Influence of droplet collision modelling in Euler/Lagrange calculations of spray evolution
The numerical computation of spraying systems is favourably conducted by applying the Euler/Lagrange approach. Although sprays downstream of the breakup region are very often rather dilute, droplet collisions may still have a significant influence on the spray evolution and especially the produced d...
- Autores:
-
Sommerfeld, Martin
Laín Beatove, Santiago
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13293
- Acceso en línea:
- https://hdl.handle.net/10614/13293
- Palabra clave:
- Procesos estocásticos
Simulación por computadores
Stochastic processes
Computer simulation
Euler/lagrange computations
Hollow-cone spray
Binary droplet collisions
Modelling collision outcomes
Collision maps
Coalescence
Separation
- Rights
- openAccess
- License
- Derechos reservados - Revista International Journal of Multiphase Flow, 2020
id |
REPOUAO2_5576da04c6d33dc326767069688a4b7c |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13293 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Influence of droplet collision modelling in Euler/Lagrange calculations of spray evolution |
title |
Influence of droplet collision modelling in Euler/Lagrange calculations of spray evolution |
spellingShingle |
Influence of droplet collision modelling in Euler/Lagrange calculations of spray evolution Procesos estocásticos Simulación por computadores Stochastic processes Computer simulation Euler/lagrange computations Hollow-cone spray Binary droplet collisions Modelling collision outcomes Collision maps Coalescence Separation |
title_short |
Influence of droplet collision modelling in Euler/Lagrange calculations of spray evolution |
title_full |
Influence of droplet collision modelling in Euler/Lagrange calculations of spray evolution |
title_fullStr |
Influence of droplet collision modelling in Euler/Lagrange calculations of spray evolution |
title_full_unstemmed |
Influence of droplet collision modelling in Euler/Lagrange calculations of spray evolution |
title_sort |
Influence of droplet collision modelling in Euler/Lagrange calculations of spray evolution |
dc.creator.fl_str_mv |
Sommerfeld, Martin Laín Beatove, Santiago |
dc.contributor.author.spa.fl_str_mv |
Sommerfeld, Martin |
dc.contributor.author.none.fl_str_mv |
Laín Beatove, Santiago |
dc.contributor.corporatename.spa.fl_str_mv |
International Journal of Multiphase Flow |
dc.subject.armarc.spa.fl_str_mv |
Procesos estocásticos Simulación por computadores |
topic |
Procesos estocásticos Simulación por computadores Stochastic processes Computer simulation Euler/lagrange computations Hollow-cone spray Binary droplet collisions Modelling collision outcomes Collision maps Coalescence Separation |
dc.subject.armarc.eng.fl_str_mv |
Stochastic processes Computer simulation |
dc.subject.proposal.eng.fl_str_mv |
Euler/lagrange computations Hollow-cone spray Binary droplet collisions Modelling collision outcomes Collision maps Coalescence Separation |
description |
The numerical computation of spraying systems is favourably conducted by applying the Euler/Lagrange approach. Although sprays downstream of the breakup region are very often rather dilute, droplet collisions may still have a significant influence on the spray evolution and especially the produced droplet size spectrum. Consequently, they have to be reliably modelled in the Lagrangian tracking approach. For this purpose, the fully stochastic droplet collision model is applied, which is numerically very efficient. It is demonstrated that this model is largely independent of the considered flow mesh and hence grid size, as well as the number of tracked parcels and the Lagrangian time step size. Moreover, this model includes the impact efficiency which may remarkably reduce collision rates for a wide droplet size spectrum. An essential ingredient of any droplet collision model is the proper description of the collision outcome through the so-called collision maps (i.e. the non-dimensional impact parameter plotted versus collision Weber number; B = f(We)), where the outcome regions (i.e. bouncing, coalescence and stretching or reflexive separation) are demarked by appropriate, mostly theory-based boundary lines. There are a number of different correlations available which may be applied for this purpose. The structure of the collision maps strongly depends on the kind of liquid being atomised. Different types of boundary lines and collision map structures are analysed here in detail with regard to the conditional collision rates or numbers within a rather simple hollow cone spray. The comparison of the averaged Sauter mean diameters along the spray demonstrates the importance of droplet collisions and how strongly this result is affected by the presumed droplet collision maps. Crude approximations to such collision maps may result in large errors and wrong predictions of the produced droplet size spectrum. Moreover, it is demonstrated that the effective PDF (probability density function) of the colliding droplet size ratio has typically a maximum in the range 0.1 < Δ < 0.3, a condition where no experimental data are available so far and some of the commonly used boundary lines are not suitable. Naturally, the spray simulations are compared to experimental data for a water hollow-cone spray, showing excellent agreement if the droplet collision map is selected properly. This concerns profiles of both gas and droplet velocities as well as droplet concentration development and local droplet size distributions. Expectedly, the prediction of the velocities is less sensitive with respect to the presumed droplet collision map |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-07 |
dc.date.accessioned.none.fl_str_mv |
2021-09-30T15:34:43Z |
dc.date.available.none.fl_str_mv |
2021-09-30T15:34:43Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
03019322 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13293 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.ijmultiphaseflow.2020.103392 |
identifier_str_mv |
03019322 10.1016/j.ijmultiphaseflow.2020.103392 |
url |
https://hdl.handle.net/10614/13293 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Volumen 132 (2020) |
dc.relation.citationendpage.spa.fl_str_mv |
60 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
Volumen 132 |
dc.relation.cites.eng.fl_str_mv |
Lain S., Sommerfeld M. (2020). Influence of droplet collision modelling in Euler/Lagrange calculations of spray evolution. International Journal of Multiphase Flow. (Vol. 132), pp.1-63. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103392 |
dc.relation.ispartofjournal.eng.fl_str_mv |
International Journal of Multiphase Flow |
dc.relation.references.spa.fl_str_mv |
Amsden et al., 1989 Amsden, A.A., O`Rourke, P.J. and Butler, T.D.: KIVA-II: A computer program for chemically reactive flows with sprays. Los Alamos Scientific Laboratory Report, LA-11560-MS (1989) Ashgriz and Poo, 1990 N. Ashgriz, J.Y. Poo Coalescence and separation in binary collisions of liquid drops J Fluid Mech, 221 (1990), pp. 183-204 Bauman, 2001 S.D. Bauman A spray model for an adaptive mesh refinement code Ph.D. Thesis University of Wisconsin-Madison (2001) Brazier-Smith et al., 1972 P.R. Brazier-Smith, S.G. Jennings, J. Latham The interaction of falling water drops: coalescence Proc. R. Soc. Lond. A, 326 (1972), pp. 393-408 Crowe et al., 1977 C.T. Crowe, M.P. Sharma, D.E. Stock The Particle-source-in-cell (PSI-cell) model for gas-droplet flows J. of Fluids Eng. Vol., 99 (1977), pp. 325-332 Dukowicz, 1980 J.K. Dukowicz A particle-fluid numerical model for liquid sprays J. of Computational Physics, 35 (1980), pp. 229-253 Estrade et al., 1999 J.-.P. Estrade, H. Carentz, G. Lavergne, Y. Biscos Experimental investigation of dynamic binary collision of ethanol droplets - a model for droplet coalescence and bouncing International Journal of Heat and Fluid Flow, 20 (1999), pp. 486-491 Foissac et al., 2010 A. Foissac, J. Malet, S. Mimouni, F. Feuillebois Binary water droplet collision study in presence of solid aerosols in air Proceedings 7th International Conference on Multiphase Flow, ICMF2010, Tampa, FL USA, may 30.–June 4 (2010) Gavaises et al., 1996 T.L. Gavaises, A. Theodorakakos, G. Bergerles, G. Brenn Evaluation of the effect of droplet collisions on spray mixing Proc. Inst. Mechanical Engineers, 210 (1996), p. 465 –465 Guo et al., 2004 B. Guo, D.F. Fletcher, T.A.G. Langrish Simulation of the agglomeration in a spray using Lagrangian particle tracking Appl Math Model, 28 (2004), pp. 273-290 Ho and Sommerfeld, 2002 C.A. Ho, M. Sommerfeld Modelling of micro-particle agglomeration in turbulent flow Chem. Eng. Sci., 57 (2002), pp. 3073-3084 Jiang et al., 1992 Y.J. Jiang, A. Umemura, C.K. Law An experimental investigation on the collision behavior of hydrocarbon droplets J Fluid Mech, 234 (1992), pp. 171-190 Ko and Ryou, 2005 G.H. Ko, H.S. Ryou Modeling of droplet collision-induced breakup process Int. J. Multiphase Flow, 31 (2005), pp. 723-738 Kollar et al., 2005 L. Kollar, M. Farzaneh, A.R. Karev Modeling droplet collisions and coalescence in an icing wind tunnel and the influence of these processes on droplet size distribution Int. J. Multiphase Flow, 31 (2005), pp. 69-92 Kohnen and Sommerfeld, 1997 G. Kohnen, M. Sommerfeld The effect of turbulence modelling on turbulence modification in two-phase flows using the Euler–Lagrange approach Proc. 11th Symp. on Turbulent Shear Flows, Grenoble (France), 2 (1997), pp. 23-28 P3 Laín et al., 2002 S. Laín, M. Sommerfeld, J. Kussin Experimental studies and modelling of four-way coupling in particle-laden horizontal channel flow Int. J. Heat and Fluid Flow, 23 (2002), pp. 647-656 Lain, 2010 S. Lain On Modelling and Numerical Computation of Industrial Dispersed Two-Phase Flow With the Euler-Lagrange approach Habilitation Martin-Luther-University Halle-Wittenberg, Shaker Verlag, Aachen (2010) Lain and Sommerfeld, 2013 S. Lain, M. Sommerfeld Characterisation of pneumatic conveying systems using the Euler/Lagrange approach Powder Technol, 235 (2013), pp. 764-782 Munnannur and Reitz, 2007 A. Munnannur, R.D. Reitz A new predictive model for fragmenting and non-fragmenting binary droplet collisions Int. J. Multiphase Flow, 33 (2007), pp. 873-896 Nijdam et al., 2006 J.J. Nijdam, B. Guo, D.F. Fletcher, T.A.G. Langrish Lagrangian and Eulerian models for simulating turbulent dispersion and coalescence of droplets within a spray Appl Math Model, 30 (2006), pp. 1196-1211 O´Rourke, 1981 P.J. O´Rourke Collective Drop Effects On Vaporizing Liquid Sprays Los Alamos National Laboratory, New Mexico (1981) Dissertation Perini and Reitz, 2016 F. Perini, R.D. Reitz Improved atomization, collision and sub-grid scale momentum coupling models for transient vaporizing engine sprays Int. J. Multiphase Flow, 79 (2016), pp. 107-123 Platzer and Sommerfeld, 2006 E. Platzer, M. Sommerfeld Modeling of turbulent atomization combining a two-fluid and a structure function approach Atomization and Sprays, 16 (2006), pp. 103-126 Qian and Law, 1997 J. Qian, C.K. Law Regimes of coalescence and separation in droplet collision J Fluid Mech, 331 (1997), pp. 59-80 Rüger et al., 2000 M. Rüger, S. Hohmann, M. Sommerfeld, G. Kohnen Euler/Lagrange calculations of turbulent sprays: the effect of droplet collisions and coalescence Atomization and Sprays, 10 (2000), pp. 47-81 Sommerfeld and Zivkovic, 1992 M. Sommerfeld, G. Zivkovic (invited lecture): recent advances in the numerical simulation of pneumatic conveying through pipe systems Ch. Hirsch, J. Periaux, E. Onate (Eds.), Computational Methods in Applied Science, Elsevier, BrusselsAmsterdam (1992), pp. 201-212 Invited Lectures and Special Technological Sessions of the First European Computational Fluid Dynamics Conference and the First European Conference on Numerical Methods in Engineering Sommerfeld and Tropea, 1999 M. Sommerfeld, C. Tropea Chapter 7: Single-Point Laser Measurement S.L. Soo (Ed.), Instrumentation for Fluid-Particle Flow, Noyes Publications (1999), pp. 252-317 Sommerfeld et al., 2008 Sommerfeld, M., van Wachem, B. and Oliemans, R.: Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. ERCOFTAC, ISBN 978-91-633-3564-8 (2008). Sommerfeld, 2017a M. Sommerfeld Numerical methods for dispersed multiphase flows T. Bodnár, G.P. Galdi, Š. Necčasová (Eds.), Particles in Flows, Springer International Publishing (2017), pp. 327-396 Series Advances in Mathematical Fluid Mechanics Sommerfeld and Lain, 2017 M. Sommerfeld, S. Lain Numerical analysis of sprays with an advanced collision model ILASS–Europe 2017, 28th Conference on Liquid Atomization and Spray Systems, 6 – 8 September 2017, Valencia, Spain (2017), pp. 418-431 Squires and Eaton, 1993 K.D. Squires, J.K. Eaton On the modeling of particle-laden turbulent flows 6th Workshop on Two-Phase Flow Predictions, Proceedings, Ed. by M. Sommerfeld, Bilateral Seminars of the International Bureau, Vol. 14, Forschungszentrum Jülich GmbH (1993), pp. 220-229 Tennison et al., 1998 Tennison, P.J., Georjon, T.L., Farrell, P.V. and Reitz, R.D.: An experimental and numerical study of sprays from a common rail injection system for use in an HSDI Diesel engine. SAE Technical Paper 980810 (1998). Woo, 2016 M.W. Woo Computational Fluid Dynamics Simulation of Spray Dryers: An Engineer's Guide CRC Press, Boca Raton (2016) Zhang et al., 2016 Z. Zhang, Y. Chi, L. Shang, P. Zhang, Z. Zhao On the role of droplet bouncing in modeling impinging sprays under elevated pressures Int. J. Heat and Mass Transfer, 102 (2016), pp. 657-668 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Revista International Journal of Multiphase Flow, 2020 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Revista International Journal of Multiphase Flow, 2020 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
61 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
ResearchGate |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/038cf7a9-f0cc-439c-91d2-ca5e7d8863ca/download https://red.uao.edu.co/bitstreams/041eba7d-3e7c-4497-b31f-f9b879ec2ac4/download https://red.uao.edu.co/bitstreams/b655a1b0-b45d-4b82-aedf-1c2235c3d3f5/download https://red.uao.edu.co/bitstreams/16dd56d8-5c4f-44bc-9ba8-feaf481b8386/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 230a946f298dbfa338b77eeaf61135a2 99b016936d378d324a4942062e9e2c92 0976e44f93baa7afb43e3f072f3d69a3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259984979984384 |
spelling |
Sommerfeld, Martin4225b01693727b10986bcc383715fa70Laín Beatove, Santiagovirtual::2567-1International Journal of Multiphase Flow2021-09-30T15:34:43Z2021-09-30T15:34:43Z2020-0703019322https://hdl.handle.net/10614/1329310.1016/j.ijmultiphaseflow.2020.103392The numerical computation of spraying systems is favourably conducted by applying the Euler/Lagrange approach. Although sprays downstream of the breakup region are very often rather dilute, droplet collisions may still have a significant influence on the spray evolution and especially the produced droplet size spectrum. Consequently, they have to be reliably modelled in the Lagrangian tracking approach. For this purpose, the fully stochastic droplet collision model is applied, which is numerically very efficient. It is demonstrated that this model is largely independent of the considered flow mesh and hence grid size, as well as the number of tracked parcels and the Lagrangian time step size. Moreover, this model includes the impact efficiency which may remarkably reduce collision rates for a wide droplet size spectrum. An essential ingredient of any droplet collision model is the proper description of the collision outcome through the so-called collision maps (i.e. the non-dimensional impact parameter plotted versus collision Weber number; B = f(We)), where the outcome regions (i.e. bouncing, coalescence and stretching or reflexive separation) are demarked by appropriate, mostly theory-based boundary lines. There are a number of different correlations available which may be applied for this purpose. The structure of the collision maps strongly depends on the kind of liquid being atomised. Different types of boundary lines and collision map structures are analysed here in detail with regard to the conditional collision rates or numbers within a rather simple hollow cone spray. The comparison of the averaged Sauter mean diameters along the spray demonstrates the importance of droplet collisions and how strongly this result is affected by the presumed droplet collision maps. Crude approximations to such collision maps may result in large errors and wrong predictions of the produced droplet size spectrum. Moreover, it is demonstrated that the effective PDF (probability density function) of the colliding droplet size ratio has typically a maximum in the range 0.1 < Δ < 0.3, a condition where no experimental data are available so far and some of the commonly used boundary lines are not suitable. Naturally, the spray simulations are compared to experimental data for a water hollow-cone spray, showing excellent agreement if the droplet collision map is selected properly. This concerns profiles of both gas and droplet velocities as well as droplet concentration development and local droplet size distributions. Expectedly, the prediction of the velocities is less sensitive with respect to the presumed droplet collision map61 páginasapplication/pdfengResearchGateDerechos reservados - Revista International Journal of Multiphase Flow, 2020https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Influence of droplet collision modelling in Euler/Lagrange calculations of spray evolutionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Procesos estocásticosSimulación por computadoresStochastic processesComputer simulationEuler/lagrange computationsHollow-cone sprayBinary droplet collisionsModelling collision outcomesCollision mapsCoalescenceSeparationVolumen 132 (2020)601Volumen 132Lain S., Sommerfeld M. (2020). Influence of droplet collision modelling in Euler/Lagrange calculations of spray evolution. International Journal of Multiphase Flow. (Vol. 132), pp.1-63. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103392International Journal of Multiphase FlowAmsden et al., 1989 Amsden, A.A., O`Rourke, P.J. and Butler, T.D.: KIVA-II: A computer program for chemically reactive flows with sprays. Los Alamos Scientific Laboratory Report, LA-11560-MS (1989)Ashgriz and Poo, 1990 N. Ashgriz, J.Y. Poo Coalescence and separation in binary collisions of liquid drops J Fluid Mech, 221 (1990), pp. 183-204Bauman, 2001 S.D. Bauman A spray model for an adaptive mesh refinement code Ph.D. Thesis University of Wisconsin-Madison (2001)Brazier-Smith et al., 1972 P.R. Brazier-Smith, S.G. Jennings, J. Latham The interaction of falling water drops: coalescence Proc. R. Soc. Lond. A, 326 (1972), pp. 393-408Crowe et al., 1977 C.T. Crowe, M.P. Sharma, D.E. Stock The Particle-source-in-cell (PSI-cell) model for gas-droplet flows J. of Fluids Eng. Vol., 99 (1977), pp. 325-332Dukowicz, 1980 J.K. Dukowicz A particle-fluid numerical model for liquid sprays J. of Computational Physics, 35 (1980), pp. 229-253Estrade et al., 1999 J.-.P. Estrade, H. Carentz, G. Lavergne, Y. Biscos Experimental investigation of dynamic binary collision of ethanol droplets - a model for droplet coalescence and bouncing International Journal of Heat and Fluid Flow, 20 (1999), pp. 486-491Foissac et al., 2010 A. Foissac, J. Malet, S. Mimouni, F. Feuillebois Binary water droplet collision study in presence of solid aerosols in air Proceedings 7th International Conference on Multiphase Flow, ICMF2010, Tampa, FL USA, may 30.–June 4 (2010)Gavaises et al., 1996 T.L. Gavaises, A. Theodorakakos, G. Bergerles, G. Brenn Evaluation of the effect of droplet collisions on spray mixing Proc. Inst. Mechanical Engineers, 210 (1996), p. 465 –465Guo et al., 2004 B. Guo, D.F. Fletcher, T.A.G. Langrish Simulation of the agglomeration in a spray using Lagrangian particle tracking Appl Math Model, 28 (2004), pp. 273-290Ho and Sommerfeld, 2002 C.A. Ho, M. Sommerfeld Modelling of micro-particle agglomeration in turbulent flow Chem. Eng. Sci., 57 (2002), pp. 3073-3084Jiang et al., 1992 Y.J. Jiang, A. Umemura, C.K. Law An experimental investigation on the collision behavior of hydrocarbon droplets J Fluid Mech, 234 (1992), pp. 171-190Ko and Ryou, 2005 G.H. Ko, H.S. Ryou Modeling of droplet collision-induced breakup process Int. J. Multiphase Flow, 31 (2005), pp. 723-738Kollar et al., 2005 L. Kollar, M. Farzaneh, A.R. Karev Modeling droplet collisions and coalescence in an icing wind tunnel and the influence of these processes on droplet size distribution Int. J. Multiphase Flow, 31 (2005), pp. 69-92Kohnen and Sommerfeld, 1997 G. Kohnen, M. Sommerfeld The effect of turbulence modelling on turbulence modification in two-phase flows using the Euler–Lagrange approach Proc. 11th Symp. on Turbulent Shear Flows, Grenoble (France), 2 (1997), pp. 23-28 P3Laín et al., 2002 S. Laín, M. Sommerfeld, J. Kussin Experimental studies and modelling of four-way coupling in particle-laden horizontal channel flow Int. J. Heat and Fluid Flow, 23 (2002), pp. 647-656Lain, 2010 S. Lain On Modelling and Numerical Computation of Industrial Dispersed Two-Phase Flow With the Euler-Lagrange approach Habilitation Martin-Luther-University Halle-Wittenberg, Shaker Verlag, Aachen (2010)Lain and Sommerfeld, 2013 S. Lain, M. Sommerfeld Characterisation of pneumatic conveying systems using the Euler/Lagrange approach Powder Technol, 235 (2013), pp. 764-782Munnannur and Reitz, 2007 A. Munnannur, R.D. Reitz A new predictive model for fragmenting and non-fragmenting binary droplet collisions Int. J. Multiphase Flow, 33 (2007), pp. 873-896Nijdam et al., 2006 J.J. Nijdam, B. Guo, D.F. Fletcher, T.A.G. Langrish Lagrangian and Eulerian models for simulating turbulent dispersion and coalescence of droplets within a spray Appl Math Model, 30 (2006), pp. 1196-1211O´Rourke, 1981 P.J. O´Rourke Collective Drop Effects On Vaporizing Liquid Sprays Los Alamos National Laboratory, New Mexico (1981) DissertationPerini and Reitz, 2016 F. Perini, R.D. Reitz Improved atomization, collision and sub-grid scale momentum coupling models for transient vaporizing engine sprays Int. J. Multiphase Flow, 79 (2016), pp. 107-123Platzer and Sommerfeld, 2006 E. Platzer, M. Sommerfeld Modeling of turbulent atomization combining a two-fluid and a structure function approach Atomization and Sprays, 16 (2006), pp. 103-126Qian and Law, 1997 J. Qian, C.K. Law Regimes of coalescence and separation in droplet collision J Fluid Mech, 331 (1997), pp. 59-80Rüger et al., 2000 M. Rüger, S. Hohmann, M. Sommerfeld, G. Kohnen Euler/Lagrange calculations of turbulent sprays: the effect of droplet collisions and coalescence Atomization and Sprays, 10 (2000), pp. 47-81Sommerfeld and Zivkovic, 1992 M. Sommerfeld, G. Zivkovic (invited lecture): recent advances in the numerical simulation of pneumatic conveying through pipe systems Ch. Hirsch, J. Periaux, E. Onate (Eds.), Computational Methods in Applied Science, Elsevier, BrusselsAmsterdam (1992), pp. 201-212 Invited Lectures and Special Technological Sessions of the First European Computational Fluid Dynamics Conference and the First European Conference on Numerical Methods in EngineeringSommerfeld and Tropea, 1999 M. Sommerfeld, C. Tropea Chapter 7: Single-Point Laser Measurement S.L. Soo (Ed.), Instrumentation for Fluid-Particle Flow, Noyes Publications (1999), pp. 252-317Sommerfeld et al., 2008 Sommerfeld, M., van Wachem, B. and Oliemans, R.: Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. ERCOFTAC, ISBN 978-91-633-3564-8 (2008).Sommerfeld, 2017a M. Sommerfeld Numerical methods for dispersed multiphase flows T. Bodnár, G.P. Galdi, Š. Necčasová (Eds.), Particles in Flows, Springer International Publishing (2017), pp. 327-396 Series Advances in Mathematical Fluid MechanicsSommerfeld and Lain, 2017 M. Sommerfeld, S. Lain Numerical analysis of sprays with an advanced collision model ILASS–Europe 2017, 28th Conference on Liquid Atomization and Spray Systems, 6 – 8 September 2017, Valencia, Spain (2017), pp. 418-431Squires and Eaton, 1993 K.D. Squires, J.K. Eaton On the modeling of particle-laden turbulent flows 6th Workshop on Two-Phase Flow Predictions, Proceedings, Ed. by M. Sommerfeld, Bilateral Seminars of the International Bureau, Vol. 14, Forschungszentrum Jülich GmbH (1993), pp. 220-229Tennison et al., 1998 Tennison, P.J., Georjon, T.L., Farrell, P.V. and Reitz, R.D.: An experimental and numerical study of sprays from a common rail injection system for use in an HSDI Diesel engine. SAE Technical Paper 980810 (1998).Woo, 2016 M.W. Woo Computational Fluid Dynamics Simulation of Spray Dryers: An Engineer's Guide CRC Press, Boca Raton (2016)Zhang et al., 2016 Z. Zhang, Y. Chi, L. Shang, P. Zhang, Z. Zhao On the role of droplet bouncing in modeling impinging sprays under elevated pressures Int. J. Heat and Mass Transfer, 102 (2016), pp. 657-668GeneralPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2567-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2567-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2567-10000-0002-0269-2608virtual::2567-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2567-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/038cf7a9-f0cc-439c-91d2-ca5e7d8863ca/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALInfluence of droplet collision modelling in Euler-Lagrange calculations of spray evolution.pdfInfluence of droplet collision modelling in Euler-Lagrange calculations of spray evolution.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1813695https://red.uao.edu.co/bitstreams/041eba7d-3e7c-4497-b31f-f9b879ec2ac4/download230a946f298dbfa338b77eeaf61135a2MD53TEXTInfluence of droplet collision modelling in Euler-Lagrange calculations of spray evolution.pdf.txtInfluence of droplet collision modelling in Euler-Lagrange calculations of spray evolution.pdf.txtExtracted texttext/plain125945https://red.uao.edu.co/bitstreams/b655a1b0-b45d-4b82-aedf-1c2235c3d3f5/download99b016936d378d324a4942062e9e2c92MD54THUMBNAILInfluence of droplet collision modelling in Euler-Lagrange calculations of spray evolution.pdf.jpgInfluence of droplet collision modelling in Euler-Lagrange calculations of spray evolution.pdf.jpgGenerated Thumbnailimage/jpeg10615https://red.uao.edu.co/bitstreams/16dd56d8-5c4f-44bc-9ba8-feaf481b8386/download0976e44f93baa7afb43e3f072f3d69a3MD5510614/13293oai:red.uao.edu.co:10614/132932024-03-06 16:46:09.67https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Revista International Journal of Multiphase Flow, 2020open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |