmad, “Fiber optic displacement sensor using multimode plastic fiber probe and tooth surface,” IEEE Sensors J., vol. 13, no. 1, pp. 294–298, Jan. 2013.[15] P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett., vol. 94, no. 13, Mar. 2009, Art. no. 131110.[16] Z. Fang, K. Chin, R. Qu, H. Cai, and K. Chang “Extrinsic fiber Fabry–Pérot interferometer sensor,” in Fundamentals of Optical Fiber Sensors. Hoboken, NJ, USA: Wiley, 2012, pp. 395–426.[17] K. T. V. Grattan, L. S. Grattan, and B. T. Meggitt, Optical Fiber Sensor Technology: Fundamentals. New York, NY, USA: Springer, 2000.[18] D. A. Krohn, Fiber Optic Sensors: Fundamentals and Applications. Paris, France: ISA, 2000.[19] W.-H. Tsai and C.-J. Lin, “A novel structure for the intrinsic Fabry–Pérot fiber-optic temperature sensor,” J. Lightw. Technol., vol. 19, no. 5, pp. 682–686, May 2001.[20] C. Belleville and G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett., vol. 18, no. 1, pp. 78–80, 1993.[21] A. Koch and R. Ulrich, “Fiber-optic displacement sensor with 0.02 μm resolution by white-light interferometry,” Sens. Actuators A, Phys., vol. 25, nos. 1–3, pp. 201–207, 1990.[22] Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Pérot interferometric sensors,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 75–77, Jan. 15, 2008.[23] M. Han and A. Wang, “Mode power distribution effect in white-light multimode fiber extrinsic Fabry–Pérot interferometric sensor systems,” Opt. Lett., vol. 31, no. 9, pp. 1202–1204, 2006.[24] X. Wu and O. Solgaard, “Short-cavity multimode fiber-tip Fabry–Pérot sensors,” Opt. Express, vol. 21, no. 12, pp. 14487–14499, 2013.[25] M. Han and A. Wang, “Exact analysis of low-finesse multimode fiber extrinsic Fabry–Pérot interferometers,” Appl. Opt., vol. 43, no. 24, pp. 4659–4666, 2004.[26] B. H. Lee et al., “Interferometric fiber optic sensors,” Sensors, vol. 12, no. 3, pp. 2467–2486, 2012.[27] D. Hu, R. Y.-N. Wong, and P. P. Shum, Photonic Crystal Fiber-Based Interferometric Sensors. London, U.K.: IntechOpen Limited, 2018.[28] J. G. V. Teixeira, I. T. Leite, S. Silva, and O. Frazão, “Advanced fiberoptic acoustic sensors,” Photon. Sensors, vol. 4, no. 3, pp. 198–208, Sep. 2014.[29] M. Hernaez, R. C. Zamarreño, S. Melendi-Espina, L. R. Bird, A. G. Mayes, and F. J. Arregui, “Optical fibre sensors using graphenebased materials: A review,” Sensors, vol. 17, no. 1, p. 155, 2017.[30] E. Cibula and D. Ðonlagi´c, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt., vol. 44, no. 14, pp. 2736–2744, 2005.[31] Q. Wang and Q. Yu, “Polymer diaphragm based sensitive fiber optic Fabry–Pérot acoustic sensor,” Chin. Opt. Lett., vol. 8, no. 3, pp. 266–269, 2010.[32] P. C. Beard and T. N. Mills, “Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry–Pérot interferometer,” Appl. Opt., vol. 35, no. 4, pp. 663–675, 1996.[33] F. Xu et al., “High-sensitivity Fabry–Pérot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett., vol. 37, no. 2, pp. 133–135, 2012.[34] J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett., vol. 30, no. 24, pp. 3269–3271, Dec. 2005.[35] Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 447–449, Feb. 2005.[36] É. Pinet, E. Cibula, and D. Ðonlagi´c, “Ultra-miniature all-glass Fabry–Pérot pressure sensor manufactured at the tip of a multimode optical fiber,” Proc. SPIE, vol. 6770, Sep. 2007, Art. no. 67700U.[37] K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng., vol. 15, no. 1, pp. 71–75, Oct. 2004.[38] R. G. Minasamudram, P. Arora, G. Gandhi, A. S. Daryoush, M. A. El-Sherif, and P. A. Lewin, “Thin film metal coated fiber optic hydrophone probe,” Appl. Opt., vol. 48, no. 31, pp. G77–G82, 2009.[39] J. N. Reddy, Theory and Analysis of Elastic Plates and Shells. Boca Raton, FL, USA: CRC Press, 2006.[40] W. Urba´nczyk and K. Pietraszkiewicz, “Measurements of stress anisotropy in fiber preform: Modification of the dynamic spatial filtering technique,” Appl. Opt., vol. 27, no. 19, pp. 4117–4122, 1988.[41] F. Sanaâ, J. F. Palierne, and M. Gharbia, “Channelled spectrum method for birefringence dispersion measurement of anisotropic Mylar film,” Opt. Mater., vol. 57, pp. 193–201, Jul. 2016.[42] L. Qi, C.-L. Zhao, Y. Wang, J. Kang, Z. Zhang, and S. Jin, “Compact micro-displacement sensor with high sensitivity based on a longperiod fiber grating with an air-cavity,” Opt. Express, vol. 21, no. 3, pp. 3193–3200, 2013.[43] B. Song et al., “Liquid-crystal based Fabry–Pérot interferometer displacement sensor,” Appl. Opt., vol. 58, no. 2, pp. 410–414, 2019.[44] C. Teng et al., “Displacement sensor based on a small U-shaped singlemode fiber,” Sensors, vol. 19, no. 11, p. 2531, 2019.[45] X. Yin, Y. Shen, W. Wang, Z. Shao, and Q. Rong, “Highly sensitive displacement sensor using open fiber-optics air bubbles,” IEEE Sensors J., vol. 19, no. 20, pp. 9249–9254, Oct. 2019. doi: 10.1109/JSEN. 2019.2924646.[46] V. Venkatraman and B.-K. Alsberg, “Designing high-refractive index polymers using materials informatics,” Polymers, vol. 10, no. 1, p. 103, 2018.[47] H. Gao, Y. Jiang, Y. Cui, L. Zhang, J. Jia, and L. Jiang, “Investigation on the thermo-optic coefficient of silica fiber within a wide temperature range,” J. Lightw. Technol., vol. 36, no. 24, pp. 5881–5886, Dec. 2018.GeneralPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/49497c16-1744-4783-a6c2-c560ea71ddc2/download20b5ba22b1117f71589c7318baa2c560MD52TEXTFiber optic fabry-perot micro-displacement sensor based on low-cost polymer film.pdf.txtFiber optic fabry-perot micro-displacement sensor based on low-cost polymer film.pdf.txtExtracted texttext/plain34475https://dspace7-uao.metacatalogo.com/bitstreams/d124080b-af08-4cef-8e47-dac3d598c761/download6414e94c1ce36c2e03086f292381aa9cMD54THUMBNAILFiber optic fabry-perot micro-displacement sensor based on low-cost polymer film.pdf.jpgFiber optic fabry-perot micro-displacement sensor based on low-cost polymer film.pdf.jpgGenerated Thumbnailimage/jpeg19474https://dspace7-uao.metacatalogo.com/bitstreams/aaeced52-552a-4acd-a662-2c1244fb97c9/downloadbe25cb7ea48e5f0663228d7ac561c0d1MD5510614/13397oai:dspace7-uao.metacatalogo.com:10614/133972024-01-19 16:58:12.51https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - IEEE, 2020metadata.onlyhttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |