Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range

The present contribution aims to determine the dependence of the location of the non-dimensional center of pressure ( with orientation () for non-spherical particles of regular shape. Prolate and oblate ellipsoids as well as cylinders of various aspect ratios () at several Reynolds numbers () have b...

Full description

Autores:
Castang Montiel, Carlos Eduardo
Laín Beatove, Santiago
Sommerfeld, Martin
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13925
Acceso en línea:
https://hdl.handle.net/10614/13925
https://red.uao.edu.co/
Palabra clave:
Partículas
Particles
Non-spherical particle
Regular shape
Intermediate Reynolds numbers
Direct Numerical Simulation
Center of pressure
Rights
openAccess
License
Derechos reservados - Elsevier, 2021
id REPOUAO2_5681c6241193bd42e7f6eb8deaa40cf1
oai_identifier_str oai:red.uao.edu.co:10614/13925
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range
title Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range
spellingShingle Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range
Partículas
Particles
Non-spherical particle
Regular shape
Intermediate Reynolds numbers
Direct Numerical Simulation
Center of pressure
title_short Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range
title_full Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range
title_fullStr Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range
title_full_unstemmed Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range
title_sort Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range
dc.creator.fl_str_mv Castang Montiel, Carlos Eduardo
Laín Beatove, Santiago
Sommerfeld, Martin
dc.contributor.author.none.fl_str_mv Castang Montiel, Carlos Eduardo
Laín Beatove, Santiago
Sommerfeld, Martin
dc.subject.armarc.spa.fl_str_mv Partículas
topic Partículas
Particles
Non-spherical particle
Regular shape
Intermediate Reynolds numbers
Direct Numerical Simulation
Center of pressure
dc.subject.armarc.eng.fl_str_mv Particles
dc.subject.proposal.eng.fl_str_mv Non-spherical particle
Regular shape
Intermediate Reynolds numbers
Direct Numerical Simulation
Center of pressure
description The present contribution aims to determine the dependence of the location of the non-dimensional center of pressure ( with orientation () for non-spherical particles of regular shape. Prolate and oblate ellipsoids as well as cylinders of various aspect ratios () at several Reynolds numbers () have been considered. The required flow coefficients (drag, lift and pitching torque) were determined through DNS and validated with recently published results. The strategy for determining the center of pressure consisted in the evaluation of the pitching torque acting on the non-spherical particles resulting from the fluid-dynamic forces (i.e. drag and lift) and its comparison with the torque directly determined from DNS. The performed analysis did not only allow determining the shape of the curve , but also revealed that the location of the center of pressure depends additionally on particle aspect ratio and Reynolds number. It is found that for all the particles considered, the position of the center of pressure at a fixed incidence angle displaces upstream of the geometrical center with increasing Reynolds number; additionally, it exhibits a non-monotonic behavior in dependence of the aspect ratio
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-05-27T20:34:24Z
dc.date.available.none.fl_str_mv 2022-05-27T20:34:24Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 03019322
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13925
dc.identifier.doi.none.fl_str_mv 10.1016/j.ijmultiphaseflow.2021.103565
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 03019322
10.1016/j.ijmultiphaseflow.2021.103565
Universidad Autónoma de Occidente
Repositorio Educativo Digital
url https://hdl.handle.net/10614/13925
https://red.uao.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 23
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 137
dc.relation.cites.eng.fl_str_mv Castang Montiel, C. E., Laín Behatove, S., Sommerfeld, M. (2021). Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range. International Journal of Multiphase Flow. 137, 1-24. https://www.researchgate.net/publication/348599766_Pressure_center_determination_for_regularly_shaped_non-spherical_particles_at_intermediate_Reynolds_number_range
dc.relation.ispartofjournal.eng.fl_str_mv International Journal of Multiphase Flow
dc.relation.references.none.fl_str_mv Chhabra et al., 1999 R.P. Chhabra, L. Agarwal, N.K. Sinha Drag on non-spherical particles: An evaluation of available methods Powder Technology, 101 (3) (1999), pp. 288-295
Ganser, 1993 G.H. Ganser A rational approach to drag prediction of spherical and nonspherical particles Powder Technol, 77 (2) (1993), pp. 143-152
Hilton and Cleary, 2011 J.E. Hilton, P.W. Cleary The influence of particle shape on flow modes in pneumatic conveying Chemical Engineering Science, 66 (2011), pp. 231-240
Hölzer and Sommerfeld, 2009 A. Hölzer, M. Sommerfeld Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles Computers & Fluids, 38 (2009), pp. 572-589
Lain and Sommerfeld, 2019 S. Lain, M. Sommerfeld Numerical prediction of particle erosion in pipe bends Advanced Powder Technology, 30 (2019), pp. 366-383
Loth, 2008 E. Loth Drag of non-spherical solid particles of regular and irregular shape Powder Technology, 182 (3) (2008), pp. 342-353
Marchildon et al., 1964 E.K. Marchildon, A. Clamen, W.H. Gauvin Drag and oscillatory motion of freely falling cylindrical particles Can. J. Chem. Eng., 42 (4) (1964), pp. 178-182
Ouchene et al., 2016 R. Ouchene, M. Khalij, B. Arcen, A. Tanière A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers Powder Technol, 303 (2016), pp. 33-43
Rosendahl, 2000 L. Rosendahl Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow Applied Mathematical Modelling, 24 (1) (2000), pp. 11-25
Schiller and Naumann, 1933 L. Schiller, A. Naumann Über die grundlegende Berechnung bei des Schwer-kraftaufbereitung Verein Dtsch. Ingenieure, 44 (1933), pp. 318-320
Sommerfeld and Laín, 2018 M. Sommerfeld, S. Laín Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows Powder Technology, 332 (2018), pp. 253-264
Tran-Cong et al., 2003 S. Tran-Cong, M. Gay, E. Michaelides Drag coefficients of irregularly shaped particles Powder Technol, 139 (2003), pp. 21-32
Vakil and Green, 2009 A. Vakil, S.I. Green Drag and lift coefficients of inclined finite circular cylinders at moderate Reynolds numbers Computers & Fluids, 38 (9) (2009), pp. 1771-1781
Yin et al., 2003 C. Yin, L. Rosendahl, S.Knudsen Kaer, H. Sorensen Modelling the motion of cylindrical particles in a nonuniform flow Chem. Eng. Sci., 58 (15) (2003), pp. 3489-3498
Zastawny et al., 2012 M. Zastawny, G. Mallouppas, F. Zhao, B. van Wachem Derivation of drag and lift force and torque coefficients for non-spherical particles in flows Int. J. Multiph. Flow, 39 (2012), pp. 227-239
dc.rights.spa.fl_str_mv Derechos reservados - Elsevier, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Elsevier, 2021
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 23 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/bfa11b07-2847-488c-8a95-5abc1ef9ec65/download
https://red.uao.edu.co/bitstreams/5dcc1b5b-8bce-43b1-bbee-32ae1346db13/download
https://red.uao.edu.co/bitstreams/72d7546e-435a-49bb-a76a-d2d07ef866f5/download
https://red.uao.edu.co/bitstreams/f01e889e-0186-4c06-ba18-cc9dadc6dd5c/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
064c818d3c5f2760bd15a7956f5deedb
141ee813fe92eaffd79caafeb5ad75ef
6c4ee667c2019481d8b7684f9baee825
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1828230148311220224
spelling Castang Montiel, Carlos Eduardovirtual::1223-1Laín Beatove, Santiagovirtual::2537-1Sommerfeld, Martin3bf359c2485f90e20248a843d0d9a5522022-05-27T20:34:24Z2022-05-27T20:34:24Z202103019322https://hdl.handle.net/10614/1392510.1016/j.ijmultiphaseflow.2021.103565Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/The present contribution aims to determine the dependence of the location of the non-dimensional center of pressure ( with orientation () for non-spherical particles of regular shape. Prolate and oblate ellipsoids as well as cylinders of various aspect ratios () at several Reynolds numbers () have been considered. The required flow coefficients (drag, lift and pitching torque) were determined through DNS and validated with recently published results. The strategy for determining the center of pressure consisted in the evaluation of the pitching torque acting on the non-spherical particles resulting from the fluid-dynamic forces (i.e. drag and lift) and its comparison with the torque directly determined from DNS. The performed analysis did not only allow determining the shape of the curve , but also revealed that the location of the center of pressure depends additionally on particle aspect ratio and Reynolds number. It is found that for all the particles considered, the position of the center of pressure at a fixed incidence angle displaces upstream of the geometrical center with increasing Reynolds number; additionally, it exhibits a non-monotonic behavior in dependence of the aspect ratio23 páginasapplication/pdfengElsevierDerechos reservados - Elsevier, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number rangeArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85PartículasParticlesNon-spherical particleRegular shapeIntermediate Reynolds numbersDirect Numerical SimulationCenter of pressure231137Castang Montiel, C. E., Laín Behatove, S., Sommerfeld, M. (2021). Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range. International Journal of Multiphase Flow. 137, 1-24. https://www.researchgate.net/publication/348599766_Pressure_center_determination_for_regularly_shaped_non-spherical_particles_at_intermediate_Reynolds_number_rangeInternational Journal of Multiphase FlowChhabra et al., 1999 R.P. Chhabra, L. Agarwal, N.K. Sinha Drag on non-spherical particles: An evaluation of available methods Powder Technology, 101 (3) (1999), pp. 288-295Ganser, 1993 G.H. Ganser A rational approach to drag prediction of spherical and nonspherical particles Powder Technol, 77 (2) (1993), pp. 143-152Hilton and Cleary, 2011 J.E. Hilton, P.W. Cleary The influence of particle shape on flow modes in pneumatic conveying Chemical Engineering Science, 66 (2011), pp. 231-240Hölzer and Sommerfeld, 2009 A. Hölzer, M. Sommerfeld Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles Computers & Fluids, 38 (2009), pp. 572-589Lain and Sommerfeld, 2019 S. Lain, M. Sommerfeld Numerical prediction of particle erosion in pipe bends Advanced Powder Technology, 30 (2019), pp. 366-383Loth, 2008 E. Loth Drag of non-spherical solid particles of regular and irregular shape Powder Technology, 182 (3) (2008), pp. 342-353Marchildon et al., 1964 E.K. Marchildon, A. Clamen, W.H. Gauvin Drag and oscillatory motion of freely falling cylindrical particles Can. J. Chem. Eng., 42 (4) (1964), pp. 178-182Ouchene et al., 2016 R. Ouchene, M. Khalij, B. Arcen, A. Tanière A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers Powder Technol, 303 (2016), pp. 33-43Rosendahl, 2000 L. Rosendahl Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow Applied Mathematical Modelling, 24 (1) (2000), pp. 11-25Schiller and Naumann, 1933 L. Schiller, A. Naumann Über die grundlegende Berechnung bei des Schwer-kraftaufbereitung Verein Dtsch. Ingenieure, 44 (1933), pp. 318-320Sommerfeld and Laín, 2018 M. Sommerfeld, S. Laín Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows Powder Technology, 332 (2018), pp. 253-264Tran-Cong et al., 2003 S. Tran-Cong, M. Gay, E. Michaelides Drag coefficients of irregularly shaped particles Powder Technol, 139 (2003), pp. 21-32Vakil and Green, 2009 A. Vakil, S.I. Green Drag and lift coefficients of inclined finite circular cylinders at moderate Reynolds numbers Computers & Fluids, 38 (9) (2009), pp. 1771-1781Yin et al., 2003 C. Yin, L. Rosendahl, S.Knudsen Kaer, H. Sorensen Modelling the motion of cylindrical particles in a nonuniform flow Chem. Eng. Sci., 58 (15) (2003), pp. 3489-3498Zastawny et al., 2012 M. Zastawny, G. Mallouppas, F. Zhao, B. van Wachem Derivation of drag and lift force and torque coefficients for non-spherical particles in flows Int. J. Multiph. Flow, 39 (2012), pp. 227-239Comunidad generalPublication58942dc4-b266-442c-9c3b-75d8a3a3d570virtual::1223-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2537-158942dc4-b266-442c-9c3b-75d8a3a3d570virtual::1223-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2537-1https://scholar.google.com/citations?view_op=list_works&hl=es&user=FM2T5T0AAAAJvirtual::1223-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2537-10009-0005-6686-7365virtual::1223-10000-0002-0269-2608virtual::2537-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000404217virtual::1223-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2537-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/bfa11b07-2847-488c-8a95-5abc1ef9ec65/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALCastangLainSommerfeld_IJMF21.pdfCastangLainSommerfeld_IJMF21.pdfapplication/pdf992471https://red.uao.edu.co/bitstreams/5dcc1b5b-8bce-43b1-bbee-32ae1346db13/download064c818d3c5f2760bd15a7956f5deedbMD53TEXTCastangLainSommerfeld_IJMF21.pdf.txtCastangLainSommerfeld_IJMF21.pdf.txtExtracted texttext/plain50565https://red.uao.edu.co/bitstreams/72d7546e-435a-49bb-a76a-d2d07ef866f5/download141ee813fe92eaffd79caafeb5ad75efMD54THUMBNAILCastangLainSommerfeld_IJMF21.pdf.jpgCastangLainSommerfeld_IJMF21.pdf.jpgGenerated Thumbnailimage/jpeg15336https://red.uao.edu.co/bitstreams/f01e889e-0186-4c06-ba18-cc9dadc6dd5c/download6c4ee667c2019481d8b7684f9baee825MD5510614/13925oai:red.uao.edu.co:10614/139252024-03-06 16:04:36.401https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2021open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K