Automated epileptic seizure detection system based on a wearable prototype and cloud computing to assist people with epilepsy

Epilepsy is characterized by the recurrence of epileptic seizures that affect secondary physiological changes in the patient. This leads to a series of adverse events in the manifestation of convulsions in an uncontrolled environment and without medical help, resulting in risk to the patient, especi...

Full description

Autores:
González Vargas, Andrés Mauricio
Escobar Cruz, Juan Nicolás
Solarte, Jhon
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11414
Acceso en línea:
http://hdl.handle.net/10614/11414
Palabra clave:
Electrodiagnóstico
Arquitectura en la nube
Electrodiagnosis
Cloud computing architecture
Epileptic seizure detection
Wearable
Electromyography
Cloud computing
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_5584e4b29fb267d50c02344be971ce15
oai_identifier_str oai:red.uao.edu.co:10614/11414
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Automated epileptic seizure detection system based on a wearable prototype and cloud computing to assist people with epilepsy
title Automated epileptic seizure detection system based on a wearable prototype and cloud computing to assist people with epilepsy
spellingShingle Automated epileptic seizure detection system based on a wearable prototype and cloud computing to assist people with epilepsy
Electrodiagnóstico
Arquitectura en la nube
Electrodiagnosis
Cloud computing architecture
Epileptic seizure detection
Wearable
Electromyography
Cloud computing
title_short Automated epileptic seizure detection system based on a wearable prototype and cloud computing to assist people with epilepsy
title_full Automated epileptic seizure detection system based on a wearable prototype and cloud computing to assist people with epilepsy
title_fullStr Automated epileptic seizure detection system based on a wearable prototype and cloud computing to assist people with epilepsy
title_full_unstemmed Automated epileptic seizure detection system based on a wearable prototype and cloud computing to assist people with epilepsy
title_sort Automated epileptic seizure detection system based on a wearable prototype and cloud computing to assist people with epilepsy
dc.creator.fl_str_mv González Vargas, Andrés Mauricio
Escobar Cruz, Juan Nicolás
Solarte, Jhon
dc.contributor.author.none.fl_str_mv González Vargas, Andrés Mauricio
Escobar Cruz, Juan Nicolás
Solarte, Jhon
dc.subject.armarc.spa.fl_str_mv Electrodiagnóstico
Arquitectura en la nube
topic Electrodiagnóstico
Arquitectura en la nube
Electrodiagnosis
Cloud computing architecture
Epileptic seizure detection
Wearable
Electromyography
Cloud computing
dc.subject.armarc.eng.fl_str_mv Electrodiagnosis
Cloud computing architecture
dc.subject.proposal.eng.fl_str_mv Epileptic seizure detection
Wearable
Electromyography
Cloud computing
description Epilepsy is characterized by the recurrence of epileptic seizures that affect secondary physiological changes in the patient. This leads to a series of adverse events in the manifestation of convulsions in an uncontrolled environment and without medical help, resulting in risk to the patient, especially in people with refractory epilepsy where modern pharmacology is not able to control seizures. The traditional methods of detection based on wired hospital monitoring systems are not suitable for the detection of long-term monitoring in outdoors. For these reasons, this paper proposes a system that can detect generalized tonic-clonic seizures on patients to alert family members or medical personnel for prompt assistance, based on a wearable device (glove), a mobile application and a Support Vector Machine classifier deployed in a system based on cloud computing. In the proposed approach we use Accelerometry (ACC), Electromyography (ECG) as measurement signals for the development of the glove, a machine learning algorithm (SVM) is used to discriminate between simulated tonic-clonic seizures and non-seizure activities that may be confused with convulsions. In this paper, the high level architecture of the system and its implementation based on Cloud Computing are described. Considering the traditional methods of measurement, the detection system proposed in this paper could mean an alternative solution that allows a prompt response and assistance that could be lifesaving in many situations
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-09-13
dc.date.accessioned.none.fl_str_mv 2019-11-06T14:38:36Z
dc.date.available.none.fl_str_mv 2019-11-06T14:38:36Z
dc.type.spa.fl_str_mv Capítulo - Parte de Libro
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.isbn.spa.fl_str_mv 9783030003531 (en línea)
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11414
dc.identifier.doi.spa.fl_str_mv 10.1007/978-3-030-00353-1_18
identifier_str_mv 9783030003531 (en línea)
10.1007/978-3-030-00353-1_18
url http://hdl.handle.net/10614/11414
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 218
dc.relation.citationstartpage.none.fl_str_mv 204
dc.relation.citationvolume.none.fl_str_mv 916
dc.relation.cites.eng.fl_str_mv Escobar Cruz, N., Solarte, J., Gonzalez-Vargas, A. (2018). Automated Epileptic Seizure Detection System Based on a Wearable Prototype and Cloud Computing to Assist People with Epilepsy. In: Figueroa-García, J., Villegas, J., Orozco-Arroyave, J., Maya Duque, P. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science. 916. Springer, Cham. https://doi.org/10.1007/978-3-030-00353-1_18
dc.relation.ispartofbook.eng.fl_str_mv Communications in Computer and Information Science book series (CCIS,volume 916)
dc.relation.references.none.fl_str_mv Quet, F., Odermatt, P., Preux, P.-M.: Challenges of epidemiological research on epilepsy in resource-poor countries. Neuroepidemiology 30(1), 3–5 (2008). https://doi.org/10.1159/000113299
Kobau, R., et al.: Epilepsy surveillance among adults-19 states, behavioral risk factor surveillance system 2008. MMWR Surveill Summ. 57, 1–20 (2005)
Ministry of Health of Colombia. Press Release No 016 of 2017: Epilepsia: Mucho más que convulsiones, https://www.minsalud.gov.co/Paginas/Epilepsia-mucho-mas-que-convulsiones.aspx. Accessed 09 Jan 2017
Tzallas, T., et al.: Automated epileptic seizure detection methods: a review study. In: Chapter 4, pp. 75–98. InTech (2012)
Rodriguez, J.J.P.C., Compte, S.S., de la Torre Diez, I.: E-Health Systems: Theory and Technical Applications, 1st edn. Elsevier, New York City (2016)
Ulate-Campos, A., Coughlin, F., Gaínza-Lein, M., Fernández, I.S., Pearl, P.L., Loddenkemper, T.: Automated seizure detection systems and their effectiveness for each type of seizure. Seizure 40, 88–101 (2016). Sciencedirect
Aghaei, H., Kiani, M.M., Aghajan, H.: Epileptic seizure detection based on video and EEG recordings. In: 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), Torino, Italy, pp. 1–4 (2017)
Embrace. https://www.empatica.com/product-embrace. Accessed Jan 23 2018
Biolert LTDA. https://bio-lert.com. Accesed 23 Jan 2018
Emfit. https://www.emfit.com. Accessed 23 Jan 2018
Bioserenity. http://bioserenity.com/fr. Accessed 23 Jan 2018
Senthilkumar, M., Anbunami, N., Hayavadana, J.: Elastane fabrics – a tool for stretch applications in sports. Indian J. Fibre Text. Res. 36(3), 3 (2011)
dos Santos, K.B., Bento, P.C.B., Rodacki, A.L.F.: Efeito do uso do traje de neoprene sobre variáveis técnicas, fisiológicas e perceptivas de nadadores/Effects of a neoprene suit over technical, physiological and perceptive variables of swimmers. Revista Brasileira de Educação Física e Esporte, São Paulo, no. 2, p. 189 (2011)
Bitalino, http://bitalino.com/en/learn/documentation. Accessed 21 Apr 2018
Finneran, A., O’Sullivan, L.: Effects of grip type and wrist posture on forearm EMG activity, endurance time and movement accuracy. Int. J. Ind. Ergon. 43(1), 91–99 (2013)
Ramgopal, S., et al.: Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav. 37, 291–307 (2014)
System public repository. https://github.com/nicolaxs69/SVM-Epilepsy–Machine-Learning-Classifier. Accessed 28 Apr 2018
Lasboo, A., Fisher, R.S.: Methods for measuring seizure frequency and severity. Neurol. Clin. 34(2), 383–394 (2016). Mayo
Types of Seizures and Their Symptoms. WebMD. https://www.webmd.com/epilepsy/types-of-seizures-their-symptoms#1. Accessed 6 Sept 2017
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.eng.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 10 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Springer, Cham
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/dbc0f093-e2b5-4417-8ad7-1e81e683056b/download
https://red.uao.edu.co/bitstreams/123ed2db-91a9-47ee-bf3e-7d76bc2ccfa2/download
https://red.uao.edu.co/bitstreams/5656023f-4077-4e58-af12-e824f2186826/download
https://red.uao.edu.co/bitstreams/4f98824e-762a-4703-b2f4-5692116c2629/download
https://red.uao.edu.co/bitstreams/828ea98b-fe1d-471f-87f8-02e8ce0560af/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
ababb4e4f43680c654721138ecdd9481
67cf01394670a4268f897765c566b2aa
4e70c61bc1002c78b49d74066f1551c3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1828230119599112192
spelling González Vargas, Andrés Mauriciovirtual::2066-1Escobar Cruz, Juan Nicolás1d6c8ec14ed6a0859274ca776a7c2393Solarte, Jhonc45117e14651e3aaf59802d09aaaa68aUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-06T14:38:36Z2019-11-06T14:38:36Z2018-09-139783030003531 (en línea)http://hdl.handle.net/10614/1141410.1007/978-3-030-00353-1_18Epilepsy is characterized by the recurrence of epileptic seizures that affect secondary physiological changes in the patient. This leads to a series of adverse events in the manifestation of convulsions in an uncontrolled environment and without medical help, resulting in risk to the patient, especially in people with refractory epilepsy where modern pharmacology is not able to control seizures. The traditional methods of detection based on wired hospital monitoring systems are not suitable for the detection of long-term monitoring in outdoors. For these reasons, this paper proposes a system that can detect generalized tonic-clonic seizures on patients to alert family members or medical personnel for prompt assistance, based on a wearable device (glove), a mobile application and a Support Vector Machine classifier deployed in a system based on cloud computing. In the proposed approach we use Accelerometry (ACC), Electromyography (ECG) as measurement signals for the development of the glove, a machine learning algorithm (SVM) is used to discriminate between simulated tonic-clonic seizures and non-seizure activities that may be confused with convulsions. In this paper, the high level architecture of the system and its implementation based on Cloud Computing are described. Considering the traditional methods of measurement, the detection system proposed in this paper could mean an alternative solution that allows a prompt response and assistance that could be lifesaving in many situationsapplication/pdf10 páginasengSpringer, ChamDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Automated epileptic seizure detection system based on a wearable prototype and cloud computing to assist people with epilepsyCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85ElectrodiagnósticoArquitectura en la nubeElectrodiagnosisCloud computing architectureEpileptic seizure detectionWearableElectromyographyCloud computing218204916Escobar Cruz, N., Solarte, J., Gonzalez-Vargas, A. (2018). Automated Epileptic Seizure Detection System Based on a Wearable Prototype and Cloud Computing to Assist People with Epilepsy. In: Figueroa-García, J., Villegas, J., Orozco-Arroyave, J., Maya Duque, P. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science. 916. Springer, Cham. https://doi.org/10.1007/978-3-030-00353-1_18Communications in Computer and Information Science book series (CCIS,volume 916)Quet, F., Odermatt, P., Preux, P.-M.: Challenges of epidemiological research on epilepsy in resource-poor countries. Neuroepidemiology 30(1), 3–5 (2008). https://doi.org/10.1159/000113299Kobau, R., et al.: Epilepsy surveillance among adults-19 states, behavioral risk factor surveillance system 2008. MMWR Surveill Summ. 57, 1–20 (2005)Ministry of Health of Colombia. Press Release No 016 of 2017: Epilepsia: Mucho más que convulsiones, https://www.minsalud.gov.co/Paginas/Epilepsia-mucho-mas-que-convulsiones.aspx. Accessed 09 Jan 2017Tzallas, T., et al.: Automated epileptic seizure detection methods: a review study. In: Chapter 4, pp. 75–98. InTech (2012)Rodriguez, J.J.P.C., Compte, S.S., de la Torre Diez, I.: E-Health Systems: Theory and Technical Applications, 1st edn. Elsevier, New York City (2016)Ulate-Campos, A., Coughlin, F., Gaínza-Lein, M., Fernández, I.S., Pearl, P.L., Loddenkemper, T.: Automated seizure detection systems and their effectiveness for each type of seizure. Seizure 40, 88–101 (2016). SciencedirectAghaei, H., Kiani, M.M., Aghajan, H.: Epileptic seizure detection based on video and EEG recordings. In: 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), Torino, Italy, pp. 1–4 (2017)Embrace. https://www.empatica.com/product-embrace. Accessed Jan 23 2018Biolert LTDA. https://bio-lert.com. Accesed 23 Jan 2018Emfit. https://www.emfit.com. Accessed 23 Jan 2018Bioserenity. http://bioserenity.com/fr. Accessed 23 Jan 2018Senthilkumar, M., Anbunami, N., Hayavadana, J.: Elastane fabrics – a tool for stretch applications in sports. Indian J. Fibre Text. Res. 36(3), 3 (2011)dos Santos, K.B., Bento, P.C.B., Rodacki, A.L.F.: Efeito do uso do traje de neoprene sobre variáveis técnicas, fisiológicas e perceptivas de nadadores/Effects of a neoprene suit over technical, physiological and perceptive variables of swimmers. Revista Brasileira de Educação Física e Esporte, São Paulo, no. 2, p. 189 (2011)Bitalino, http://bitalino.com/en/learn/documentation. Accessed 21 Apr 2018Finneran, A., O’Sullivan, L.: Effects of grip type and wrist posture on forearm EMG activity, endurance time and movement accuracy. Int. J. Ind. Ergon. 43(1), 91–99 (2013)Ramgopal, S., et al.: Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav. 37, 291–307 (2014)System public repository. https://github.com/nicolaxs69/SVM-Epilepsy–Machine-Learning-Classifier. Accessed 28 Apr 2018Lasboo, A., Fisher, R.S.: Methods for measuring seizure frequency and severity. Neurol. Clin. 34(2), 383–394 (2016). MayoTypes of Seizures and Their Symptoms. WebMD. https://www.webmd.com/epilepsy/types-of-seizures-their-symptoms#1. Accessed 6 Sept 2017Publication6053e64e-a34d-4652-8fa2-6c0440556f15virtual::2066-16053e64e-a34d-4652-8fa2-6c0440556f15virtual::2066-1https://scholar.google.com.co/citations?user=oj5Tle8AAAAJ&hl=esvirtual::2066-10000-0001-6393-7130virtual::2066-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001345355virtual::2066-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/dbc0f093-e2b5-4417-8ad7-1e81e683056b/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/123ed2db-91a9-47ee-bf3e-7d76bc2ccfa2/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALAutomated epileptic seizure detection system based on a wearable prototype and cloud computing to assist people with epilepsy.pdfAutomated epileptic seizure detection system based on a wearable prototype and cloud computing to assist people with epilepsy.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1084910https://red.uao.edu.co/bitstreams/5656023f-4077-4e58-af12-e824f2186826/downloadababb4e4f43680c654721138ecdd9481MD54TEXTAutomated epileptic seizure detection system based on a wearable prototype and cloud computing to assist people with epilepsy.pdf.txtAutomated epileptic seizure detection system based on a wearable prototype and cloud computing to assist people with epilepsy.pdf.txtExtracted texttext/plain23605https://red.uao.edu.co/bitstreams/4f98824e-762a-4703-b2f4-5692116c2629/download67cf01394670a4268f897765c566b2aaMD55THUMBNAILAutomated epileptic seizure detection system based on a wearable prototype and cloud computing to assist people with epilepsy.pdf.jpgAutomated epileptic seizure detection system based on a wearable prototype and cloud computing to assist people with epilepsy.pdf.jpgGenerated Thumbnailimage/jpeg11713https://red.uao.edu.co/bitstreams/828ea98b-fe1d-471f-87f8-02e8ce0560af/download4e70c61bc1002c78b49d74066f1551c3MD5610614/11414oai:red.uao.edu.co:10614/114142024-03-06 09:35:36.975https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K