Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range
The present contribution aims to determine the dependence of the location of the non-dimensional center of pressure ( with orientation () for non-spherical particles of regular shape. Prolate and oblate ellipsoids as well as cylinders of various aspect ratios () at several Reynolds numbers () have b...
- Autores:
-
Castang Montiel, Carlos Eduardo
Laín Beatove, Santiago
Sommerfeld, Martin
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13925
- Acceso en línea:
- https://hdl.handle.net/10614/13925
https://red.uao.edu.co/
- Palabra clave:
- Partículas
Particles
Non-spherical particle
Regular shape
Intermediate Reynolds numbers
Direct Numerical Simulation
Center of pressure
- Rights
- openAccess
- License
- Derechos reservados - Elsevier, 2021
id |
REPOUAO2_5681c6241193bd42e7f6eb8deaa40cf1 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13925 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range |
title |
Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range |
spellingShingle |
Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range Partículas Particles Non-spherical particle Regular shape Intermediate Reynolds numbers Direct Numerical Simulation Center of pressure |
title_short |
Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range |
title_full |
Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range |
title_fullStr |
Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range |
title_full_unstemmed |
Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range |
title_sort |
Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range |
dc.creator.fl_str_mv |
Castang Montiel, Carlos Eduardo Laín Beatove, Santiago Sommerfeld, Martin |
dc.contributor.author.none.fl_str_mv |
Castang Montiel, Carlos Eduardo Laín Beatove, Santiago Sommerfeld, Martin |
dc.subject.armarc.spa.fl_str_mv |
Partículas |
topic |
Partículas Particles Non-spherical particle Regular shape Intermediate Reynolds numbers Direct Numerical Simulation Center of pressure |
dc.subject.armarc.eng.fl_str_mv |
Particles |
dc.subject.proposal.eng.fl_str_mv |
Non-spherical particle Regular shape Intermediate Reynolds numbers Direct Numerical Simulation Center of pressure |
description |
The present contribution aims to determine the dependence of the location of the non-dimensional center of pressure ( with orientation () for non-spherical particles of regular shape. Prolate and oblate ellipsoids as well as cylinders of various aspect ratios () at several Reynolds numbers () have been considered. The required flow coefficients (drag, lift and pitching torque) were determined through DNS and validated with recently published results. The strategy for determining the center of pressure consisted in the evaluation of the pitching torque acting on the non-spherical particles resulting from the fluid-dynamic forces (i.e. drag and lift) and its comparison with the torque directly determined from DNS. The performed analysis did not only allow determining the shape of the curve , but also revealed that the location of the center of pressure depends additionally on particle aspect ratio and Reynolds number. It is found that for all the particles considered, the position of the center of pressure at a fixed incidence angle displaces upstream of the geometrical center with increasing Reynolds number; additionally, it exhibits a non-monotonic behavior in dependence of the aspect ratio |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-05-27T20:34:24Z |
dc.date.available.none.fl_str_mv |
2022-05-27T20:34:24Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
03019322 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13925 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.ijmultiphaseflow.2021.103565 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
03019322 10.1016/j.ijmultiphaseflow.2021.103565 Universidad Autónoma de Occidente Repositorio Educativo Digital |
url |
https://hdl.handle.net/10614/13925 https://red.uao.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
23 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
137 |
dc.relation.cites.eng.fl_str_mv |
Castang Montiel, C. E., Laín Behatove, S., Sommerfeld, M. (2021). Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range. International Journal of Multiphase Flow. 137, 1-24. https://www.researchgate.net/publication/348599766_Pressure_center_determination_for_regularly_shaped_non-spherical_particles_at_intermediate_Reynolds_number_range |
dc.relation.ispartofjournal.eng.fl_str_mv |
International Journal of Multiphase Flow |
dc.relation.references.none.fl_str_mv |
Chhabra et al., 1999 R.P. Chhabra, L. Agarwal, N.K. Sinha Drag on non-spherical particles: An evaluation of available methods Powder Technology, 101 (3) (1999), pp. 288-295 Ganser, 1993 G.H. Ganser A rational approach to drag prediction of spherical and nonspherical particles Powder Technol, 77 (2) (1993), pp. 143-152 Hilton and Cleary, 2011 J.E. Hilton, P.W. Cleary The influence of particle shape on flow modes in pneumatic conveying Chemical Engineering Science, 66 (2011), pp. 231-240 Hölzer and Sommerfeld, 2009 A. Hölzer, M. Sommerfeld Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles Computers & Fluids, 38 (2009), pp. 572-589 Lain and Sommerfeld, 2019 S. Lain, M. Sommerfeld Numerical prediction of particle erosion in pipe bends Advanced Powder Technology, 30 (2019), pp. 366-383 Loth, 2008 E. Loth Drag of non-spherical solid particles of regular and irregular shape Powder Technology, 182 (3) (2008), pp. 342-353 Marchildon et al., 1964 E.K. Marchildon, A. Clamen, W.H. Gauvin Drag and oscillatory motion of freely falling cylindrical particles Can. J. Chem. Eng., 42 (4) (1964), pp. 178-182 Ouchene et al., 2016 R. Ouchene, M. Khalij, B. Arcen, A. Tanière A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers Powder Technol, 303 (2016), pp. 33-43 Rosendahl, 2000 L. Rosendahl Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow Applied Mathematical Modelling, 24 (1) (2000), pp. 11-25 Schiller and Naumann, 1933 L. Schiller, A. Naumann Über die grundlegende Berechnung bei des Schwer-kraftaufbereitung Verein Dtsch. Ingenieure, 44 (1933), pp. 318-320 Sommerfeld and Laín, 2018 M. Sommerfeld, S. Laín Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows Powder Technology, 332 (2018), pp. 253-264 Tran-Cong et al., 2003 S. Tran-Cong, M. Gay, E. Michaelides Drag coefficients of irregularly shaped particles Powder Technol, 139 (2003), pp. 21-32 Vakil and Green, 2009 A. Vakil, S.I. Green Drag and lift coefficients of inclined finite circular cylinders at moderate Reynolds numbers Computers & Fluids, 38 (9) (2009), pp. 1771-1781 Yin et al., 2003 C. Yin, L. Rosendahl, S.Knudsen Kaer, H. Sorensen Modelling the motion of cylindrical particles in a nonuniform flow Chem. Eng. Sci., 58 (15) (2003), pp. 3489-3498 Zastawny et al., 2012 M. Zastawny, G. Mallouppas, F. Zhao, B. van Wachem Derivation of drag and lift force and torque coefficients for non-spherical particles in flows Int. J. Multiph. Flow, 39 (2012), pp. 227-239 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Elsevier, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Elsevier, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
23 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/bfa11b07-2847-488c-8a95-5abc1ef9ec65/download https://red.uao.edu.co/bitstreams/5dcc1b5b-8bce-43b1-bbee-32ae1346db13/download https://red.uao.edu.co/bitstreams/72d7546e-435a-49bb-a76a-d2d07ef866f5/download https://red.uao.edu.co/bitstreams/f01e889e-0186-4c06-ba18-cc9dadc6dd5c/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 064c818d3c5f2760bd15a7956f5deedb 141ee813fe92eaffd79caafeb5ad75ef 6c4ee667c2019481d8b7684f9baee825 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1828230148311220224 |
spelling |
Castang Montiel, Carlos Eduardovirtual::1223-1Laín Beatove, Santiagovirtual::2537-1Sommerfeld, Martin3bf359c2485f90e20248a843d0d9a5522022-05-27T20:34:24Z2022-05-27T20:34:24Z202103019322https://hdl.handle.net/10614/1392510.1016/j.ijmultiphaseflow.2021.103565Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/The present contribution aims to determine the dependence of the location of the non-dimensional center of pressure ( with orientation () for non-spherical particles of regular shape. Prolate and oblate ellipsoids as well as cylinders of various aspect ratios () at several Reynolds numbers () have been considered. The required flow coefficients (drag, lift and pitching torque) were determined through DNS and validated with recently published results. The strategy for determining the center of pressure consisted in the evaluation of the pitching torque acting on the non-spherical particles resulting from the fluid-dynamic forces (i.e. drag and lift) and its comparison with the torque directly determined from DNS. The performed analysis did not only allow determining the shape of the curve , but also revealed that the location of the center of pressure depends additionally on particle aspect ratio and Reynolds number. It is found that for all the particles considered, the position of the center of pressure at a fixed incidence angle displaces upstream of the geometrical center with increasing Reynolds number; additionally, it exhibits a non-monotonic behavior in dependence of the aspect ratio23 páginasapplication/pdfengElsevierDerechos reservados - Elsevier, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number rangeArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85PartículasParticlesNon-spherical particleRegular shapeIntermediate Reynolds numbersDirect Numerical SimulationCenter of pressure231137Castang Montiel, C. E., Laín Behatove, S., Sommerfeld, M. (2021). Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range. International Journal of Multiphase Flow. 137, 1-24. https://www.researchgate.net/publication/348599766_Pressure_center_determination_for_regularly_shaped_non-spherical_particles_at_intermediate_Reynolds_number_rangeInternational Journal of Multiphase FlowChhabra et al., 1999 R.P. Chhabra, L. Agarwal, N.K. Sinha Drag on non-spherical particles: An evaluation of available methods Powder Technology, 101 (3) (1999), pp. 288-295Ganser, 1993 G.H. Ganser A rational approach to drag prediction of spherical and nonspherical particles Powder Technol, 77 (2) (1993), pp. 143-152Hilton and Cleary, 2011 J.E. Hilton, P.W. Cleary The influence of particle shape on flow modes in pneumatic conveying Chemical Engineering Science, 66 (2011), pp. 231-240Hölzer and Sommerfeld, 2009 A. Hölzer, M. Sommerfeld Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles Computers & Fluids, 38 (2009), pp. 572-589Lain and Sommerfeld, 2019 S. Lain, M. Sommerfeld Numerical prediction of particle erosion in pipe bends Advanced Powder Technology, 30 (2019), pp. 366-383Loth, 2008 E. Loth Drag of non-spherical solid particles of regular and irregular shape Powder Technology, 182 (3) (2008), pp. 342-353Marchildon et al., 1964 E.K. Marchildon, A. Clamen, W.H. Gauvin Drag and oscillatory motion of freely falling cylindrical particles Can. J. Chem. Eng., 42 (4) (1964), pp. 178-182Ouchene et al., 2016 R. Ouchene, M. Khalij, B. Arcen, A. Tanière A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers Powder Technol, 303 (2016), pp. 33-43Rosendahl, 2000 L. Rosendahl Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow Applied Mathematical Modelling, 24 (1) (2000), pp. 11-25Schiller and Naumann, 1933 L. Schiller, A. Naumann Über die grundlegende Berechnung bei des Schwer-kraftaufbereitung Verein Dtsch. Ingenieure, 44 (1933), pp. 318-320Sommerfeld and Laín, 2018 M. Sommerfeld, S. Laín Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows Powder Technology, 332 (2018), pp. 253-264Tran-Cong et al., 2003 S. Tran-Cong, M. Gay, E. Michaelides Drag coefficients of irregularly shaped particles Powder Technol, 139 (2003), pp. 21-32Vakil and Green, 2009 A. Vakil, S.I. Green Drag and lift coefficients of inclined finite circular cylinders at moderate Reynolds numbers Computers & Fluids, 38 (9) (2009), pp. 1771-1781Yin et al., 2003 C. Yin, L. Rosendahl, S.Knudsen Kaer, H. Sorensen Modelling the motion of cylindrical particles in a nonuniform flow Chem. Eng. Sci., 58 (15) (2003), pp. 3489-3498Zastawny et al., 2012 M. Zastawny, G. Mallouppas, F. Zhao, B. van Wachem Derivation of drag and lift force and torque coefficients for non-spherical particles in flows Int. J. Multiph. Flow, 39 (2012), pp. 227-239Comunidad generalPublication58942dc4-b266-442c-9c3b-75d8a3a3d570virtual::1223-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2537-158942dc4-b266-442c-9c3b-75d8a3a3d570virtual::1223-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2537-1https://scholar.google.com/citations?view_op=list_works&hl=es&user=FM2T5T0AAAAJvirtual::1223-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2537-10009-0005-6686-7365virtual::1223-10000-0002-0269-2608virtual::2537-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000404217virtual::1223-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2537-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/bfa11b07-2847-488c-8a95-5abc1ef9ec65/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALCastangLainSommerfeld_IJMF21.pdfCastangLainSommerfeld_IJMF21.pdfapplication/pdf992471https://red.uao.edu.co/bitstreams/5dcc1b5b-8bce-43b1-bbee-32ae1346db13/download064c818d3c5f2760bd15a7956f5deedbMD53TEXTCastangLainSommerfeld_IJMF21.pdf.txtCastangLainSommerfeld_IJMF21.pdf.txtExtracted texttext/plain50565https://red.uao.edu.co/bitstreams/72d7546e-435a-49bb-a76a-d2d07ef866f5/download141ee813fe92eaffd79caafeb5ad75efMD54THUMBNAILCastangLainSommerfeld_IJMF21.pdf.jpgCastangLainSommerfeld_IJMF21.pdf.jpgGenerated Thumbnailimage/jpeg15336https://red.uao.edu.co/bitstreams/f01e889e-0186-4c06-ba18-cc9dadc6dd5c/download6c4ee667c2019481d8b7684f9baee825MD5510614/13925oai:red.uao.edu.co:10614/139252024-03-06 16:04:36.401https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2021open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |