Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la Gran Ambición
El enfoque predominante en los Objetivos de Desarrollo Sostenible (ODS) dentro de los planes de desarrollo territoriales (PDT) ha promovido el progreso socioeconómico sin integrar adecuadamente los límites planetarios, lo que compromete la capacidad del planeta para disipar la entropía generada por...
- Autores:
-
Rincón Cárdenas, Juan José
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/15964
- Acceso en línea:
- https://hdl.handle.net/10614/15964
https://red.uao.edu.co/
- Palabra clave:
- Ingeniería Ambiental
Gran Ambición
Planes de Desarrollo Territoriales (PDT)
Límites planetarios
Objetivos de Desarrollo Sostenible (ODS)
Sostenibilidad
Entropía
Grand ambition
Territorial Development Plans (TDP)
Planetary boundaries
Sustainable Development Goals (SDGs)
Sustainability
Entropy
- Rights
- openAccess
- License
- Derechos reservados - Universidad Autónoma de Occidente, 2024
id |
REPOUAO2_52cc48bd4b001a95152f8aea2215ace6 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/15964 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la Gran Ambición |
title |
Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la Gran Ambición |
spellingShingle |
Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la Gran Ambición Ingeniería Ambiental Gran Ambición Planes de Desarrollo Territoriales (PDT) Límites planetarios Objetivos de Desarrollo Sostenible (ODS) Sostenibilidad Entropía Grand ambition Territorial Development Plans (TDP) Planetary boundaries Sustainable Development Goals (SDGs) Sustainability Entropy |
title_short |
Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la Gran Ambición |
title_full |
Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la Gran Ambición |
title_fullStr |
Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la Gran Ambición |
title_full_unstemmed |
Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la Gran Ambición |
title_sort |
Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la Gran Ambición |
dc.creator.fl_str_mv |
Rincón Cárdenas, Juan José |
dc.contributor.advisor.none.fl_str_mv |
Gandini Ayerbe, Mario Andrés |
dc.contributor.author.none.fl_str_mv |
Rincón Cárdenas, Juan José |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.contributor.jury.none.fl_str_mv |
Holguin Gonzalez, Javier Ernesto |
dc.subject.proposal.spa.fl_str_mv |
Ingeniería Ambiental Gran Ambición Planes de Desarrollo Territoriales (PDT) Límites planetarios Objetivos de Desarrollo Sostenible (ODS) Sostenibilidad Entropía |
topic |
Ingeniería Ambiental Gran Ambición Planes de Desarrollo Territoriales (PDT) Límites planetarios Objetivos de Desarrollo Sostenible (ODS) Sostenibilidad Entropía Grand ambition Territorial Development Plans (TDP) Planetary boundaries Sustainable Development Goals (SDGs) Sustainability Entropy |
dc.subject.proposal.eng.fl_str_mv |
Grand ambition Territorial Development Plans (TDP) Planetary boundaries Sustainable Development Goals (SDGs) Sustainability Entropy |
description |
El enfoque predominante en los Objetivos de Desarrollo Sostenible (ODS) dentro de los planes de desarrollo territoriales (PDT) ha promovido el progreso socioeconómico sin integrar adecuadamente los límites planetarios, lo que compromete la capacidad del planeta para disipar la entropía generada por las actividades humanas. Al sobrepasar estos límites, los sistemas naturales se ven sobrecargados, incapaces de procesar eficientemente la energía residual, lo que incrementa la acumulación de entropía y pone en riesgo la estabilidad del sistema terrestre. Esta falta de integración en los PDT afecta negativamente la resiliencia del planeta, disminuyendo su capacidad de amortiguamiento y sostener las funciones de soporte vital. En otras palabras, una agenda de desarrollo territorial en la que los ODS no estén alineados con los límites planetarios plantea un escenario en el que es imposible garantizar la sostenibilidad de los territorios. Consecuentemente, en el presente estudio se presenta la evaluación en la formulación de los planes de desarrollo (2024-2027) de los municipios de Buenaventura, Candelaria, Cartago, Florida, Guadalajara de Buga, Jamundí, Palmira, Pradera, Santiago de Cali, Tuluá y Yumbo a partir de la inclusión de los ODS y los impactos positivos o negativos que de ello se deriva sobre los límites planetarios. Lo anterior se realizó mediante el establecimiento de una línea base en cuanto a la inclusión de los ODS en la nueva agenda de desarrollo territorial, la estimación del impacto de las contribuciones a los ODS sobre algunos límites planetarios y proposición de estrategias para sintonizar el desarrollo socioeconómico con la Gran Ambición. De esta forma, en conjunto con ProPacífico, se concluye que a pesar de los avances generales en el cumplimiento de las metas 1.2, 2.1, 6.1, 6.2, 8.1 y 11.1 de los ODS 1, 2, 6, 8 y 11 respectivamente, debido a la continuidad en los patrones de consumo y producción, el aporte de los municipios frente a los límites planetarios como cambio climático, consumo de agua dulce, cambio en el uso del suelo y flujos biogeoquímicos de N y P se enmarca en la contribución de una tasa degenerativa; favoreciendo los procesos que limitan la capacidad de los municipios para alcanzar los objetivos de la Agenda 2030 y, simultáneamente, aportan al aumento de la entropía, lo que compromete la sostenibilidad del sistema en su conjunto. Por último, en cuanto a las estrategias para materializar la Gran Ambición en los PDT, se propone integrar la biodiversidad en la planificación territorial mediante enfoques de bioeconomía y soluciones basadas en la naturaleza. Esta estrategia prioriza la restauración ecológica, la gobernanza colaborativa, la resiliencia ambiental y el manejo eficiente de recursos, fomentando la adaptación al cambio climático y la innovación social; posicionado efectivamente a la sostenibilidad en el eje central del desarrollo. |
publishDate |
2024 |
dc.date.issued.none.fl_str_mv |
2024-12-16 |
dc.date.accessioned.none.fl_str_mv |
2025-01-24T16:22:07Z |
dc.date.available.none.fl_str_mv |
2025-01-24T16:22:07Z |
dc.type. spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.citation. spa.fl_str_mv |
Rincón Cárdenas, J. J. (2024). Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la Gran Ambición. (Pasantía organizacional). Universidad Autónoma de Occidente. Cali. Colombia. https://hdl.handle.net/10614/15964 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/15964 |
dc.identifier.instname. spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame. spa.fl_str_mv |
Respositorio Educativo Digital UAO |
dc.identifier.repourl.none.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
Rincón Cárdenas, J. J. (2024). Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la Gran Ambición. (Pasantía organizacional). Universidad Autónoma de Occidente. Cali. Colombia. https://hdl.handle.net/10614/15964 Universidad Autónoma de Occidente Respositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/15964 https://red.uao.edu.co/ |
dc.language.iso. spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Abastante, F., Lami, I. M., y Gaballo, M. (2021). Pursuing the SDG11 targets: The role of the sustainability protocols. Sustainability, 13(7), 3858. https://www.mdpi.com/2071-1050/13/7/3858 Abdhur-Rahman, A., y Morten, R. (2023). Evaluating the effectiveness of sector-specific policies. Environmental Science and Policy, 146, 1122003495. https://www.sciencedirect.com/science/article/pii/S1462901122003495 Acuti, D., Bellucci, M., y Manetti, G. (2020). Company disclosures concerning the resilience of cities from the Sustainable Development Goals (SDGs) perspective. Cities, 102, 103665. https://www.sciencedirect.com/science/article/pii/S0264275119313654 Aguado, S., Álvarez, R., y Domingo, R. (2013). Model of efficient and sustainable improvements in a lean production system through processes of environmental innovation. Journal of Cleaner Production, 47, 141-148. https://www.sciencedirect.com/science/article/abs/pii/S0959652612006427 Ahmetoğlu, S., y Tanık, A. (2020). Management of carbon footprint and determination of GHG emission sources in construction sector. International Journal of Environment and Geoinformatics, 7(2), 120-127. https://dergipark.org.tr/en/pub/ijegeo/issue/54146/726913 Akinnawo, S. O. (2023). Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environmental Challenges, 2, 57-65. https://www.sciencedirect.com/science/article/pii/S2667010023000574 Akuraju, V., Pradhan, P., Haase, D., Kropp, J. P., y Rybski, D. (2020). Relating SDG11 indicators and urban scaling–An exploratory study. Sustainable Cities and Society, 52, 101-120. https://www.sciencedirect.com/science/article/abs/pii/S2210670719312296 Ali, M., Jha, N. K., Pal, N., Keshavarz, A., Hoteit, H., y Sarmadivaleh, M. (2022). Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook. Energy, 221, 119611. https://www.sciencedirect.com/science/article/pii/S0012825221003962 Allen, C., Metternicht, G., Wiedmann, T., y Pedercini, M. (2021). Modelling national transformations to achieve the SDGs within planetary boundaries in small island developing states. Global Sustainability, 4, e15. https://www.cambridge.org/core/journals/global-sustainability/article/modelling-national-transformations-to-achieve-the-sdgs-within-planetary-boundaries-in-small-island-developing-states/431E302939106329BC243E4DB562670D Allen, C., Metternicht, G., y Wiedmann, T. (2019). Prioritising SDG targets: Assessing baselines, gaps and interlinkages. Sustainability Science, 14(4), 1125-1139. https://link.springer.com/article/10.1007/s11625-018-0596-8 Alsaffar, A. A. (2016). Sustainable diets: The interaction between food industry, nutrition, health and the environment. Food Science and Technology International, 22(4), 335-351. https://journals.sagepub.com/doi/abs/10.1177/1082013215572029 Amos, R., y Lydgate, E. (2020). Trade, transboundary impacts and the implementation of SDG 12. Sustainability Science, 15(3), 771-782. https://link.springer.com/article/10.1007/s11625-019-00713-9 Arif, A., Malik, M. F., Liaqat, S., Aslam, A., Mumtaz, K., Afzal, A., y Javed, R. (2020). Water pollution and industries. Pure and Applied Biology, 9(2), 1762-1772. https://thepab.org/index.php/journal/article/view/1578 Arzo, S., y Hong, M. (2024). A roadmap to SDGs-emergence of technological innovation and infrastructure development for social progress and mobility. Environmental Research, 224, 115-129. https://www.sciencedirect.com/science/article/pii/S0013935124000069 Aznar-Sánchez, J. A., Piquer-Rodríguez, M., Velasco-Muñoz, J. F., y Manzano-Agugliaro, F. (2019). Worldwide research trends on sustainable land use in agriculture. Land Use Policy, 87, 104-118. https://www.sciencedirect.com/science/article/abs/pii/S0264837719303345 Baffoe, G., Zhou, X., Moinuddin, M., Somanje, A. N., Kuriyama, A., Mohan, G., ... y Takeuchi, K. (2021). Urban–rural linkages: Effective solutions for achieving sustainable development in Ghana from an SDG interlinkage perspective. Sustainability Science, 16(5), 1111-1128. https://link.springer.com/article/10.1007/s11625-021-00929-8 Biermann, F., Hickmann, T., y Sénit, C. A. (Eds.). (2022). The political impact of the sustainable development goals: Transforming governance through global goals?. Cambridge University Press. https://books.google.com.co/books?hl=en&lr=&id=UYR8EAAAQBAJ&oi=fnd&pg=PR9&dq=development+goals+global+impact&ots=DNW1B64xQm&sig=KW0L017rnK2tem_K__XTKpABcTk&redir_esc=y#v=onepage&q=development%20goals%20global%20impact&f=false Bilek-Steindl, S., Kettner, C., y Mayrhuber, C. (2022). Sustainability, work and growth in the context of SDG 8. Empirica, 49(1), 123-141. https://link.springer.com/article/10.1007/s10663-022-09538-9 Birkmann, J., Liwenga, E., Pandey, R., Boyd, E., Djalante, R., Gemenne, F., ... y Wrathall, D. (2022). Poverty, livelihoods and sustainable development. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Cambridge University Press. https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter08.pdf Biswas, A. K. (2004). Integrated water resources management: a reassessment: A water forum contribution. Water International, 29(2), 248-256. https://www.tandfonline.com/doi/abs/10.1080/02508060408691775 Bloom, D. E., McKenna, M. J., y Prettner, K. (2019). Global employment and decent jobs, 2010–2030: The forces of demography and automation. International Social Security Review, 72(3), 3-27. https://onlinelibrary.wiley.com/doi/abs/10.1111/issr.12213 Bouma, J., Montanarella, L., y Evanylo, G. (2019). The challenge for the soil science community to contribute to the implementation of the UN Sustainable Development Goals. Soil Use and Management, 35(4), 538-546. https://bsssjournals.onlinelibrary.wiley.com/doi/abs/10.1111/sum.12518 Bouwman, L., Goldewijk, K. K., Van Der Hoek, K. W., Beusen, A. H., Van Vuuren, D. P., Willems, J., y Stehfest, E. (2013). Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proceedings of the National Academy of Sciences, 110(52), 20882-20887. https://www.pnas.org/doi/abs/10.1073/pnas.1012878108 Bowman, B. M., Abbott-Donnelly, I., Barsoum, J. F., Williams, P., Hunt, D. V., y Rogers, C. D. (2023). The water pivot: Transforming unsustainable consumption to valuing water as a resource for life. Frontiers in Sustainability, 4, 1177574. https://www.frontiersin.org/journals/sustainability/articles/10.3389/frsus.2023.1177574/full Breuer, A., Leininger, J., Malerba, D., y Tosun, J. (2023). Integrated policymaking: Institutional designs for implementing the sustainable development goals (SDGs). World Development, 165, 106197. https://www.sciencedirect.com/science/article/pii/S0305750X23001353 Brussel, M., Zuidgeest, M., Pfeffer, K., y Van Maarseveen, M. (2019). Access or accessibility? A critique of the urban transport SDG indicator. ISPRS International Journal of Geo-Information, 8(2), 67. https://www.mdpi.com/2220-9964/8/2/67 Bruulsema, T. (2018). Managing nutrients to mitigate soil pollution. Environmental Pollution, 242, 2204-2212. https://www.sciencedirect.com/science/article/pii/S0269749118330070?casa_token=A2_27pGrE04AAAAA:aQwGpLEoAiHP8ZpSHmu7DyuFvV-N7b9-2D-iwLq6G7LzzJTHaG_FnC_thsMUtMHbD5OHAD1zeb7klA Bunsen, J., Berger, M., y Finkbeiner, M. (2021). Planetary boundaries for water–A review. Ecological Indicators, 121, 106958. https://www.sciencedirect.com/science/article/pii/S1470160X20309614 Burton, I. (1987). Report on reports: Our common future: The world commission on environment and development. Environment: Science and Policy for Sustainable Development, 29(5), 25-29. https://www.tandfonline.com/doi/pdf/10.1080/00139157.1987.9928891 Busch, P., Kendall, A., Murphy, C. W., y Miller, S. A. (2022). Literature review on policies to mitigate GHG emissions for cement and concrete. Resources, Conservation and Recycling, 181, 106235. https://www.sciencedirect.com/science/article/pii/S0921344922001264 Bustamante-Arango, D. F., y Vanegas-Quintero, J. C. (2023). Evaluación preliminar plan de acción septiembre 30 de 2023. Departamento Administrativo de Planeación del Valle del Cauca. https://www.valledelcauca.gov.co/documentos/15129/evaluacion-y-seguimiento-corte-sept-30-de-2023/ Campbell, B. M., Hansen, J., Rioux, J., Stirling, C. M., y Twomlow, S. (2018). Urgent action to combat climate change and its impacts (SDG 13): Transforming agriculture and food systems. Current Opinion in Environmental Sustainability, 34, 13-20. https://www.sciencedirect.com/science/article/pii/S1877343517302385 Campbell-Lendrum, D., Neville, T., Schweizer, C., y Neira, M. (2023). Climate change and health: Three grand challenges. Nature Medicine, 29(8), 1532-1535. https://www.nature.com/articles/s41591-023-02438-w Canadell, J. G., Monteiro, P. M., Costa, M. H., Cotrim da Cunha, L., Cox, P. M., Eliseev, A. V., ... y Zickfeld, K. (2023). Intergovernmental Panel on Climate Change (IPCC): Global carbon and other biogeochemical cycles and feedbacks. Climate Change 2021: The Physical Science Basis. Cambridge University Press. https://www.cambridge.org/core/services/aop-cambridge-core/content/view/93DFD13E855AC1F1B502965CABE28B7F/stamped-9781009157889c5_673-816.pdf Carey, R. O., y Migliaccio, K. W. (2009). Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: A review. Environmental Management, 44(2), 205-217. https://link.springer.com/article/10.1007/s00267-009-9309-5 Carley, S., y Konisky, D. M. (2020). The justice and equity implications of the clean energy transition. Nature Energy, 5(8), 569-577. https://www.nature.com/articles/s41560-020-0641-6 Castro-Nunez, A., Charry, A., Castro-Llanos, F., Sylvester, J., y Bax, V. (2020). Reducing deforestation through value chain interventions in countries emerging from conflict: The case of the Colombian cocoa sector. Applied Geography, 116, 102-135. https://www.sciencedirect.com/science/article/pii/S0143622819313244?casa_token=4Nt4FHA5xV8AAAAA:MXPKYIRoQqDcDJcufUx825QlUja5Yh4zY-PgU2clMlm8iCu7mzq31aJkWGmPxjUU38_tVqas4F8s Centro Nacional de Memoria Histórica. (2014). “Patrones” y Campesinos: Tierra, Poder y Violencia en el Valle del Cauca (1960-2012). Centro Nacional de Memoria Histórica. https://centrodememoriahistorica.gov.co/wp-content/uploads/2020/01/Patrones-y-Campesinos-tierra-poder-y-violencia-en-el-Valle-del-Cauca.pdf Chang, Y., Huang, Z., Ries, R. J., y Masanet, E. (2016). The embodied air pollutant emissions and water footprints of buildings in China: A quantification using disaggregated input–output life cycle inventory model. Journal of Cleaner Production, 113, 274-284. https://www.sciencedirect.com/science/article/pii/S0959652615016431 Chen, L., Li, K., Chen, S., Wang, X., y Tang, L. (2021). Industrial activity, energy structure, and environmental pollution in China. Energy Economics, 101, 105-122. https://www.sciencedirect.com/science/article/pii/S0140988321004965?casa_token=dQViWKggHPAAAAAA:7Ja5SWg6RHIHDfo-2rahv7es9BQplJd0gs-EVyC23RN3nydR7x57eWrMrNbfvdYx_jSIicAxdDbi Cipponeri, M. (2020). Evaluación y Estudio de Impacto Ambiental. UNLP. https://sedici.unlp.edu.ar/handle/10915/88480 CNP. (2002). El conglomerado del azúcar del Valle del Cauca, Colombia (No. 2475). Cepal Naciones Unidas. https://repositorio.cepal.org/server/api/core/bitstreams/c9c3045b-f2ff-42d9-ae0f-2452406f3b27/content Conesa Fernández-Vitoria, V. (2009). Guía metodológica para la evaluación del impacto ambiental. Ediciones Mundi-Prensa. https://books.google.com.co/books?hl=en&lr=&id=wa4SAQAAQBAJ&oi=fnd&pg=PP2&dq=conesa+fernandez&ots=r0198Jmabt&sig=juHyZaQSnAhp8udR_zznuUO_vcs&redir_esc=y#v=onepage&q=conesa%20fernandez&f=false Crutzen, P. (2002). Geology of mankind. Nature, 415(6867), 23. https://www.nature.com/articles/415023a#citeas Csikós, N., y Tóth, G. (2023). Concepts of agricultural marginal lands and their utilisation: A review. Agricultural Systems, 207, 103569. https://www.sciencedirect.com/science/article/pii/S0308521X22001962 D’Odorico, P., Chiarelli, D. D., Rosa, L., Bini, A., Zilberman, D., y Rulli, M. C. (2020). The global value of water in agriculture. Proceedings of the National Academy of Sciences, 117(36), 21985-21993. https://www.pnas.org/doi/abs/10.1073/pnas.2005835117 DANE. (2018). Censo Nacional de población y vivienda. GeoportalDANE. https://geoportal.dane.gov.co/geovisores/sociedad/cnpv-2018/ Darch, T., Blackwell, M. S. A., Hawkins, J. M. B., Haygarth, P. M., y Chadwick, D. (2014). A meta-analysis of organic and inorganic phosphorus in organic fertilizers, soils, and water: Implications for water quality. Critical Reviews in Environmental Science and Technology, 44(17), 1947-1977. https://www.tandfonline.com/doi/full/10.1080/10643389.2013.790752?casa_token=oQ6LBHagHooAAAAA%3AQvsfFVMkxgyLsLMx7lU7ba2B76YI9D2wEPpSveBZTxnhOVc12lurEOUPxbgq-tUZRBAvqUVMPxHQtl0 De Vries, W. (2021). Impacts of nitrogen emissions on ecosystems and human health: A mini review. Current Opinion in Environmental Science & Health, 22, 100269. https://www.sciencedirect.com/science/article/pii/S2468584421000210 Del-Aguila-Arcentales, S., Alvarez-Risco, A., Jaramillo-Arévalo, M., De-La-Cruz-Diaz, M., y De Las Mercedes Anderson-Seminario, M. (2022). Influence of social, environmental and economic sustainable development goals (SDGs) over continuation of entrepreneurship and competitiveness. Journal of Open Innovation, 8(1), 14. https://www.sciencedirect.com/science/article/pii/S2199853122000142 Demadis, K. D., Mavredaki, E., Stathoulopoulou, A., Neofotistou, E., y Mantzaridis, C. (2007). Industrial water systems: Problems, challenges, and solutions for the process industries. Desalination, 213(1-3), 38-46. https://www.sciencedirect.com/science/article/abs/pii/S0011916407003001 Departamento Administrativo de Planeación del Valle del Cauca. (2020). Plan de desarrollo departamental 2020-2023. Gobernación del Valle del Cauca. https://www.uesvalle.gov.co/documentos/533/1-plan-de-desarrollo-departamental-2020-2023/ Departamento Nacional de Planeación. (2005). CONPES Social 91, metas y estrategias de Colombia para el logro de los Objetivos de Desarrollo del Milenio – 2015. Consejo Nacional de Política Económica y Social. https://colaboracion.dnp.gov.co/CDT/Conpes/Social/91.pdf Departamento Nacional de Planeación. (2018). CONPES 3918, estrategia para la implementación de los Objetivos de Desarrollo Sostenible (ODS) en Colombia. Consejo Nacional de Política Económica y Social. https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/3918.pdf Devisscher, T., Konijnendijk, C., Nesbitt, L., Lenhart, J., Salbitano, F., Cheng, Z. C., ... y van den Bosch, M. (2019). SDG 11: Sustainable cities and communities–Impacts on forests and forest-based livelihoods. En P. Katila, C. J. Pierce Colfer, W. De Jong, G. Galloway, P. Pacheco y G. Winkel (Eds.), Sustainable Development Goals: Their impacts on forests and people (pp. 349-372). Springer. https://books.google.com.co/books?hl=en&lr=&id=723CDwAAQBAJ&oi=fnd&pg=PA349&dq=sdg+11&ots=JLVwMB763U&sig=off7papzZqSo-Cifu_xepo-k7gE&redir_esc=y#v=onepage&q=sdg%2011&f=false Dimkpa, C. O., Fugice, J., Singh, U., y Lewis, T. D. (2020). Development of fertilizers for enhanced nitrogen use efficiency–Trends and perspectives. Science of the Total Environment, 731, 139113. https://www.sciencedirect.com/science/article/abs/pii/S0048969720326309 Dincer, I., y Rosen, M. A. (2005). Thermodynamic aspects of renewables and sustainable development. Renewable and Sustainable Energy Reviews, 9(2), 169-189. https://www.sciencedirect.com/science/article/abs/pii/S1364032104000474 Dunnington, D. W., Trueman, B. F., Raseman, W. J., Anderson, L. E., y Gagnon, G. A. (2020). Comparing the predictive performance, interpretability, and accessibility of machine learning and physically based models for water treatment. ACS ES&T Engineering, 1(1), 26-35. https://pubs.acs.org/doi/abs/10.1021/acsestengg.0c00053 Echavarria, M. (2002). Water user associations in the Cauca Valley, Colombia: A voluntary mechanism to promote upstream-downstream cooperation in the protection of rural watersheds. Land-Water Linkages in Rural Watersheds Case Study Series. FAO. https://www.conservationgateway.org/Documents/palmira%20directly%20by%20marta.pdf Eigenbrod, F., Bell, V. A., Davies, H. N., Heinemeyer, A., Armsworth, P. R., y Gaston, K. J. (2011). The impact of projected increases in urbanization on ecosystem services. Proceedings of the Royal Society B: Biological Sciences, 278(1722), 3201-3208. https://royalsocietypublishing.org/doi/abs/10.1098/rspb.2010.2754 El-Saadony, M. T., ALmoshadak, A. S., Shafi, M. E., Albaqami, N. M., Saad, A. M., El-Tahan, A. M., ... y Helmy, A. M. (2021). Vital roles of sustainable nano-fertilizers in improving plant quality and quantity: An updated review. Saudi Journal of Biological Sciences, 28(5), 3221-3230. https://www.sciencedirect.com/science/article/pii/S1319562X2100718X Emadodin, I., Narita, D., y Bork, H. R. (2012). Soil degradation and agricultural sustainability: An overview from Iran. Environment, Development and Sustainability, 14(5), 611-625. https://link.springer.com/article/10.1007/s10668-012-9351-y Fa, J. E., Watson, J. E., Leiper, I., Potapov, P., Evans, T. D., Burgess, N. D., ... y Garnett, S. T. (2020). Importance of Indigenous Peoples’ lands for the conservation of intact forest landscapes. Frontiers in Ecology and the Environment, 18(3), 135-140. https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/fee.2148 Faieta, J., Pacheco, A., y Escobar, D. C. (2023). Roadmap for an integrated national financing framework in Colombia. Joint SDG Fund. https://open.undp.org/projects/00129200 Falkenmark, M., Wang-Erlandsson, L., y Rockström, J. (2019). Understanding of water resilience in the Anthropocene. Journal of Hydrology X, 2, 100009. https://www.sciencedirect.com/science/article/pii/S2589915518300099 Fang, Z., Ding, T., Chen, J., Xue, S., Zhou, Q., Wang, Y., ... y Yang, S. (2022). Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Science of the Total Environment, 807, 151-196. https://www.sciencedirect.com/science/article/pii/S0048969722020605?casa_token=82u1HzPr3UcAAAAA:w-GCdgN8ThG-tj9XVGzMEIRDeMak74BGOrLj9cyTp8Okfj11x_fj2khUy2nKR_3f_cvaexZjnsQchw Fernández-Sánchez, G., Berzosa, Á., Barandica, J. M., Cornejo, E., y Serrano, J. M. (2015). Opportunities for GHG emissions reduction in road projects: A comparative evaluation of emissions scenarios using CO2NSTRUCT. Journal of Cleaner Production, 104, 156-167. https://www.sciencedirect.com/science/article/pii/S095965261500579X?casa_token=6F6Ezq1rWtsAAAAA:vQlfGcIIjfhyZjCiVjNvXvGace3Tdy9XJx2i8mTQWe9JXPhULUAAJsrKFCcsb9DI5-71CXwK08hmSA Ferreira, C. S., Walsh, R. P., y Ferreira, A. J. (2018). Degradation in urban areas. Current Opinion in Environmental Science & Health, 1, 93-97. https://www.sciencedirect.com/science/article/pii/S2468584417300570?casa_token=tv9F5d2XkIsAAAAA:L2UHio8mOtNuv47Vy4cHM-7rlgxLtv6vwOdws6gcg_wslpPSxxPQTm1mCZiO3udQvSsah5tNxCe0 Ferreira, J., Pardini, R., Metzger, J. P., Fonseca, C. R., Pompeu, P. S., Sparovek, G., y Louzada, J. (2012). Towards environmentally sustainable agriculture in Brazil: Challenges and opportunities for applied ecological research. Journal of Applied Ecology, 49(3), 535-541. https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2664.2012.02145.x Fiedler, S., Perring, M. P., y Tietjen, B. (2018). Integrating trait‐based empirical and modeling research to improve ecological restoration. Ecology and Evolution, 8(5), 2717-2729. https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.4043 Findlay, P., y Thompson, P. (2017). Contemporary work: Its meanings and demands. Journal of Industrial Relations, 59(2), 122-139. https://journals.sagepub.com/doi/abs/10.1177/0022185616672251 Folke, C., Jansson, Å., Rockström, J., Olsson, P., Carpenter, S. R., Chapin, F. S., ... y Westley, F. (2011). Reconnecting to the biosphere. Ambio, 40(7), 719-738. https://link.springer.com/article/10.1007/s13280-011-0184-y Forestier, O., y Kim, R. E. (2020). Cherry‐picking the Sustainable Development Goals: Goal prioritization by national governments and implications for global governance. Sustainable Development, 28(5), 1264-1274. https://onlinelibrary.wiley.com/doi/full/10.1002/sd.2082 Frey, D. F. (2018). Economic growth, full employment and decent work: The means and ends in SDG 8. En P. B. Anand, F. Comim y S. Fennell (Eds.), The Sustainable Development Goals and Human Rights (pp. 123-138). Routledge. https://www.taylorfrancis.com/chapters/edit/10.4324/9781351024303-7/economic-growth-full-employment-decent-work-means-ends-sdg-8-diane-frey Fuchs, P. G., Finatto, C. P., Birch, R. S., de Aguiar Dutra, A. R., y de Andrade Guerra, J. B. S. O. (2023). Sustainable Development Goals (SDGs) in Latin-American universities. Sustainability, 15(6), 123. https://www.researchgate.net/publication/371059581_Sustainable_Development_Goals_SDGs_in_Latin-American_Universities Fukuda-Parr, S., Greenstein, J., y Stewart, D. (2013). How should MDG success and failure be judged: Faster progress or achieving the targets? World Development, 41, 19-30. https://www.sciencedirect.com/science/article/pii/S0305750X12001829 Galindo, M. Á., y Méndez, M. T. (2014). Entrepreneurship, economic growth, and innovation: Are feedback effects at work? Journal of Business Research, 67(5), 825-829. https://www.sciencedirect.com/science/article/abs/pii/S0148296313004220 Gandini, M. A. (2024). Nota de clase: Diseño integrador para la sostenibilidad. Universidad Autónoma de Occidente. Gerbens-Leenes, P. W., Hoekstra, A. Y., y Bosman, R. (2018). The blue and grey water footprint of construction materials: Steel, cement and glass. Water Resources and Industry, 19, 1-12. https://www.sciencedirect.com/science/article/pii/S2212371717300458 Ghosh, P., Hossain, M., y Alam, A. (2022). Water, sanitation, and hygiene (WASH) poverty in India: A district‐level geospatial assessment. Regional Science Policy & Practice, 14(3), 561-578. https://www.sciencedirect.com/science/article/pii/S1757780223001956 Giddings, B., Hopwood, B., y OBrien, G. (2002). Environment, economy and society: Fitting them together into sustainable development. Sustainable Development, 10(4), 187-196. https://onlinelibrary.wiley.com/doi/abs/10.1002/sd.199 Gomes, E., Inácio, M., Bogdzevič, K., Kalinauskas, M., Karnauskaitė, D., y Pereira, P. (2021). Future land-use changes and its impacts on terrestrial ecosystem services: A review. Science of The Total Environment, 784, 147-179. https://www.sciencedirect.com/science/article/pii/S0048969721017848?casa_token=sTHSbdmxh88AAAAA:bZ3QPpo4gVw2g2LzXn8V_iWv2foXjj7num3Ooq8gVaLSovz4VeXOX63soF075ZDfUbe5FCUyH5PuRg González-Cabo, V., Cruz-Caicedo, L. F., Murgueitio, M., Burbano-Vallejo, E. L., y Moreno, E. (2017). Application of structural analysis for local development in the center region of Valle del Cauca, Colombia. International Review on Public and Nonprofit Marketing, 14(3), 321-340. https://link.springer.com/article/10.1007/s12208-017-0173-3 Gregory, P. J., Ingram, J. S., y Brklacich, M. (2005). Climate change and food security. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2139-2148. https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2005.1745 Grigoroudis, E., Kouikoglou, V. S., y Phillis, Y. A. (2024). Agricultural sustainability assessment and national policy-making using an axiomatic mathematical model. Environmental and Sustainability Indicators, 22, 101456. https://www.sciencedirect.com/science/article/pii/S2665972724000692 Güsewell, S. (2004). N: P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164(2), 243-266. https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2004.01192.x Hakimdavar, R., Hubbard, A., Policelli, F., Pickens, A., Hansen, M., Fatoyinbo, T., ... y Schollaert Uz, S. (2020). Monitoring water-related ecosystems with earth observation data in support of Sustainable Development Goal (SDG) 6 reporting. Remote Sensing, 12(10), 1634. https://www.mdpi.com/2072-4292/12/10/1634 Hametner, M. (2023). Economics without ecology: How the SDGs fail to align socioeconomic development with environmental sustainability. Ecological Economics, 207, 107636. https://www.sciencedirect.com/science/article/pii/S0921800922001525 Hasan, S. S., Zhen, L., Miah, M. G., Ahamed, T., y Samie, A. (2020). Impact of land use change on ecosystem services: A review. Environmental Development, 34, 100480. https://www.sciencedirect.com/science/article/pii/S2211464520300464?casa_token=LRKRj0G-k4UAAAAA:Z08MNZFZ8ye0em6NXoolJdYS5ULcQC7HU5carxrsF80QAV_3yQkeqDlJn7jnsob0XhMv-K9kqgh_WA He, X., Khan, S., Ozturk, I., y Murshed, M. (2023). The role of renewable energy investment in tackling climate change concerns: Environmental policies for achieving SDG‐13. Sustainable Development, 31(3), 456-473. https://onlinelibrary.wiley.com/doi/abs/10.1002/sd.2491 Hoornweg, D., Sugar, L., y Trejos Gómez, C. L. (2011). Cities and greenhouse gas emissions: Moving forward. Environment and Urbanization, 23(1), 207-227. https://journals.sagepub.com/doi/abs/10.1177/0956247810392270 Horton, R. (2014). Offline: Why the sustainable development goals will fail. The Lancet, 383(9936), 2190. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(14)61046-1/abstract?code=lancet-site&rss%3Dyes= Hua, F., Bruijnzeel, L. A., Meli, P., Martin, P. A., Zhang, J., Nakagawa, S., ... y Balmford, A. (2022). The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science, 375(6585), 1241-1247. https://www.science.org/doi/full/10.1126/science.abl4649 Husain, H. J., Wang, X., Pirasteh, S., Mafi-Gholami, D., Chouhan, B., Khan, M. L., y Gheisari, M. (2024). Review and assessment of the potential restoration of ecosystem services through the implementation of the biodiversity management plans for SDG-15 localization. Heliyon, 10(3), e09508. https://www.sciencedirect.com/science/article/pii/S2405844024059085 Hwang, H., An, S., Lee, E., Han, S., y Lee, C. H. (2021). Cross-societal analysis of climate change awareness and its relation to SDG 13: A knowledge synthesis from text mining. Sustainability, 13(10), 5596. https://www.mdpi.com/2071-1050/13/10/5596 Instituto Humboldt. (2022). Biodiverciudades al 2030: una apuesta por transformar ciudades desde la naturaleza. Instituto Humboldt. https://www.humboldt.org.co/noticias/biodiverciudades-al-2030-una-apuesta-por-transformar-ciudades-desde-la-naturaleza Intergovernmental Panel on Climate Change. (2022). Climate change 2022: Mitigation of climate change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf IPCC. (2023). Climate Change 2023 – Synthesis Report. A report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf Itelima, J. U., Bang, W. J., Onyimba, I. A., Sila, M. D., y Egbere, O. J. (2018). Bio-fertilizers as key player in enhancing soil fertility and crop productivity: A review. University of Jos Nigeria. https://dspace.unijos.edu.ng/jspui/handle/123456789/1999 Kapsalis, V. C., y Kalavrouziotis, I. K. (2021). Eutrophication—A worldwide water quality issue. En V. C. Kapsalis e I. K. Kalavrouziotis (Eds.), Chemical Lake Restoration: Technologies, Innovations and Economic Perspectives (pp. 3-18). Springer. https://link.springer.com/chapter/10.1007/978-3-030-76380-0_1 Karimi, A., y Ardakanian, R. (2010). Development of a dynamic long-term water allocation model for agriculture and industry water demands. Water Resources Management, 24(14), 3775-3792. https://link.springer.com/article/10.1007/s11269-009-9521-3 Karr, J. R., Larson, E. R., y Chu, E. W. (2022). Ecological integrity is both real and valuable. Conservation Science and Practice, 4(3), e583. https://conbio.onlinelibrary.wiley.com/doi/full/10.1111/csp2.583 Keddy, P. A., Lee, H. T., y Wisheu, I. C. (2020). Choosing indicators of ecosystem integrity: Wetlands as a model system. En Ecological Integrity and the Management of Ecosystems (pp. 155-178). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003070542-5/choosing-indicators-ecosystem-integrity-wetlands-model-system-paul-keddy-harold-lee-irene-wisheu Khair, S. M., Mushtaq, S., Reardon-Smith, K., y Ostini, J. (2019). Diverse drivers of unsustainable groundwater extraction behaviour operate in an unregulated water scarce region. Journal of Environmental Management, 236, 606-616. https://www.sciencedirect.com/science/article/pii/S0301479718314993?casa_token=qzBsfzignjoAAAAA:MaJL5v_WlgB7ZS9K4763u-WOEtnF4kbB-QC-itPDJIvDNnES31U9ALiYen_VgZRQSmcHuHRwpLCNGQ Khan, M. N., y Mohammad, F. (2014). Eutrophication: Challenges and solutions. En Eutrophication: Causes, Consequences and Control (pp. 1-16). Springer. https://link.springer.com/chapter/10.1007/978-94-007-7814-6_1 Khozin, V., Khokhryakov, O., y Nizamov, R. (2020). A “carbon footprint” of low water demand cements and cement-based concrete. IOP Conference Series: Materials Science and Engineering, 890(1), 012105. https://iopscience.iop.org/article/10.1088/1757-899X/890/1/012105/meta Kleidon, A. (2023). Working at the limit: A review of thermodynamics and optimality of the Earth system. Earth System Dynamics, 14(4), 861-888. https://esd.copernicus.org/articles/14/861/2023/esd-14-861-2023.html Kopnina, H. (2016). The victims of unsustainability: A challenge to sustainable development goals. International Journal of Sustainable Development & World Ecology, 23(1), 29-39. https://www.tandfonline.com/doi/abs/10.1080/13504509.2015.1111269 Kreinin, H., y Aigner, E. (2022). From “Decent work and economic growth” to “Sustainable work and economic degrowth”: A new framework for SDG 8. Empirica, 49(3), 621-636. https://link.springer.com/article/10.1007/s10663-021-09526-5 Kumar, R., Kumar, A., y Saikia, P. (2022). Deforestation and forests degradation impacts on the environment. En Environmental Degradation: Challenges and Strategies for Mitigation (pp. 35-54). Springer. https://link.springer.com/chapter/10.1007/978-3-030-95542-7_2 Lade, S. J., Steffen, W., De Vries, W., Carpenter, S. R., Donges, J. F., Gerten, D., ... y Rockström, J. (2020). Human impacts on planetary boundaries amplified by Earth system interactions. Nature Sustainability, 3(7), 519-528. https://www.nature.com/articles/s41893-019-0454-4 Ladi, T., Mahmoudpour, A., y Sharifi, A. (2021). Assessing impacts of the water poverty index components on the human development index in Iran. Habitat International, 111, 102404. https://www.sciencedirect.com/science/article/abs/pii/S0197397521000643 Lal, R., Bouma, J., Brevik, E., Dawson, L., Field, D. J., Glaser, B., ... y Zhang, J. (2021). Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Regional, 25, e00343. https://www.sciencedirect.com/science/article/abs/pii/S2352009421000432 Lenton, R., y Muller, M. (2012). Integrated water resources management in practice: Better water management for development. Routledge. https://api.taylorfrancis.com/content/books/mono/download?identifierName=doi&identifierValue=10.4324/9781849771740&type=googlepdf Ley 1753 de 2015. (2015). Plan Nacional de Desarrollo 2014-2018 “Todos por un nuevo país”. Congreso de la República de Colombia. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=61933 Li, Y., Brando, P. M., Morton, D. C., Lawrence, D. M., Yang, H., y Randerson, J. T. (2022). Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nature Communications, 13(1), 4163. https://www.nature.com/articles/s41467-022-29601-0 Lindsey, C., Mahmassani, H. S., Mullarkey, M., Nash, T., y Rothberg, S. (2014). Regional logistics hubs, freight activity and industrial space demand: Econometric analysis. Research in Transportation Business & Management, 10, 14-25. https://www.sciencedirect.com/science/article/abs/pii/S2210539514000273 Liu, Z., Dong, H., Geng, Y., Lu, C., y Ren, W. (2014). Insights into the regional greenhouse gas (GHG) emission of industrial processes: A case study of Shenyang, China. Sustainability, 6(6), 3669-3684. https://www.mdpi.com/2071-1050/6/6/3669 Lomazzi, M., Borisch, B., y Laaser, U. (2014). The Millennium Development Goals: Experiences, achievements and whats next. Global Health Action, 7(1), 23695. https://www.tandfonline.com/doi/full/10.3402/gha.v7.23695 Lynch, J., Cain, M., Pierrehumbert, R., y Allen, M. (2020). Demonstrating GWP: A means of reporting warming-equivalent emissions that captures the contrasting impacts of short-and long-lived climate pollutants. Environmental Research Letters, 15(4), 044014. https://iopscience.iop.org/article/10.1088/1748-9326/ab6d7e Maes, M. J., Jones, K. E., Toledano, M. B., y Milligan, B. (2019). Mapping synergies and trade-offs between urban ecosystems and the sustainable development goals. Environmental Science & Policy, 93, 237-246. https://www.sciencedirect.com/science/article/abs/pii/S1462901118305197 Makhnatch, P., y Khodabandeh, R. (2014). The role of environmental metrics (GWP, TEWI, LCCP) in the selection of low GWP refrigerant. Energy Procedia, 61, 2460-2464. https://www.sciencedirect.com/science/article/pii/S1876610214030525 Malmsheimer, R. W., Bowyer, J. L., Fried, J. S., Gee, E., Izlar, R. L., Miner, R. A., ... y Stewart, W. C. (2011). Managing forests because carbon matters: Integrating energy, products, and land management policy. Journal of Forestry, 109(7), S7-S50. https://forestpolicypub.com/wp-content/uploads/2018/03/Managing-Forests-because-Carbon-Matters-Task-Force-Report-JoF-Supplement.pdf?__cf_chl_rt_tk=250i4bCXbGhdZXfOK1PDZi8VLkBnZBI6LG5P.gx6P9Q-1722892541-0.0.1.1-4116 Malone, T. C., y Newton, A. (2020). The globalization of cultural eutrophication in the coastal ocean: Causes and consequences. Frontiers in Marine Science, 7, 670. https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2020.00670/full Mejía-Dugand, S., y Pizano-Castillo, M. (2020). Touching down in cities: Territorial planning instruments as vehicles for the implementation of SDG strategies in cities of the global south. Sustainability, 12(17), 6778. https://www.mdpi.com/2071-1050/12/17/6778 Mensah, J. (2019). Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review. Cogent Social Sciences, 5(1), 1653531. https://www.tandfonline.com/doi/full/10.1080/23311886.2019.1653531 Mullan, K., Caviglia-Harris, J. L., y Sills, E. O. (2021). Sustainability of agricultural production following deforestation in the tropics: Evidence on the value of newly-deforested, long-deforested and forested land in the Brazilian Amazon. Land Use Policy, 104, 105383. https://www.sciencedirect.com/science/article/pii/S0264837721003835?casa_token=BbtkU7GYX8UAAAAA:xCcQQUhvN6cIea2myFRrboYiEe2b-dAoYI-OLkYRgNyqle8tMG4P5cWcmTmdDRFkad1iZjVkf5Ia Muller, C. J., y O’Gorman, P. A. (2011). An energetic perspective on the regional response of precipitation to climate change. Nature Climate Change, 1(5), 266-271. https://www.nature.com/articles/nclimate1169 Munang, R., Thiaw, I., Alverson, K., Liu, J., y Han, Z. (2013). The role of ecosystem services in climate change adaptation and disaster risk reduction. Current Opinion in Environmental Sustainability, 5(1), 47-52. https://www.sciencedirect.com/science/article/abs/pii/S1877343513000080 Nelson, S. H., Bremer, L. L., Meza Prado, K., y Brauman, K. A. (2020). The political life of natural infrastructure: Water funds and alternative histories of payments for ecosystem services in Valle del Cauca, Colombia. Development and Change, 51(3), 570-596. https://onlinelibrary.wiley.com/doi/abs/10.1111/dech.12544 Niedertscheider, M., y Erb, K. (2014). Land system change in Italy from 1884 to 2007: Analysing the North–South divergence on the basis of an integrated indicator framework. Land Use Policy, 39, 366-375. https://www.sciencedirect.com/science/article/pii/S0264837714000167 Núñez, D., Nahuelhual, L., y Oyarzún, C. (2006). Forests and water: The value of native temperate forests in supplying water for human consumption. Ecological Economics, 58(3), 606-616. https://www.sciencedirect.com/science/article/abs/pii/S0921800905003666 O’Neill, D. W., Fanning, A. L., Lamb, W. F., y Steinberger, J. K. (2018). A good life for all within planetary boundaries. Nature Sustainability, 1(2), 88-95. https://www.nature.com/articles/s41893-018-0021-4 Obaideen, K., Shehata, N., Sayed, E. T., Abdelkareem, M. A., Mahmoud, M. S., y Olabi, A. G. (2022). The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus, 7, 100055. https://www.sciencedirect.com/science/article/pii/S2772427122000729 Olivier, J. G., Schure, K. M., y Peters, J. A. H. W. (2017). Trends in global CO2 and total greenhouse gas emissions. PBL Netherlands Environmental Assessment Agency, 4331, 1-74. https://www.pbl.nl/sites/default/files/downloads/pbl-2020-trends-in-global-CO2-and_total-greenhouse-gas-emissions-2020-report_4331.pdf ONU. (2015). Materiales de comunicación. Objetivos de Desarrollo Sostenible. Naciones Unidas. https://www.un.org/sustainabledevelopment/es/news/communications-material/ Ortega, J. T., De La Rosa, J. O., Arroyo, E. D., y Melo, L. B. (2022). Education, research, and development expenditure is the best way to competitiveness—a panel data approach for Latin American Countries. Procedia Computer Science, 200, 123-131. https://www.sciencedirect.com/science/article/pii/S1877050922007001 Parlak, M., Everest, T., Ruis, S. J., y Blanco, H. (2020). Impact of urbanization on soil loss: A case study from sod production. Environmental Monitoring and Assessment, 192(10), 642. https://link.springer.com/article/10.1007/s10661-020-08549-y Peattie, L. (2022). Shelter, development, and the poor. En Shelter, Settlement & Development (pp. 229-252). Routledge. https://www.taylorfrancis.com/chapters/edit/10.4324/9781003271529-15/shelter-development-poor-lisa-peattie Pereira, L. S., Cordery, I., y Iacovides, I. (2012). Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agricultural Water Management, 108, 39-51. https://www.sciencedirect.com/science/article/pii/S0378377411002290?casa_token=7lzvl6aBtB8AAAAA:E2XruFZ46vODnw7r_OYhxn_hGAXPmVDqVGZ4AlPGzDacznLjXcxRDja6DpAK-nQ-lD6XPgoN_H9J Pereira, M. A., y Marques, R. C. (2021). Sustainable water and sanitation for all: are we there yet? Water Research, 205, 117688. https://www.sciencedirect.com/science/article/abs/pii/S0043135421009593 Pereira, P., Bogunovic, I., Muñoz-Rojas, M., y Brevik, E. C. (2018). Soil ecosystem services, sustainability, valuation and management. Current Opinion in Environmental Science & Health, 5, 7-13. https://www.sciencedirect.com/science/article/pii/S2468584417300326 Perera, A. T. D., Nik, V. M., Chen, D., Scartezzini, J. L., y Hong, T. (2020). Quantifying the impacts of climate change and extreme climate events on energy systems. Nature Energy, 5(2), 150-159. https://www.nature.com/articles/s41560-020-0558-0 Pervez, H., Ali, Y., y Petrillo, A. (2021). A quantitative assessment of greenhouse gas (GHG) emissions from conventional and modular construction: A case of developing country. Journal of Cleaner Production, 309, 127115. https://www.sciencedirect.com/science/article/pii/S0959652621004303 Pogge, T., y Sengupta, M. (2015). The Sustainable Development Goals (SDGS) as drafted: Nice idea, poor execution. Pacific Rim Law & Policy Journal, 24, 61-74. https://heinonline.org/HOL/LandingPage?handle=hein.journals/pacrimlp24&div=27&id=&page= Prado, E. L., y Dewey, K. G. (2014). Nutrition and brain development in early life. Nutrition Reviews, 72(4), 267-284. https://academic.oup.com/nutritionreviews/article/72/4/267/1859597 Preisner, M., Neverova-Dziopak, E., y Kowalewski, Z. (2020). Analysis of eutrophication potential of municipal wastewater. Water Science and Technology, 81(9), 1994-2007. https://iwaponline.com/wst/article/81/9/1994/74435/Analysis-of-eutrophication-potential-of-municipal ProPacífico. (2021). Índice de Desarrollo Sostenible Municipal – Colombia 2021. ProPacífico. https://propacifico.org/wp-content/uploads/2023/05/informe-idsm-2021.pdf ProPacífico. (2022). Índice de Desarrollo Sostenible Municipal – Colombia 2022. ProPacífico. https://propacifico.org/ods/ ProPacífico. (2023). Aporte al desarrollo: visiones ambientales, sociales, de infraestructura y planeación. ProPacífico. https://propacifico.org/aporte-al-desarrollo/ Rai, S. M., Brown, B. D., y Ruwanpura, K. N. (2019). SDG 8: Decent work and economic growth–A gendered analysis. World Development, 113, 39-49. https://www.sciencedirect.com/science/article/pii/S0305750X18303309 Raihan, A., Begum, R. A., Nizam, M., Said, M., y Pereira, J. J. (2022). Dynamic impacts of energy use, agricultural land expansion, and deforestation on CO2 emissions in Malaysia. Environmental and Ecological Statistics, 29(1), 23-42. https://link.springer.com/article/10.1007/s10651-022-00532-9 Ramos, C. I., y Álvarez García, R. D. (2020). La tasa natural de desempleo en Colombia 2001-2018: evolución y estimaciones. Entramado, 16(1), 71-84. http://www.scielo.org.co/scielo.php?pid=S1900-38032020000100076&script=sci_arttext Randers, J., Rockström, J., Stocknes, P. E., Golüke, U., Collste, D., y Cornell, S. (2018). Transformation is feasible - How to achieve the Sustainable Development Goals within Planetary Boundaries. Club of Rome Report. https://www.stockholmresilience.org/publications/publications/2018-10-17-transformation-is-feasible---how-to-achieve-the-sustainable--development-goals-within-planetary-boundaries.html Ravallion, M. (2015). The economics of poverty: History, measurement, and policy. Oxford University Press. https://books.google.com.co/books?hl=en&lr=&id=GUL_CgAAQBAJ&oi=fnd&pg=PT13&dq=end+poverty+in+all+forms+everywhereThe+Economics+of+Poverty:+History,+Measurement,+and+Policy.+New+York:+Oxford+University+Press.&ots=DRe1pRlLUI&sig=Ej4CIcGTb4DkzhOaJphzpw60xk0&redir_esc=y#v=onepage&q&f=false Reardon, S. F., y Galindo, C. (2009). The Hispanic-White achievement gap in math and reading in the elementary grades. American Educational Research Journal, 46(3), 853-891. https://journals.sagepub.com/doi/abs/10.3102/0002831209333184 Reddy, V. R., y Behera, B. (2006). Impact of water pollution on rural communities: An economic analysis. Ecological Economics, 58(3), 520-531. https://www.sciencedirect.com/science/article/abs/pii/S0921800905003381 Reichler, T. (2009). Changes in the atmospheric circulation as indicator of climate change. En Climate Change (pp. 25-46). Elsevier. https://www.sciencedirect.com/science/article/abs/pii/B9780444533012000075 Richardson, K., Steffen, W., Lucht, W., Bendtsen, J., Cornell, S. E., Donges, J. F., y Rockström, J. (2023). Earth beyond six of nine planetary boundaries. Science Advances, 9(3), eadh2458. https://www.science.org/doi/10.1126/sciadv.adh2458 Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin III, F. S., Lambin, E., y Foley, J. (2009). Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society, 14(2), 32. https://www.jstor.org/stable/26268316 Rodina, L. (2019). Defining “water resilience”: Debates, concepts, approaches, and gaps. Wiley Interdisciplinary Reviews: Water, 6(2), e1334. https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wat2.1334 Rottler, E., Francke, T., Bürger, G., y Bronstert, A. (2020). Long-term changes in central European river discharge for 1869–2016: Impact of changing snow covers, reservoir constructions and an intensified hydrological cycle. Hydrology and Earth System Sciences, 24(4), 1721-1739. https://hess.copernicus.org/articles/24/1721/2020/ Sachs, J. D. (2006). The end of poverty: Economic possibilities for our time. Penguin. https://books.google.com.co/books?hl=en&lr=&id=pqla8IiF5dYC&oi=fnd&pg=PR7&dq=end+poverty&ots=IIDhygMx5B&sig=KKK55rd7MKp08h3umOFDFBzeMok&redir_esc=y#v=onepage&q=end%20poverty&f=false Sadic, S., Demir, E., y Crispim, J. (2024). Towards a connected world: Collaborative networks as a tool to accomplish the SDGs. Journal of Cleaner Production, 431, 138158. https://www.sciencedirect.com/science/article/pii/S0959652624021747 Sætra, H. S. (2021). A framework for evaluating and disclosing the ESG related impacts of AI with the SDGs. Sustainability, 13(15), 8503. https://www.mdpi.com/2071-1050/13/15/8503 Saltarelli, W. A., Cunha, D. G. F., Freixa, A., Perujo, N., López‐Doval, J. C., Acuña, V., y Sabater, S. (2022). Nutrient stream attenuation is altered by the duration and frequency of flow intermittency. Ecohydrology, 15(8), e2351. https://onlinelibrary.wiley.com/doi/abs/10.1002/eco.2351 Sarkis, J., y Zhu, Q. (2018). Environmental sustainability and production: Taking the road less travelled. International Journal of Production Research, 56(1-2), 744-759. https://www.tandfonline.com/doi/abs/10.1080/00207543.2017.1365182 Savci, S. (2012). An agricultural pollutant: Chemical fertilizer. International Journal of Environmental Science and Development, 3(1), 77-80. https://www.researchgate.net/profile/Arvind-Singh-21/post/what_kind_of_agicultural_chemicals_are_creating_soil_pollution/attachment/59d650e279197b80779a998f/AS%3A505223967764481%401497466188947/download/191-X30004.pdf Savci, S. (2012). Investigation of effect of chemical fertilizers on environment. Apcbee Procedia, 1, 287-292. https://www.sciencedirect.com/science/article/pii/S2212670812000486 Schneider, E. D., y Kay, J. J. (1994). Life as a manifestation of the second law of thermodynamics. Mathematical and Computer Modelling, 19(6-8), 25-48. https://www.sciencedirect.com/science/article/pii/0895717794901880 Schroeder, P., Anggraeni, K., y Weber, U. (2019). The relevance of circular economy practices to the sustainable development goals. Journal of Industrial Ecology, 23(1), 77-95. https://onlinelibrary.wiley.com/doi/abs/10.1111/jiec.12732 Sengupta, M. (2018). Transformational change or tenuous wish list?: A critique of SDG 1 (End poverty in all its forms everywhere). Social Alternatives, 37(2), 52-57. https://search.informit.org/doi/abs/10.3316/ielapa.573646044161666 Sharma, K., Tyagi, S., Bhardwaj, V., Tyagi, D., Gautam, Y. K., y Singh, B. P. (2024). Greenhouse gas emissions from the industries. En Advances and Technology Development in Greenhouse Gases: Emission, Capture and Conversion (pp. 257-274). Elsevier. https://www.sciencedirect.com/science/article/abs/pii/B9780443192319000144 Shewa, W. A., y Dagnew, M. (2020). Revisiting chemically enhanced primary treatment of wastewater: A review. Sustainability, 12(15), 5928. https://www.mdpi.com/2071-1050/12/15/5928 Shine, K. P., Fuglestvedt, J. S., Hailemariam, K., y Stuber, N. (2005). Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Climatic Change, 68(3), 281-302. https://link.springer.com/article/10.1007/s10584-005-1146-9 Siddik, M., Islam, M., Zaman, A. K. M. M., y Hasan, M. (2021). Current status and correlation of fossil fuels consumption and greenhouse gas emissions. International Journal of Energy and Environment Economics, 31(2), 45-60. https://www.researchgate.net/profile/Md-Siddik-5/publication/357323190_Current_Status_and_Correlation_of_Fossil_Fuels_Consumption_and_Greenhouse_Gas_Emissions/links/635180428d4484154a1be762/Current-Status-and-Correlation-of-Fossil-Fuels-Consumption-and-Greenhouse-Gas-Emissions.pdf Singh, M. R., y Gupta, A. (2016). Water pollution-sources, effects and control. Centre for Biodiversity, Department of Botany, Nagaland University. https://www.researchgate.net/profile/Asha-Gupta-6/publication/321289637_WATER_POLLUTION-SOURCESEFFECTS_AND_CONTROL/links/5a194005aca272df080a9dd3/WATER-POLLUTION-SOURCES-EFFECTS-AND-CONTROL.pdf Sinha, A., Sengupta, T., y Alvarado, R. (2020). Interplay between technological innovation and environmental quality: Formulating the SDG policies for next 11 economies. Journal of Cleaner Production, 242, 118543. https://www.sciencedirect.com/science/article/pii/S0959652619334195?casa_token=6SiEXt-aqX0AAAAA:Vy04GJqN0fD8iI3MnrFizGHy1OM1JO_Z-vSTR4cK4UctBeh-zGgajLcAi5q2uLZIRfHlxJcPOH4N Smith, L. E., y Siciliano, G. (2015). A comprehensive review of constraints to improved management of fertilizers in China and mitigation of diffuse water pollution from agriculture. Agriculture, Ecosystems & Environment, 209, 15-25. https://www.sciencedirect.com/science/article/pii/S0167880915000717 Smith, V. H., y Schindler, D. W. (2009). Eutrophication science: Where do we go from here?. Trends in Ecology & Evolution, 24(4), 201-207. https://www.cell.com/ajhg/abstract/S0169-5347(09)00041-X Solomon, S., Plattner, G. K., Knutti, R., y Friedlingstein, P. (2009). Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences, 106(6), 1704-1709. https://www.pnas.org/doi/abs/10.1073/pnas.0812721106 Song, X., Wen, M., Shen, Y., Feng, Q., Xiang, J., Zhang, W., ... y Wu, Z. (2020). Urban vacant land in growing urbanization: An international review. Journal of Geographical Sciences, 30(6), 841-860. https://link.springer.com/article/10.1007/s11442-020-1749-0 Stec, M., Tatarczuk, A., Iluk, T., y Szul, M. (2021). Reducing the energy efficiency design index for ships through a post-combustion carbon capture process. International Journal of Greenhouse Gas Control, 107, 103275. https://www.sciencedirect.com/science/article/abs/pii/S1750583621000852 Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., ... y Sörlin, S. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855. https://www.science.org/doi/10.1126/science.1259855 Sun, Y., Chen, Z., Wu, G., Wu, Q., Zhang, F., Niu, Z., y Hu, H. Y. (2016). Characteristics of water quality of municipal wastewater treatment plants in China: Implications for resources utilization and management. Journal of Cleaner Production, 131, 1-9. https://www.sciencedirect.com/science/article/abs/pii/S0959652616305327 Tamburini, G., Bommarco, R., Wanger, T. C., Kremen, C., Van Der Heijden, M. G., Liebman, M., y Hallin, S. (2020). Agricultural diversification promotes multiple ecosystem services without compromising yield. Science Advances, 6(45), eaba1715. https://www.science.org/doi/full/10.1126/sciadv.aba1715 Tam-Pham, L., Kumar, P., Dahana, W. D., y Nguyen, H. D. (2024). Advancing sustainable development through planetary health – A holistic approach to global health: A systematic review. Environmental Science and Policy, 151, 45-58. https://www.sciencedirect.com/science/article/pii/S146290112400043 Tan, Z. X., Lal, R., y Wiebe, K. D. (2005). Global soil nutrient depletion and yield reduction. Journal of Sustainable Agriculture, 26(1), 123-146. https://www.tandfonline.com/doi/abs/10.1300/J064v26n01_10 Taylor, L. K. (2016). Impact of political violence, social trust, and depression on civic participation in Colombia. Peace and Conflict: Journal of Peace Psychology, 22(4), 337-346. https://psycnet.apa.org/record/2015-38671-001 Thomas, R., Hsu, A., y Weinfurter, A. (2021). Sustainable and inclusive–Evaluating urban sustainability indicators’ suitability for measuring progress towards SDG-11. Environment and Planning B: Urban Analytics and City Science, 48(4), 663-677. https://journals.sagepub.com/doi/abs/10.1177/2399808320975404 Tirumala, R. D., y Tiwari, P. (2022). Importance of land in SDG policy instruments: A study of ASEAN developing countries. Land, 11(2), 218. https://www.mdpi.com/2073-445X/11/2/218 Tol, R. S. (2018). The economic impacts of climate change. Review of Environmental Economics and Policy, 12(1), 4-25. https://www.journals.uchicago.edu/doi/abs/10.1093/reep/rex027 Tomer, M. D., y Schilling, K. E. (2009). A simple approach to distinguish land-use and climate-change effects on watershed hydrology. Journal of Hydrology, 376(1-2), 24-33. https://www.sciencedirect.com/science/article/abs/pii/S002216940900403X United Nations. (2000). United Nations Millennium Declaration. General Assembly (A/RES/55/2). https://www.preventionweb.net/files/13539_13539ARES552ResolutiononUNMillenniu.pdf United Nations. (2015). Transforming our world: The 2030 Agenda for Sustainable Development. General Assembly (A/RES/70/1). https://sdgs.un.org/2030agenda Universidad Autónoma de Occidente, Universidad del Valle, Pontificia Universidad Javeriana, Universidad ICESI, Universidad de San Buenaventura, Universidad Nacional de Colombia (Sede Palmira), Universidad Santiago de Cali, Universidad Libre, CIAT, ProPacífico DAGMA, Departamento Administrativo de Planeación Municipal. (2024). Proyecto Cali Biodiverciudad. Comunicación interna. University of Leeds. (2024). A good life for all within planetary boundaries. National snapshots. https://goodlife.leeds.ac.uk/national-snapshots/countries/#Colombia Vaidya, H., y Chatterji, T. (2020). SDG 11 sustainable cities and communities: SDG 11 and the new urban agenda: Global sustainability frameworks for local action. En Actioning the Global Goals for Local Impact: Towards Sustainability Science, Policy, Education and Practice (pp. 267-285). Springer. https://link.springer.com/chapter/10.1007/978-981-32-9927-6_12 Vanham, D., Hoekstra, A. Y., Wada, Y., Bouraoui, F., de Roo, A., Mekonnen, M. M., ... y Bidoglio, G. (2018). Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 “Level of water stress”. Science of the Total Environment, 613-614, 218-232. https://www.sciencedirect.com/science/article/pii/S0048969717323963 Vargas, C., Gomez-Valencia, M., Gonzalez-Perez, M. A., Cordova, M., Casnici, C. V. C., Monje-Cueto, F., ... y Coronado, F. (2022). Climate-resilient and regenerative futures for Latin America and the Caribbean. Futures, 140, 102915. https://www.sciencedirect.com/science/article/pii/S0016328722001148 Vingerhoets, R., Spiller, M., De Backer, J., Adriaens, A., Vlaeminck, S. E., y Meers, E. (2023). Detailed nitrogen and phosphorus flow analysis, nutrient use efficiency and circularity in the agri-food system of a livestock-intensive region. Journal of Cleaner Production, 404, 136939. https://www.sciencedirect.com/science/article/pii/S0959652623014361 Vitkova, L., y Dhubháin, Á. N. (2013). Transformation to continuous cover forestry–A review. Irish Forestry, 70(1), 33-46. https://journal.societyofirishforesters.ie/index.php/forestry/article/view/10105 Wang, Y., Liu, D., Xiao, W., Zhou, P., Tian, C., Zhang, C., ... y Wang, B. (2021). Coastal eutrophication in China: Trend, sources, and ecological effects. Harmful Algae, 105, 102915. https://www.sciencedirect.com/science/article/pii/S1568988321000883 Weerasooriya, R. R., Liyanage, L. P. K., Rathnappriya, R. H. K., Bandara, W. B. M. A. C., Perera, T. A. N. T., Gunarathna, M. H. J. P., y Jayasinghe, G. Y. (2021). Industrial water conservation by water footprint and sustainable development goals: A review. Environment, Development and Sustainability, 23(3), 3009-3030. https://link.springer.com/article/10.1007/S10668-020-01184-0 Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M., y Wade, A. J. (2009). A review of the potential impacts of climate change on surface water quality. Hydrological Sciences Journal, 54(1), 101-123. https://www.tandfonline.com/doi/abs/10.1623/hysj.54.1.101 Wiek, A., Withycombe, L., y Redman, C. L. (2011). Key competencies in sustainability: A reference framework for academic program development. Sustainability Science, 6(2), 203-218. https://link.springer.com/article/10.1007/s11625-011-0132-6 Williamson, M., y Ball, B. A. (2023). Soil biogeochemical responses to multiple co-occurring forms of human-induced environmental change. Oecologia, 203(3), 465-478. https://link.springer.com/article/10.1007/s00442-023-05360-7 Woodhouse, P., y Muller, M. (2017). Water governance–An historical perspective on current debates. World Development, 94, 216-227. https://www.sciencedirect.com/science/article/abs/pii/S0305750X16305460 Woodward, G., Gessner, M. O., Giller, P. S., Gulis, V., Hladyz, S., Lecerf, A., ... y Chauvet, E. (2012). Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science, 336(6087), 1438-1440. https://www.science.org/doi/abs/10.1126/science.1219534 World Economic Forum. (2024). BiodiverCities by 2030. Intelligence. https://intelligence.weforum.org/topics/a1G680000004DsJEAU Wu, B., Tian, F., Zhang, M., Piao, S., Zeng, H., Zhu, W., ... y Lu, Y. (2022). Quantifying global agricultural water appropriation with data derived from earth observations. Journal of Cleaner Production, 370, 133542. https://www.sciencedirect.com/science/article/pii/S0959652622015013 Wu, J. (2019). Linking landscape, land system and design approaches to achieve sustainability. Journal of Land Use Science, 14(3), 191-201. https://www.tandfonline.com/doi/full/10.1080/1747423X.2019.1602677 Yang, D., Yang, Y., y Xia, J. (2021). Hydrological cycle and water resources in a changing world: A review. Geography and Sustainability, 2(4), 281-295. https://www.sciencedirect.com/science/article/pii/S2666683921000213 Yang, R., Hu, Z., y Hu, S. (2023). The failure of collaborative agglomeration: From the perspective of industrial pollution emission. Journal of Cleaner Production, 408, 137239. https://www.sciencedirect.com/science/article/pii/S0959652623001105 Yang, S., Zhao, W., Liu, Y., Cherubini, F., Fu, B., y Pereira, P. (2020). Prioritizing sustainable development goals and linking them to ecosystem services: A global experts knowledge evaluation. Geography and Sustainability, 1(3), 205-214. https://www.sciencedirect.com/science/article/pii/S2666683920300511 Ydesen, C., y Elfert, M. (2023). SDG4 as a global governance tool and the quest for recognizing diversity–Implications emerging from the intersections between inclusive education and assessment. International Journal of Educational Development, 97, 102752. https://www.sciencedirect.com/science/article/pii/S0738059323002080 Zhou, J., Leavitt, P. R., Zhang, Y., y Qin, B. (2022). Anthropogenic eutrophication of shallow lakes: Is it occasional?. Water Research, 219, 118608. https://www.sciencedirect.com/science/article/pii/S0043135422006819 Zubaidi, S. L., Gharghan, S. K., Dooley, J., Alkhaddar, R. M., y Abdellatif, M. (2018). Short-term urban water demand prediction considering weather factors. Water Resources Management, 32(15), 4941-4954. https://link.springer.com/article/10.1007/s11269-018-2061-y |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Autónoma de Occidente, 2024 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons. spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Universidad Autónoma de Occidente, 2024 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent. spa.fl_str_mv |
121 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher. spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.publisher.program. spa.fl_str_mv |
Ingeniería Ambiental |
dc.publisher.faculty. spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place. spa.fl_str_mv |
Cali |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/aa1fd52f-39a3-451e-aab8-2cd9c750b09c/download https://red.uao.edu.co/bitstreams/f0a3cfda-7952-4cff-9672-c56efd3602c5/download https://red.uao.edu.co/bitstreams/ea84938d-cbf1-44c4-9cf6-94ee8ba6aa9f/download https://red.uao.edu.co/bitstreams/6ddf9ebb-0634-44ef-badf-9b43a31e76ee/download https://red.uao.edu.co/bitstreams/84373a9b-2319-4632-8f2d-5ce6abbe596c/download https://red.uao.edu.co/bitstreams/e823ff2c-add5-4fe0-8b87-f05b32c4a69a/download https://red.uao.edu.co/bitstreams/a2dee76b-99ca-45f5-848d-6127e3aebef1/download |
bitstream.checksum.fl_str_mv |
ff2135abe172898674f057ec233efd5f 5ad5d9d1faa70ea1b7983dd4857f4e7f 6987b791264a2b5525252450f99b10d1 4f29b574a4f8ef0bdd8f39f789d5181f f96219c6c301a87230476fb0b89222cb f19c903fdbbc7f709ddeba7ccea57bdd ec31c82cab61e715679459ccf49c43a6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1831928882772574208 |
spelling |
Gandini Ayerbe, Mario Andrésvirtual::5877-1Rincón Cárdenas, Juan JoséUniversidad Autónoma de OccidenteHolguin Gonzalez, Javier Ernestovirtual::5878-12025-01-24T16:22:07Z2025-01-24T16:22:07Z2024-12-16Rincón Cárdenas, J. J. (2024). Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la Gran Ambición. (Pasantía organizacional). Universidad Autónoma de Occidente. Cali. Colombia. https://hdl.handle.net/10614/15964https://hdl.handle.net/10614/15964Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/El enfoque predominante en los Objetivos de Desarrollo Sostenible (ODS) dentro de los planes de desarrollo territoriales (PDT) ha promovido el progreso socioeconómico sin integrar adecuadamente los límites planetarios, lo que compromete la capacidad del planeta para disipar la entropía generada por las actividades humanas. Al sobrepasar estos límites, los sistemas naturales se ven sobrecargados, incapaces de procesar eficientemente la energía residual, lo que incrementa la acumulación de entropía y pone en riesgo la estabilidad del sistema terrestre. Esta falta de integración en los PDT afecta negativamente la resiliencia del planeta, disminuyendo su capacidad de amortiguamiento y sostener las funciones de soporte vital. En otras palabras, una agenda de desarrollo territorial en la que los ODS no estén alineados con los límites planetarios plantea un escenario en el que es imposible garantizar la sostenibilidad de los territorios. Consecuentemente, en el presente estudio se presenta la evaluación en la formulación de los planes de desarrollo (2024-2027) de los municipios de Buenaventura, Candelaria, Cartago, Florida, Guadalajara de Buga, Jamundí, Palmira, Pradera, Santiago de Cali, Tuluá y Yumbo a partir de la inclusión de los ODS y los impactos positivos o negativos que de ello se deriva sobre los límites planetarios. Lo anterior se realizó mediante el establecimiento de una línea base en cuanto a la inclusión de los ODS en la nueva agenda de desarrollo territorial, la estimación del impacto de las contribuciones a los ODS sobre algunos límites planetarios y proposición de estrategias para sintonizar el desarrollo socioeconómico con la Gran Ambición. De esta forma, en conjunto con ProPacífico, se concluye que a pesar de los avances generales en el cumplimiento de las metas 1.2, 2.1, 6.1, 6.2, 8.1 y 11.1 de los ODS 1, 2, 6, 8 y 11 respectivamente, debido a la continuidad en los patrones de consumo y producción, el aporte de los municipios frente a los límites planetarios como cambio climático, consumo de agua dulce, cambio en el uso del suelo y flujos biogeoquímicos de N y P se enmarca en la contribución de una tasa degenerativa; favoreciendo los procesos que limitan la capacidad de los municipios para alcanzar los objetivos de la Agenda 2030 y, simultáneamente, aportan al aumento de la entropía, lo que compromete la sostenibilidad del sistema en su conjunto. Por último, en cuanto a las estrategias para materializar la Gran Ambición en los PDT, se propone integrar la biodiversidad en la planificación territorial mediante enfoques de bioeconomía y soluciones basadas en la naturaleza. Esta estrategia prioriza la restauración ecológica, la gobernanza colaborativa, la resiliencia ambiental y el manejo eficiente de recursos, fomentando la adaptación al cambio climático y la innovación social; posicionado efectivamente a la sostenibilidad en el eje central del desarrollo.The predominant focus on the Sustainable Development Goals (SDGs) within territorial development plans (TDP) has promoted socio-economic progress without adequately integrating planetary boundaries, thereby compromising the Earth's capacity to dissipate the entropy generated by human activities. Exceeding these boundaries leads to an overload of natural systems, rendering them unable to efficiently process residual energy, which in turn increases entropy accumulation and jeopardizes the stability of the Earth system. This lack of integration in the TDP negatively impacts the planet's resilience, diminishing its buffering capacity and ability to sustain life-supporting functions. In other words, a territorial development agenda that does not align the SDGs with planetary boundaries creates a scenario where the sustainability of the territories cannot be guaranteed. Accordingly, this study presents an evaluation of the formulation of the development plans (2024-2027) of the municipalities of Buenaventura, Candelaria, Cartago, Florida, Guadalajara de Buga, Jamundí, Palmira, Pradera, Santiago de Cali, Tuluá, and Yumbo, based on the inclusion of SDGs and their positive or negative impacts on planetary boundaries. This was carried out through the establishment of a baseline regarding the inclusion of the SDGs in the new territorial development agenda, the estimation of the impact of contributions to the SDGs on certain planetary boundaries, and the proposition of strategies to align socio-economic development with the Grand Ambition. In collaboration with ProPacífico, it was concluded that despite general progress in achieving SDG targets 1.2, 2.1, 6.1, 6.2, 8.1, and 11.1 of SDGs 1, 2, 6, 8, and 11, respectively, the continued patterns of consumption and production result in a degenerative contribution to planetary boundaries such as climate change, freshwater consumption, land-use change, and biogeochemical flows of N and P. This dynamic hinders the municipalities' ability to meet the objectives of the 2030 Agenda while simultaneously increasing entropy, thereby compromising the sustainability of the system as a whole. Finally, regarding strategies to materialize the Grand Ambition within the TDP, it is proposed to integrate biodiversity into territorial planning through bioeconomy approaches and naturebased solutions. This strategy prioritizes ecological restoration, collaborative governance, environmental resilience, and efficient resource management, fostering climate change adaptation and social innovation, thereby positioning sustainability as the central axis of developmentPasantía organizacional (Ingeniero Ambiental)-- Universidad Autónoma de Occidente, 2024PregradoIngeniero(a) Ambiental121 páginasapplication/pdfspaUniversidad Autónoma de OccidenteIngeniería AmbientalFacultad de IngenieríaCaliDerechos reservados - Universidad Autónoma de Occidente, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la Gran AmbiciónTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Abastante, F., Lami, I. M., y Gaballo, M. (2021). Pursuing the SDG11 targets: The role of the sustainability protocols. Sustainability, 13(7), 3858. https://www.mdpi.com/2071-1050/13/7/3858Abdhur-Rahman, A., y Morten, R. (2023). Evaluating the effectiveness of sector-specific policies. Environmental Science and Policy, 146, 1122003495. https://www.sciencedirect.com/science/article/pii/S1462901122003495Acuti, D., Bellucci, M., y Manetti, G. (2020). Company disclosures concerning the resilience of cities from the Sustainable Development Goals (SDGs) perspective. Cities, 102, 103665. https://www.sciencedirect.com/science/article/pii/S0264275119313654Aguado, S., Álvarez, R., y Domingo, R. (2013). Model of efficient and sustainable improvements in a lean production system through processes of environmental innovation. Journal of Cleaner Production, 47, 141-148. https://www.sciencedirect.com/science/article/abs/pii/S0959652612006427Ahmetoğlu, S., y Tanık, A. (2020). Management of carbon footprint and determination of GHG emission sources in construction sector. International Journal of Environment and Geoinformatics, 7(2), 120-127. https://dergipark.org.tr/en/pub/ijegeo/issue/54146/726913Akinnawo, S. O. (2023). Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environmental Challenges, 2, 57-65. https://www.sciencedirect.com/science/article/pii/S2667010023000574Akuraju, V., Pradhan, P., Haase, D., Kropp, J. P., y Rybski, D. (2020). Relating SDG11 indicators and urban scaling–An exploratory study. Sustainable Cities and Society, 52, 101-120. https://www.sciencedirect.com/science/article/abs/pii/S2210670719312296Ali, M., Jha, N. K., Pal, N., Keshavarz, A., Hoteit, H., y Sarmadivaleh, M. (2022). Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook. Energy, 221, 119611. https://www.sciencedirect.com/science/article/pii/S0012825221003962 Allen, C., Metternicht, G., Wiedmann, T., y Pedercini, M. (2021). Modelling national transformations to achieve the SDGs within planetary boundaries in small island developing states. Global Sustainability, 4, e15. https://www.cambridge.org/core/journals/global-sustainability/article/modelling-national-transformations-to-achieve-the-sdgs-within-planetary-boundaries-in-small-island-developing-states/431E302939106329BC243E4DB562670DAllen, C., Metternicht, G., y Wiedmann, T. (2019). Prioritising SDG targets: Assessing baselines, gaps and interlinkages. Sustainability Science, 14(4), 1125-1139. https://link.springer.com/article/10.1007/s11625-018-0596-8Alsaffar, A. A. (2016). Sustainable diets: The interaction between food industry, nutrition, health and the environment. Food Science and Technology International, 22(4), 335-351. https://journals.sagepub.com/doi/abs/10.1177/1082013215572029Amos, R., y Lydgate, E. (2020). Trade, transboundary impacts and the implementation of SDG 12. Sustainability Science, 15(3), 771-782. https://link.springer.com/article/10.1007/s11625-019-00713-9Arif, A., Malik, M. F., Liaqat, S., Aslam, A., Mumtaz, K., Afzal, A., y Javed, R. (2020). Water pollution and industries. Pure and Applied Biology, 9(2), 1762-1772. https://thepab.org/index.php/journal/article/view/1578Arzo, S., y Hong, M. (2024). A roadmap to SDGs-emergence of technological innovation and infrastructure development for social progress and mobility. Environmental Research, 224, 115-129. https://www.sciencedirect.com/science/article/pii/S0013935124000069Aznar-Sánchez, J. A., Piquer-Rodríguez, M., Velasco-Muñoz, J. F., y Manzano-Agugliaro, F. (2019). Worldwide research trends on sustainable land use in agriculture. Land Use Policy, 87, 104-118. https://www.sciencedirect.com/science/article/abs/pii/S0264837719303345Baffoe, G., Zhou, X., Moinuddin, M., Somanje, A. N., Kuriyama, A., Mohan, G., ... y Takeuchi, K. (2021). Urban–rural linkages: Effective solutions for achieving sustainable development in Ghana from an SDG interlinkage perspective. Sustainability Science, 16(5), 1111-1128. https://link.springer.com/article/10.1007/s11625-021-00929-8 Biermann, F., Hickmann, T., y Sénit, C. A. (Eds.). (2022). The political impact of the sustainable development goals: Transforming governance through global goals?. Cambridge University Press. https://books.google.com.co/books?hl=en&lr=&id=UYR8EAAAQBAJ&oi=fnd&pg=PR9&dq=development+goals+global+impact&ots=DNW1B64xQm&sig=KW0L017rnK2tem_K__XTKpABcTk&redir_esc=y#v=onepage&q=development%20goals%20global%20impact&f=falseBilek-Steindl, S., Kettner, C., y Mayrhuber, C. (2022). Sustainability, work and growth in the context of SDG 8. Empirica, 49(1), 123-141. https://link.springer.com/article/10.1007/s10663-022-09538-9Birkmann, J., Liwenga, E., Pandey, R., Boyd, E., Djalante, R., Gemenne, F., ... y Wrathall, D. (2022). Poverty, livelihoods and sustainable development. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Cambridge University Press. https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter08.pdfBiswas, A. K. (2004). Integrated water resources management: a reassessment: A water forum contribution. Water International, 29(2), 248-256. https://www.tandfonline.com/doi/abs/10.1080/02508060408691775Bloom, D. E., McKenna, M. J., y Prettner, K. (2019). Global employment and decent jobs, 2010–2030: The forces of demography and automation. International Social Security Review, 72(3), 3-27. https://onlinelibrary.wiley.com/doi/abs/10.1111/issr.12213Bouma, J., Montanarella, L., y Evanylo, G. (2019). The challenge for the soil science community to contribute to the implementation of the UN Sustainable Development Goals. Soil Use and Management, 35(4), 538-546. https://bsssjournals.onlinelibrary.wiley.com/doi/abs/10.1111/sum.12518Bouwman, L., Goldewijk, K. K., Van Der Hoek, K. W., Beusen, A. H., Van Vuuren, D. P., Willems, J., y Stehfest, E. (2013). Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proceedings of the National Academy of Sciences, 110(52), 20882-20887. https://www.pnas.org/doi/abs/10.1073/pnas.1012878108Bowman, B. M., Abbott-Donnelly, I., Barsoum, J. F., Williams, P., Hunt, D. V., y Rogers, C. D. (2023). The water pivot: Transforming unsustainable consumption to valuing water as a resource for life. Frontiers in Sustainability, 4, 1177574. https://www.frontiersin.org/journals/sustainability/articles/10.3389/frsus.2023.1177574/fullBreuer, A., Leininger, J., Malerba, D., y Tosun, J. (2023). Integrated policymaking: Institutional designs for implementing the sustainable development goals (SDGs). World Development, 165, 106197. https://www.sciencedirect.com/science/article/pii/S0305750X23001353Brussel, M., Zuidgeest, M., Pfeffer, K., y Van Maarseveen, M. (2019). Access or accessibility? A critique of the urban transport SDG indicator. ISPRS International Journal of Geo-Information, 8(2), 67. https://www.mdpi.com/2220-9964/8/2/67Bruulsema, T. (2018). Managing nutrients to mitigate soil pollution. Environmental Pollution, 242, 2204-2212. https://www.sciencedirect.com/science/article/pii/S0269749118330070?casa_token=A2_27pGrE04AAAAA:aQwGpLEoAiHP8ZpSHmu7DyuFvV-N7b9-2D-iwLq6G7LzzJTHaG_FnC_thsMUtMHbD5OHAD1zeb7klABunsen, J., Berger, M., y Finkbeiner, M. (2021). Planetary boundaries for water–A review. Ecological Indicators, 121, 106958. https://www.sciencedirect.com/science/article/pii/S1470160X20309614Burton, I. (1987). Report on reports: Our common future: The world commission on environment and development. Environment: Science and Policy for Sustainable Development, 29(5), 25-29. https://www.tandfonline.com/doi/pdf/10.1080/00139157.1987.9928891Busch, P., Kendall, A., Murphy, C. W., y Miller, S. A. (2022). Literature review on policies to mitigate GHG emissions for cement and concrete. Resources, Conservation and Recycling, 181, 106235. https://www.sciencedirect.com/science/article/pii/S0921344922001264Bustamante-Arango, D. F., y Vanegas-Quintero, J. C. (2023). Evaluación preliminar plan de acción septiembre 30 de 2023. Departamento Administrativo de Planeación del Valle del Cauca. https://www.valledelcauca.gov.co/documentos/15129/evaluacion-y-seguimiento-corte-sept-30-de-2023/Campbell, B. M., Hansen, J., Rioux, J., Stirling, C. M., y Twomlow, S. (2018). Urgent action to combat climate change and its impacts (SDG 13): Transforming agriculture and food systems. Current Opinion in Environmental Sustainability, 34, 13-20. https://www.sciencedirect.com/science/article/pii/S1877343517302385Campbell-Lendrum, D., Neville, T., Schweizer, C., y Neira, M. (2023). Climate change and health: Three grand challenges. Nature Medicine, 29(8), 1532-1535. https://www.nature.com/articles/s41591-023-02438-wCanadell, J. G., Monteiro, P. M., Costa, M. H., Cotrim da Cunha, L., Cox, P. M., Eliseev, A. V., ... y Zickfeld, K. (2023). Intergovernmental Panel on Climate Change (IPCC): Global carbon and other biogeochemical cycles and feedbacks. Climate Change 2021: The Physical Science Basis. Cambridge University Press. https://www.cambridge.org/core/services/aop-cambridge-core/content/view/93DFD13E855AC1F1B502965CABE28B7F/stamped-9781009157889c5_673-816.pdfCarey, R. O., y Migliaccio, K. W. (2009). Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: A review. Environmental Management, 44(2), 205-217. https://link.springer.com/article/10.1007/s00267-009-9309-5Carley, S., y Konisky, D. M. (2020). The justice and equity implications of the clean energy transition. Nature Energy, 5(8), 569-577. https://www.nature.com/articles/s41560-020-0641-6Castro-Nunez, A., Charry, A., Castro-Llanos, F., Sylvester, J., y Bax, V. (2020). Reducing deforestation through value chain interventions in countries emerging from conflict: The case of the Colombian cocoa sector. Applied Geography, 116, 102-135. https://www.sciencedirect.com/science/article/pii/S0143622819313244?casa_token=4Nt4FHA5xV8AAAAA:MXPKYIRoQqDcDJcufUx825QlUja5Yh4zY-PgU2clMlm8iCu7mzq31aJkWGmPxjUU38_tVqas4F8sCentro Nacional de Memoria Histórica. (2014). “Patrones” y Campesinos: Tierra, Poder y Violencia en el Valle del Cauca (1960-2012). Centro Nacional de Memoria Histórica. https://centrodememoriahistorica.gov.co/wp-content/uploads/2020/01/Patrones-y-Campesinos-tierra-poder-y-violencia-en-el-Valle-del-Cauca.pdfChang, Y., Huang, Z., Ries, R. J., y Masanet, E. (2016). The embodied air pollutant emissions and water footprints of buildings in China: A quantification using disaggregated input–output life cycle inventory model. Journal of Cleaner Production, 113, 274-284. https://www.sciencedirect.com/science/article/pii/S0959652615016431Chen, L., Li, K., Chen, S., Wang, X., y Tang, L. (2021). Industrial activity, energy structure, and environmental pollution in China. Energy Economics, 101, 105-122. https://www.sciencedirect.com/science/article/pii/S0140988321004965?casa_token=dQViWKggHPAAAAAA:7Ja5SWg6RHIHDfo-2rahv7es9BQplJd0gs-EVyC23RN3nydR7x57eWrMrNbfvdYx_jSIicAxdDbiCipponeri, M. (2020). Evaluación y Estudio de Impacto Ambiental. UNLP. https://sedici.unlp.edu.ar/handle/10915/88480CNP. (2002). El conglomerado del azúcar del Valle del Cauca, Colombia (No. 2475). Cepal Naciones Unidas. https://repositorio.cepal.org/server/api/core/bitstreams/c9c3045b-f2ff-42d9-ae0f-2452406f3b27/contentConesa Fernández-Vitoria, V. (2009). Guía metodológica para la evaluación del impacto ambiental. Ediciones Mundi-Prensa. https://books.google.com.co/books?hl=en&lr=&id=wa4SAQAAQBAJ&oi=fnd&pg=PP2&dq=conesa+fernandez&ots=r0198Jmabt&sig=juHyZaQSnAhp8udR_zznuUO_vcs&redir_esc=y#v=onepage&q=conesa%20fernandez&f=falseCrutzen, P. (2002). Geology of mankind. Nature, 415(6867), 23. https://www.nature.com/articles/415023a#citeasCsikós, N., y Tóth, G. (2023). Concepts of agricultural marginal lands and their utilisation: A review. Agricultural Systems, 207, 103569. https://www.sciencedirect.com/science/article/pii/S0308521X22001962D’Odorico, P., Chiarelli, D. D., Rosa, L., Bini, A., Zilberman, D., y Rulli, M. C. (2020). The global value of water in agriculture. Proceedings of the National Academy of Sciences, 117(36), 21985-21993. https://www.pnas.org/doi/abs/10.1073/pnas.2005835117DANE. (2018). Censo Nacional de población y vivienda. GeoportalDANE. https://geoportal.dane.gov.co/geovisores/sociedad/cnpv-2018/Darch, T., Blackwell, M. S. A., Hawkins, J. M. B., Haygarth, P. M., y Chadwick, D. (2014). A meta-analysis of organic and inorganic phosphorus in organic fertilizers, soils, and water: Implications for water quality. Critical Reviews in Environmental Science and Technology, 44(17), 1947-1977. https://www.tandfonline.com/doi/full/10.1080/10643389.2013.790752?casa_token=oQ6LBHagHooAAAAA%3AQvsfFVMkxgyLsLMx7lU7ba2B76YI9D2wEPpSveBZTxnhOVc12lurEOUPxbgq-tUZRBAvqUVMPxHQtl0De Vries, W. (2021). Impacts of nitrogen emissions on ecosystems and human health: A mini review. Current Opinion in Environmental Science & Health, 22, 100269. https://www.sciencedirect.com/science/article/pii/S2468584421000210Del-Aguila-Arcentales, S., Alvarez-Risco, A., Jaramillo-Arévalo, M., De-La-Cruz-Diaz, M., y De Las Mercedes Anderson-Seminario, M. (2022). Influence of social, environmental and economic sustainable development goals (SDGs) over continuation of entrepreneurship and competitiveness. Journal of Open Innovation, 8(1), 14. https://www.sciencedirect.com/science/article/pii/S2199853122000142Demadis, K. D., Mavredaki, E., Stathoulopoulou, A., Neofotistou, E., y Mantzaridis, C. (2007). Industrial water systems: Problems, challenges, and solutions for the process industries.Desalination, 213(1-3), 38-46. https://www.sciencedirect.com/science/article/abs/pii/S0011916407003001Departamento Administrativo de Planeación del Valle del Cauca. (2020). Plan de desarrollo departamental 2020-2023. Gobernación del Valle del Cauca. https://www.uesvalle.gov.co/documentos/533/1-plan-de-desarrollo-departamental-2020-2023/Departamento Nacional de Planeación. (2005). CONPES Social 91, metas y estrategias de Colombia para el logro de los Objetivos de Desarrollo del Milenio – 2015. Consejo Nacional de Política Económica y Social. https://colaboracion.dnp.gov.co/CDT/Conpes/Social/91.pdfDepartamento Nacional de Planeación. (2018). CONPES 3918, estrategia para la implementación de los Objetivos de Desarrollo Sostenible (ODS) en Colombia. Consejo Nacional de Política Económica y Social. https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/3918.pdfDevisscher, T., Konijnendijk, C., Nesbitt, L., Lenhart, J., Salbitano, F., Cheng, Z. C., ... y van den Bosch, M. (2019). SDG 11: Sustainable cities and communities–Impacts on forests and forest-based livelihoods. En P. Katila, C. J. Pierce Colfer, W. De Jong, G. Galloway, P. Pacheco y G. Winkel (Eds.), Sustainable Development Goals: Their impacts on forests and people (pp. 349-372). Springer. https://books.google.com.co/books?hl=en&lr=&id=723CDwAAQBAJ&oi=fnd&pg=PA349&dq=sdg+11&ots=JLVwMB763U&sig=off7papzZqSo-Cifu_xepo-k7gE&redir_esc=y#v=onepage&q=sdg%2011&f=falseDimkpa, C. O., Fugice, J., Singh, U., y Lewis, T. D. (2020). Development of fertilizers for enhanced nitrogen use efficiency–Trends and perspectives. Science of the Total Environment, 731, 139113. https://www.sciencedirect.com/science/article/abs/pii/S0048969720326309Dincer, I., y Rosen, M. A. (2005). Thermodynamic aspects of renewables and sustainable development. Renewable and Sustainable Energy Reviews, 9(2), 169-189. https://www.sciencedirect.com/science/article/abs/pii/S1364032104000474Dunnington, D. W., Trueman, B. F., Raseman, W. J., Anderson, L. E., y Gagnon, G. A. (2020). Comparing the predictive performance, interpretability, and accessibility of machine learning and physically based models for water treatment. ACS ES&T Engineering, 1(1), 26-35. https://pubs.acs.org/doi/abs/10.1021/acsestengg.0c00053Echavarria, M. (2002). Water user associations in the Cauca Valley, Colombia: A voluntary mechanism to promote upstream-downstream cooperation in the protection of rural watersheds. Land-Water Linkages in Rural Watersheds Case Study Series. FAO. https://www.conservationgateway.org/Documents/palmira%20directly%20by%20marta.pdfEigenbrod, F., Bell, V. A., Davies, H. N., Heinemeyer, A., Armsworth, P. R., y Gaston, K. J. (2011). The impact of projected increases in urbanization on ecosystem services. Proceedings of the Royal Society B: Biological Sciences, 278(1722), 3201-3208. https://royalsocietypublishing.org/doi/abs/10.1098/rspb.2010.2754El-Saadony, M. T., ALmoshadak, A. S., Shafi, M. E., Albaqami, N. M., Saad, A. M., El-Tahan, A. M., ... y Helmy, A. M. (2021). Vital roles of sustainable nano-fertilizers in improving plant quality and quantity: An updated review. Saudi Journal of Biological Sciences, 28(5), 3221-3230. https://www.sciencedirect.com/science/article/pii/S1319562X2100718XEmadodin, I., Narita, D., y Bork, H. R. (2012). Soil degradation and agricultural sustainability: An overview from Iran. Environment, Development and Sustainability, 14(5), 611-625. https://link.springer.com/article/10.1007/s10668-012-9351-yFa, J. E., Watson, J. E., Leiper, I., Potapov, P., Evans, T. D., Burgess, N. D., ... y Garnett, S. T. (2020). Importance of Indigenous Peoples’ lands for the conservation of intact forest landscapes. Frontiers in Ecology and the Environment, 18(3), 135-140. https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/fee.2148Faieta, J., Pacheco, A., y Escobar, D. C. (2023). Roadmap for an integrated national financing framework in Colombia. Joint SDG Fund. https://open.undp.org/projects/00129200Falkenmark, M., Wang-Erlandsson, L., y Rockström, J. (2019). Understanding of water resilience in the Anthropocene. Journal of Hydrology X, 2, 100009. https://www.sciencedirect.com/science/article/pii/S2589915518300099Fang, Z., Ding, T., Chen, J., Xue, S., Zhou, Q., Wang, Y., ... y Yang, S. (2022). Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Science of the Total Environment, 807, 151-196. https://www.sciencedirect.com/science/article/pii/S0048969722020605?casa_token=82u1HzPr3UcAAAAA:w-GCdgN8ThG-tj9XVGzMEIRDeMak74BGOrLj9cyTp8Okfj11x_fj2khUy2nKR_3f_cvaexZjnsQchw Fernández-Sánchez, G., Berzosa, Á., Barandica, J. M., Cornejo, E., y Serrano, J. M. (2015). Opportunities for GHG emissions reduction in road projects: A comparative evaluation of emissions scenarios using CO2NSTRUCT. Journal of Cleaner Production, 104, 156-167. https://www.sciencedirect.com/science/article/pii/S095965261500579X?casa_token=6F6Ezq1rWtsAAAAA:vQlfGcIIjfhyZjCiVjNvXvGace3Tdy9XJx2i8mTQWe9JXPhULUAAJsrKFCcsb9DI5-71CXwK08hmSAFerreira, C. S., Walsh, R. P., y Ferreira, A. J. (2018). Degradation in urban areas. Current Opinion in Environmental Science & Health, 1, 93-97. https://www.sciencedirect.com/science/article/pii/S2468584417300570?casa_token=tv9F5d2XkIsAAAAA:L2UHio8mOtNuv47Vy4cHM-7rlgxLtv6vwOdws6gcg_wslpPSxxPQTm1mCZiO3udQvSsah5tNxCe0Ferreira, J., Pardini, R., Metzger, J. P., Fonseca, C. R., Pompeu, P. S., Sparovek, G., y Louzada, J. (2012). Towards environmentally sustainable agriculture in Brazil: Challenges and opportunities for applied ecological research. Journal of Applied Ecology, 49(3), 535-541. https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2664.2012.02145.xFiedler, S., Perring, M. P., y Tietjen, B. (2018). Integrating trait‐based empirical and modeling research to improve ecological restoration. Ecology and Evolution, 8(5), 2717-2729. https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.4043Findlay, P., y Thompson, P. (2017). Contemporary work: Its meanings and demands. Journal of Industrial Relations, 59(2), 122-139. https://journals.sagepub.com/doi/abs/10.1177/0022185616672251Folke, C., Jansson, Å., Rockström, J., Olsson, P., Carpenter, S. R., Chapin, F. S., ... y Westley, F. (2011). Reconnecting to the biosphere. Ambio, 40(7), 719-738. https://link.springer.com/article/10.1007/s13280-011-0184-yForestier, O., y Kim, R. E. (2020). Cherry‐picking the Sustainable Development Goals: Goal prioritization by national governments and implications for global governance. Sustainable Development, 28(5), 1264-1274. https://onlinelibrary.wiley.com/doi/full/10.1002/sd.2082Frey, D. F. (2018). Economic growth, full employment and decent work: The means and ends in SDG 8. En P. B. Anand, F. Comim y S. Fennell (Eds.), The Sustainable Development Goals and Human Rights (pp. 123-138). Routledge. https://www.taylorfrancis.com/chapters/edit/10.4324/9781351024303-7/economic-growth-full-employment-decent-work-means-ends-sdg-8-diane-freyFuchs, P. G., Finatto, C. P., Birch, R. S., de Aguiar Dutra, A. R., y de Andrade Guerra, J. B. S. O. (2023). Sustainable Development Goals (SDGs) in Latin-American universities. Sustainability, 15(6), 123. https://www.researchgate.net/publication/371059581_Sustainable_Development_Goals_SDGs_in_Latin-American_UniversitiesFukuda-Parr, S., Greenstein, J., y Stewart, D. (2013). How should MDG success and failure be judged: Faster progress or achieving the targets? World Development, 41, 19-30. https://www.sciencedirect.com/science/article/pii/S0305750X12001829Galindo, M. Á., y Méndez, M. T. (2014). Entrepreneurship, economic growth, and innovation: Are feedback effects at work? Journal of Business Research, 67(5), 825-829. https://www.sciencedirect.com/science/article/abs/pii/S0148296313004220Gandini, M. A. (2024). Nota de clase: Diseño integrador para la sostenibilidad. Universidad Autónoma de Occidente.Gerbens-Leenes, P. W., Hoekstra, A. Y., y Bosman, R. (2018). The blue and grey water footprint of construction materials: Steel, cement and glass. Water Resources and Industry, 19, 1-12. https://www.sciencedirect.com/science/article/pii/S2212371717300458Ghosh, P., Hossain, M., y Alam, A. (2022). Water, sanitation, and hygiene (WASH) poverty in India: A district‐level geospatial assessment. Regional Science Policy & Practice, 14(3), 561-578. https://www.sciencedirect.com/science/article/pii/S1757780223001956Giddings, B., Hopwood, B., y OBrien, G. (2002). Environment, economy and society: Fitting them together into sustainable development. Sustainable Development, 10(4), 187-196. https://onlinelibrary.wiley.com/doi/abs/10.1002/sd.199Gomes, E., Inácio, M., Bogdzevič, K., Kalinauskas, M., Karnauskaitė, D., y Pereira, P. (2021). Future land-use changes and its impacts on terrestrial ecosystem services: A review. Science of The Total Environment, 784, 147-179. https://www.sciencedirect.com/science/article/pii/S0048969721017848?casa_token=sTHSbdmxh88AAAAA:bZ3QPpo4gVw2g2LzXn8V_iWv2foXjj7num3Ooq8gVaLSovz4VeXOX63soF075ZDfUbe5FCUyH5PuRgGonzález-Cabo, V., Cruz-Caicedo, L. F., Murgueitio, M., Burbano-Vallejo, E. L., y Moreno, E. (2017). Application of structural analysis for local development in the center region of Valle del Cauca, Colombia. International Review on Public and Nonprofit Marketing, 14(3), 321-340. https://link.springer.com/article/10.1007/s12208-017-0173-3Gregory, P. J., Ingram, J. S., y Brklacich, M. (2005). Climate change and food security. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2139-2148. https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2005.1745Grigoroudis, E., Kouikoglou, V. S., y Phillis, Y. A. (2024). Agricultural sustainability assessment and national policy-making using an axiomatic mathematical model. Environmental and Sustainability Indicators, 22, 101456. https://www.sciencedirect.com/science/article/pii/S2665972724000692Güsewell, S. (2004). N: P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164(2), 243-266. https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2004.01192.xHakimdavar, R., Hubbard, A., Policelli, F., Pickens, A., Hansen, M., Fatoyinbo, T., ... y Schollaert Uz, S. (2020). Monitoring water-related ecosystems with earth observation data in support of Sustainable Development Goal (SDG) 6 reporting. Remote Sensing, 12(10), 1634. https://www.mdpi.com/2072-4292/12/10/1634Hametner, M. (2023). Economics without ecology: How the SDGs fail to align socioeconomic development with environmental sustainability. Ecological Economics, 207, 107636. https://www.sciencedirect.com/science/article/pii/S0921800922001525Hasan, S. S., Zhen, L., Miah, M. G., Ahamed, T., y Samie, A. (2020). Impact of land use change on ecosystem services: A review. Environmental Development, 34, 100480. https://www.sciencedirect.com/science/article/pii/S2211464520300464?casa_token=LRKRj0G-k4UAAAAA:Z08MNZFZ8ye0em6NXoolJdYS5ULcQC7HU5carxrsF80QAV_3yQkeqDlJn7jnsob0XhMv-K9kqgh_WAHe, X., Khan, S., Ozturk, I., y Murshed, M. (2023). The role of renewable energy investment in tackling climate change concerns: Environmental policies for achieving SDG‐13. Sustainable Development, 31(3), 456-473. https://onlinelibrary.wiley.com/doi/abs/10.1002/sd.2491Hoornweg, D., Sugar, L., y Trejos Gómez, C. L. (2011). Cities and greenhouse gas emissions: Moving forward. Environment and Urbanization, 23(1), 207-227. https://journals.sagepub.com/doi/abs/10.1177/0956247810392270Horton, R. (2014). Offline: Why the sustainable development goals will fail. The Lancet, 383(9936), 2190. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(14)61046-1/abstract?code=lancet-site&rss%3Dyes=Hua, F., Bruijnzeel, L. A., Meli, P., Martin, P. A., Zhang, J., Nakagawa, S., ... y Balmford, A. (2022). The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science, 375(6585), 1241-1247. https://www.science.org/doi/full/10.1126/science.abl4649Husain, H. J., Wang, X., Pirasteh, S., Mafi-Gholami, D., Chouhan, B., Khan, M. L., y Gheisari, M. (2024). Review and assessment of the potential restoration of ecosystem services through the implementation of the biodiversity management plans for SDG-15 localization. Heliyon, 10(3), e09508. https://www.sciencedirect.com/science/article/pii/S2405844024059085Hwang, H., An, S., Lee, E., Han, S., y Lee, C. H. (2021). Cross-societal analysis of climate change awareness and its relation to SDG 13: A knowledge synthesis from text mining. Sustainability, 13(10), 5596. https://www.mdpi.com/2071-1050/13/10/5596Instituto Humboldt. (2022). Biodiverciudades al 2030: una apuesta por transformar ciudades desde la naturaleza. Instituto Humboldt. https://www.humboldt.org.co/noticias/biodiverciudades-al-2030-una-apuesta-por-transformar-ciudades-desde-la-naturalezaIntergovernmental Panel on Climate Change. (2022). Climate change 2022: Mitigation of climate change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdfIPCC. (2023). Climate Change 2023 – Synthesis Report. A report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdfItelima, J. U., Bang, W. J., Onyimba, I. A., Sila, M. D., y Egbere, O. J. (2018). Bio-fertilizers as key player in enhancing soil fertility and crop productivity: A review. University of Jos Nigeria. https://dspace.unijos.edu.ng/jspui/handle/123456789/1999Kapsalis, V. C., y Kalavrouziotis, I. K. (2021). Eutrophication—A worldwide water quality issue. En V. C. Kapsalis e I. K. Kalavrouziotis (Eds.), Chemical Lake Restoration: Technologies, Innovations and Economic Perspectives (pp. 3-18). Springer. https://link.springer.com/chapter/10.1007/978-3-030-76380-0_1Karimi, A., y Ardakanian, R. (2010). Development of a dynamic long-term water allocation model for agriculture and industry water demands. Water Resources Management, 24(14), 3775-3792. https://link.springer.com/article/10.1007/s11269-009-9521-3Karr, J. R., Larson, E. R., y Chu, E. W. (2022). Ecological integrity is both real and valuable. Conservation Science and Practice, 4(3), e583. https://conbio.onlinelibrary.wiley.com/doi/full/10.1111/csp2.583Keddy, P. A., Lee, H. T., y Wisheu, I. C. (2020). Choosing indicators of ecosystem integrity: Wetlands as a model system. En Ecological Integrity and the Management of Ecosystems (pp. 155-178). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003070542-5/choosing-indicators-ecosystem-integrity-wetlands-model-system-paul-keddy-harold-lee-irene-wisheuKhair, S. M., Mushtaq, S., Reardon-Smith, K., y Ostini, J. (2019). Diverse drivers of unsustainable groundwater extraction behaviour operate in an unregulated water scarce region. Journal of Environmental Management, 236, 606-616. https://www.sciencedirect.com/science/article/pii/S0301479718314993?casa_token=qzBsfzignjoAAAAA:MaJL5v_WlgB7ZS9K4763u-WOEtnF4kbB-QC-itPDJIvDNnES31U9ALiYen_VgZRQSmcHuHRwpLCNGQKhan, M. N., y Mohammad, F. (2014). Eutrophication: Challenges and solutions. En Eutrophication: Causes, Consequences and Control (pp. 1-16). Springer. https://link.springer.com/chapter/10.1007/978-94-007-7814-6_1Khozin, V., Khokhryakov, O., y Nizamov, R. (2020). A “carbon footprint” of low water demand cements and cement-based concrete. IOP Conference Series: Materials Science and Engineering, 890(1), 012105. https://iopscience.iop.org/article/10.1088/1757-899X/890/1/012105/metaKleidon, A. (2023). Working at the limit: A review of thermodynamics and optimality of the Earth system. Earth System Dynamics, 14(4), 861-888. https://esd.copernicus.org/articles/14/861/2023/esd-14-861-2023.htmlKopnina, H. (2016). The victims of unsustainability: A challenge to sustainable development goals. International Journal of Sustainable Development & World Ecology, 23(1), 29-39. https://www.tandfonline.com/doi/abs/10.1080/13504509.2015.1111269Kreinin, H., y Aigner, E. (2022). From “Decent work and economic growth” to “Sustainable work and economic degrowth”: A new framework for SDG 8. Empirica, 49(3), 621-636. https://link.springer.com/article/10.1007/s10663-021-09526-5Kumar, R., Kumar, A., y Saikia, P. (2022). Deforestation and forests degradation impacts on the environment. En Environmental Degradation: Challenges and Strategies for Mitigation (pp. 35-54). Springer. https://link.springer.com/chapter/10.1007/978-3-030-95542-7_2Lade, S. J., Steffen, W., De Vries, W., Carpenter, S. R., Donges, J. F., Gerten, D., ... y Rockström, J. (2020). Human impacts on planetary boundaries amplified by Earth system interactions. Nature Sustainability, 3(7), 519-528. https://www.nature.com/articles/s41893-019-0454-4Ladi, T., Mahmoudpour, A., y Sharifi, A. (2021). Assessing impacts of the water poverty index components on the human development index in Iran. Habitat International, 111, 102404. https://www.sciencedirect.com/science/article/abs/pii/S0197397521000643Lal, R., Bouma, J., Brevik, E., Dawson, L., Field, D. J., Glaser, B., ... y Zhang, J. (2021). Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Regional, 25, e00343. https://www.sciencedirect.com/science/article/abs/pii/S2352009421000432Lenton, R., y Muller, M. (2012). Integrated water resources management in practice: Better water management for development. Routledge. https://api.taylorfrancis.com/content/books/mono/download?identifierName=doi&identifierValue=10.4324/9781849771740&type=googlepdfLey 1753 de 2015. (2015). Plan Nacional de Desarrollo 2014-2018 “Todos por un nuevo país”. Congreso de la República de Colombia. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=61933Li, Y., Brando, P. M., Morton, D. C., Lawrence, D. M., Yang, H., y Randerson, J. T. (2022). Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nature Communications, 13(1), 4163. https://www.nature.com/articles/s41467-022-29601-0Lindsey, C., Mahmassani, H. S., Mullarkey, M., Nash, T., y Rothberg, S. (2014). Regional logistics hubs, freight activity and industrial space demand: Econometric analysis. Research in Transportation Business & Management, 10, 14-25. https://www.sciencedirect.com/science/article/abs/pii/S2210539514000273Liu, Z., Dong, H., Geng, Y., Lu, C., y Ren, W. (2014). Insights into the regional greenhouse gas (GHG) emission of industrial processes: A case study of Shenyang, China. Sustainability, 6(6), 3669-3684. https://www.mdpi.com/2071-1050/6/6/3669Lomazzi, M., Borisch, B., y Laaser, U. (2014). The Millennium Development Goals: Experiences, achievements and whats next. Global Health Action, 7(1), 23695. https://www.tandfonline.com/doi/full/10.3402/gha.v7.23695Lynch, J., Cain, M., Pierrehumbert, R., y Allen, M. (2020). Demonstrating GWP: A means of reporting warming-equivalent emissions that captures the contrasting impacts of short-and long-lived climate pollutants. Environmental Research Letters, 15(4), 044014. https://iopscience.iop.org/article/10.1088/1748-9326/ab6d7eMaes, M. J., Jones, K. E., Toledano, M. B., y Milligan, B. (2019). Mapping synergies and trade-offs between urban ecosystems and the sustainable development goals. Environmental Science & Policy, 93, 237-246. https://www.sciencedirect.com/science/article/abs/pii/S1462901118305197Makhnatch, P., y Khodabandeh, R. (2014). The role of environmental metrics (GWP, TEWI, LCCP) in the selection of low GWP refrigerant. Energy Procedia, 61, 2460-2464. https://www.sciencedirect.com/science/article/pii/S1876610214030525Malmsheimer, R. W., Bowyer, J. L., Fried, J. S., Gee, E., Izlar, R. L., Miner, R. A., ... y Stewart, W. C. (2011). Managing forests because carbon matters: Integrating energy, products, and land management policy. Journal of Forestry, 109(7), S7-S50. https://forestpolicypub.com/wp-content/uploads/2018/03/Managing-Forests-because-Carbon-Matters-Task-Force-Report-JoF-Supplement.pdf?__cf_chl_rt_tk=250i4bCXbGhdZXfOK1PDZi8VLkBnZBI6LG5P.gx6P9Q-1722892541-0.0.1.1-4116Malone, T. C., y Newton, A. (2020). The globalization of cultural eutrophication in the coastal ocean: Causes and consequences. Frontiers in Marine Science, 7, 670. https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2020.00670/fullMejía-Dugand, S., y Pizano-Castillo, M. (2020). Touching down in cities: Territorial planning instruments as vehicles for the implementation of SDG strategies in cities of the global south. Sustainability, 12(17), 6778. https://www.mdpi.com/2071-1050/12/17/6778Mensah, J. (2019). Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review. Cogent Social Sciences, 5(1), 1653531. https://www.tandfonline.com/doi/full/10.1080/23311886.2019.1653531Mullan, K., Caviglia-Harris, J. L., y Sills, E. O. (2021). Sustainability of agricultural production following deforestation in the tropics: Evidence on the value of newly-deforested, long-deforested and forested land in the Brazilian Amazon. Land Use Policy, 104, 105383. https://www.sciencedirect.com/science/article/pii/S0264837721003835?casa_token=BbtkU7GYX8UAAAAA:xCcQQUhvN6cIea2myFRrboYiEe2b-dAoYI-OLkYRgNyqle8tMG4P5cWcmTmdDRFkad1iZjVkf5IaMuller, C. J., y O’Gorman, P. A. (2011). An energetic perspective on the regional response of precipitation to climate change. Nature Climate Change, 1(5), 266-271. https://www.nature.com/articles/nclimate1169Munang, R., Thiaw, I., Alverson, K., Liu, J., y Han, Z. (2013). The role of ecosystem services in climate change adaptation and disaster risk reduction. Current Opinion in Environmental Sustainability, 5(1), 47-52. https://www.sciencedirect.com/science/article/abs/pii/S1877343513000080Nelson, S. H., Bremer, L. L., Meza Prado, K., y Brauman, K. A. (2020). The political life of natural infrastructure: Water funds and alternative histories of payments for ecosystem services in Valle del Cauca, Colombia. Development and Change, 51(3), 570-596. https://onlinelibrary.wiley.com/doi/abs/10.1111/dech.12544Niedertscheider, M., y Erb, K. (2014). Land system change in Italy from 1884 to 2007: Analysing the North–South divergence on the basis of an integrated indicator framework. Land Use Policy, 39, 366-375. https://www.sciencedirect.com/science/article/pii/S0264837714000167Núñez, D., Nahuelhual, L., y Oyarzún, C. (2006). Forests and water: The value of native temperate forests in supplying water for human consumption. Ecological Economics, 58(3), 606-616. https://www.sciencedirect.com/science/article/abs/pii/S0921800905003666O’Neill, D. W., Fanning, A. L., Lamb, W. F., y Steinberger, J. K. (2018). A good life for all within planetary boundaries. Nature Sustainability, 1(2), 88-95. https://www.nature.com/articles/s41893-018-0021-4Obaideen, K., Shehata, N., Sayed, E. T., Abdelkareem, M. A., Mahmoud, M. S., y Olabi, A. G. (2022). The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus, 7, 100055. https://www.sciencedirect.com/science/article/pii/S2772427122000729Olivier, J. G., Schure, K. M., y Peters, J. A. H. W. (2017). Trends in global CO2 and total greenhouse gas emissions. PBL Netherlands Environmental Assessment Agency, 4331, 1-74. https://www.pbl.nl/sites/default/files/downloads/pbl-2020-trends-in-global-CO2-and_total-greenhouse-gas-emissions-2020-report_4331.pdfONU. (2015). Materiales de comunicación. Objetivos de Desarrollo Sostenible. Naciones Unidas. https://www.un.org/sustainabledevelopment/es/news/communications-material/Ortega, J. T., De La Rosa, J. O., Arroyo, E. D., y Melo, L. B. (2022). Education, research, and development expenditure is the best way to competitiveness—a panel data approach for Latin American Countries. Procedia Computer Science, 200, 123-131. https://www.sciencedirect.com/science/article/pii/S1877050922007001Parlak, M., Everest, T., Ruis, S. J., y Blanco, H. (2020). Impact of urbanization on soil loss: A case study from sod production. Environmental Monitoring and Assessment, 192(10), 642. https://link.springer.com/article/10.1007/s10661-020-08549-yPeattie, L. (2022). Shelter, development, and the poor. En Shelter, Settlement & Development (pp. 229-252). Routledge. https://www.taylorfrancis.com/chapters/edit/10.4324/9781003271529-15/shelter-development-poor-lisa-peattiePereira, L. S., Cordery, I., y Iacovides, I. (2012). Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agricultural Water Management, 108, 39-51. https://www.sciencedirect.com/science/article/pii/S0378377411002290?casa_token=7lzvl6aBtB8AAAAA:E2XruFZ46vODnw7r_OYhxn_hGAXPmVDqVGZ4AlPGzDacznLjXcxRDja6DpAK-nQ-lD6XPgoN_H9JPereira, M. A., y Marques, R. C. (2021). Sustainable water and sanitation for all: are we there yet? Water Research, 205, 117688. https://www.sciencedirect.com/science/article/abs/pii/S0043135421009593Pereira, P., Bogunovic, I., Muñoz-Rojas, M., y Brevik, E. C. (2018). Soil ecosystem services, sustainability, valuation and management. Current Opinion in Environmental Science & Health, 5, 7-13. https://www.sciencedirect.com/science/article/pii/S2468584417300326Perera, A. T. D., Nik, V. M., Chen, D., Scartezzini, J. L., y Hong, T. (2020). Quantifying the impacts of climate change and extreme climate events on energy systems. Nature Energy, 5(2), 150-159. https://www.nature.com/articles/s41560-020-0558-0Pervez, H., Ali, Y., y Petrillo, A. (2021). A quantitative assessment of greenhouse gas (GHG) emissions from conventional and modular construction: A case of developing country. Journal of Cleaner Production, 309, 127115. https://www.sciencedirect.com/science/article/pii/S0959652621004303Pogge, T., y Sengupta, M. (2015). The Sustainable Development Goals (SDGS) as drafted: Nice idea, poor execution. Pacific Rim Law & Policy Journal, 24, 61-74. https://heinonline.org/HOL/LandingPage?handle=hein.journals/pacrimlp24&div=27&id=&page=Prado, E. L., y Dewey, K. G. (2014). Nutrition and brain development in early life. Nutrition Reviews, 72(4), 267-284. https://academic.oup.com/nutritionreviews/article/72/4/267/1859597Preisner, M., Neverova-Dziopak, E., y Kowalewski, Z. (2020). Analysis of eutrophication potential of municipal wastewater. Water Science and Technology, 81(9), 1994-2007. https://iwaponline.com/wst/article/81/9/1994/74435/Analysis-of-eutrophication-potential-of-municipalProPacífico. (2021). Índice de Desarrollo Sostenible Municipal – Colombia 2021. ProPacífico. https://propacifico.org/wp-content/uploads/2023/05/informe-idsm-2021.pdfProPacífico. (2022). Índice de Desarrollo Sostenible Municipal – Colombia 2022. ProPacífico. https://propacifico.org/ods/ProPacífico. (2023). Aporte al desarrollo: visiones ambientales, sociales, de infraestructura y planeación. ProPacífico. https://propacifico.org/aporte-al-desarrollo/Rai, S. M., Brown, B. D., y Ruwanpura, K. N. (2019). SDG 8: Decent work and economic growth–A gendered analysis. World Development, 113, 39-49. https://www.sciencedirect.com/science/article/pii/S0305750X18303309Raihan, A., Begum, R. A., Nizam, M., Said, M., y Pereira, J. J. (2022). Dynamic impacts of energy use, agricultural land expansion, and deforestation on CO2 emissions in Malaysia. Environmental and Ecological Statistics, 29(1), 23-42. https://link.springer.com/article/10.1007/s10651-022-00532-9Ramos, C. I., y Álvarez García, R. D. (2020). La tasa natural de desempleo en Colombia 2001-2018: evolución y estimaciones. Entramado, 16(1), 71-84. http://www.scielo.org.co/scielo.php?pid=S1900-38032020000100076&script=sci_arttextRanders, J., Rockström, J., Stocknes, P. E., Golüke, U., Collste, D., y Cornell, S. (2018). Transformation is feasible - How to achieve the Sustainable Development Goals within Planetary Boundaries. Club of Rome Report. https://www.stockholmresilience.org/publications/publications/2018-10-17-transformation-is-feasible---how-to-achieve-the-sustainable--development-goals-within-planetary-boundaries.html Ravallion, M. (2015). The economics of poverty: History, measurement, and policy. Oxford University Press. https://books.google.com.co/books?hl=en&lr=&id=GUL_CgAAQBAJ&oi=fnd&pg=PT13&dq=end+poverty+in+all+forms+everywhereThe+Economics+of+Poverty:+History,+Measurement,+and+Policy.+New+York:+Oxford+University+Press.&ots=DRe1pRlLUI&sig=Ej4CIcGTb4DkzhOaJphzpw60xk0&redir_esc=y#v=onepage&q&f=falseReardon, S. F., y Galindo, C. (2009). The Hispanic-White achievement gap in math and reading in the elementary grades. American Educational Research Journal, 46(3), 853-891. https://journals.sagepub.com/doi/abs/10.3102/0002831209333184Reddy, V. R., y Behera, B. (2006). Impact of water pollution on rural communities: An economic analysis. Ecological Economics, 58(3), 520-531. https://www.sciencedirect.com/science/article/abs/pii/S0921800905003381Reichler, T. (2009). Changes in the atmospheric circulation as indicator of climate change. En Climate Change (pp. 25-46). Elsevier. https://www.sciencedirect.com/science/article/abs/pii/B9780444533012000075Richardson, K., Steffen, W., Lucht, W., Bendtsen, J., Cornell, S. E., Donges, J. F., y Rockström, J. (2023). Earth beyond six of nine planetary boundaries. Science Advances, 9(3), eadh2458. https://www.science.org/doi/10.1126/sciadv.adh2458Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin III, F. S., Lambin, E., y Foley, J. (2009). Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society, 14(2), 32. https://www.jstor.org/stable/26268316Rodina, L. (2019). Defining “water resilience”: Debates, concepts, approaches, and gaps. Wiley Interdisciplinary Reviews: Water, 6(2), e1334. https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wat2.1334Rottler, E., Francke, T., Bürger, G., y Bronstert, A. (2020). Long-term changes in central European river discharge for 1869–2016: Impact of changing snow covers, reservoir constructions and an intensified hydrological cycle. Hydrology and Earth System Sciences, 24(4), 1721-1739. https://hess.copernicus.org/articles/24/1721/2020/Sachs, J. D. (2006). The end of poverty: Economic possibilities for our time. Penguin. https://books.google.com.co/books?hl=en&lr=&id=pqla8IiF5dYC&oi=fnd&pg=PR7&dq=end+poverty&ots=IIDhygMx5B&sig=KKK55rd7MKp08h3umOFDFBzeMok&redir_esc=y#v=onepage&q=end%20poverty&f=falseSadic, S., Demir, E., y Crispim, J. (2024). Towards a connected world: Collaborative networks as a tool to accomplish the SDGs. Journal of Cleaner Production, 431, 138158. https://www.sciencedirect.com/science/article/pii/S0959652624021747Sætra, H. S. (2021). A framework for evaluating and disclosing the ESG related impacts of AI with the SDGs. Sustainability, 13(15), 8503. https://www.mdpi.com/2071-1050/13/15/8503Saltarelli, W. A., Cunha, D. G. F., Freixa, A., Perujo, N., López‐Doval, J. C., Acuña, V., y Sabater, S. (2022). Nutrient stream attenuation is altered by the duration and frequency of flow intermittency. Ecohydrology, 15(8), e2351. https://onlinelibrary.wiley.com/doi/abs/10.1002/eco.2351Sarkis, J., y Zhu, Q. (2018). Environmental sustainability and production: Taking the road less travelled. International Journal of Production Research, 56(1-2), 744-759. https://www.tandfonline.com/doi/abs/10.1080/00207543.2017.1365182Savci, S. (2012). An agricultural pollutant: Chemical fertilizer. International Journal of Environmental Science and Development, 3(1), 77-80. https://www.researchgate.net/profile/Arvind-Singh-21/post/what_kind_of_agicultural_chemicals_are_creating_soil_pollution/attachment/59d650e279197b80779a998f/AS%3A505223967764481%401497466188947/download/191-X30004.pdfSavci, S. (2012). Investigation of effect of chemical fertilizers on environment. Apcbee Procedia, 1, 287-292. https://www.sciencedirect.com/science/article/pii/S2212670812000486Schneider, E. D., y Kay, J. J. (1994). Life as a manifestation of the second law of thermodynamics. Mathematical and Computer Modelling, 19(6-8), 25-48. https://www.sciencedirect.com/science/article/pii/0895717794901880Schroeder, P., Anggraeni, K., y Weber, U. (2019). The relevance of circular economy practices to the sustainable development goals. Journal of Industrial Ecology, 23(1), 77-95. https://onlinelibrary.wiley.com/doi/abs/10.1111/jiec.12732Sengupta, M. (2018). Transformational change or tenuous wish list?: A critique of SDG 1 (End poverty in all its forms everywhere). Social Alternatives, 37(2), 52-57. https://search.informit.org/doi/abs/10.3316/ielapa.573646044161666 Sharma, K., Tyagi, S., Bhardwaj, V., Tyagi, D., Gautam, Y. K., y Singh, B. P. (2024). Greenhouse gas emissions from the industries. En Advances and Technology Development in Greenhouse Gases: Emission, Capture and Conversion (pp. 257-274). Elsevier. https://www.sciencedirect.com/science/article/abs/pii/B9780443192319000144Shewa, W. A., y Dagnew, M. (2020). Revisiting chemically enhanced primary treatment of wastewater: A review. Sustainability, 12(15), 5928. https://www.mdpi.com/2071-1050/12/15/5928Shine, K. P., Fuglestvedt, J. S., Hailemariam, K., y Stuber, N. (2005). Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Climatic Change, 68(3), 281-302. https://link.springer.com/article/10.1007/s10584-005-1146-9Siddik, M., Islam, M., Zaman, A. K. M. M., y Hasan, M. (2021). Current status and correlation of fossil fuels consumption and greenhouse gas emissions. International Journal of Energy and Environment Economics, 31(2), 45-60. https://www.researchgate.net/profile/Md-Siddik-5/publication/357323190_Current_Status_and_Correlation_of_Fossil_Fuels_Consumption_and_Greenhouse_Gas_Emissions/links/635180428d4484154a1be762/Current-Status-and-Correlation-of-Fossil-Fuels-Consumption-and-Greenhouse-Gas-Emissions.pdfSingh, M. R., y Gupta, A. (2016). Water pollution-sources, effects and control. Centre for Biodiversity, Department of Botany, Nagaland University. https://www.researchgate.net/profile/Asha-Gupta-6/publication/321289637_WATER_POLLUTION-SOURCESEFFECTS_AND_CONTROL/links/5a194005aca272df080a9dd3/WATER-POLLUTION-SOURCES-EFFECTS-AND-CONTROL.pdfSinha, A., Sengupta, T., y Alvarado, R. (2020). Interplay between technological innovation and environmental quality: Formulating the SDG policies for next 11 economies. Journal of Cleaner Production, 242, 118543. https://www.sciencedirect.com/science/article/pii/S0959652619334195?casa_token=6SiEXt-aqX0AAAAA:Vy04GJqN0fD8iI3MnrFizGHy1OM1JO_Z-vSTR4cK4UctBeh-zGgajLcAi5q2uLZIRfHlxJcPOH4NSmith, L. E., y Siciliano, G. (2015). A comprehensive review of constraints to improved management of fertilizers in China and mitigation of diffuse water pollution from agriculture. Agriculture, Ecosystems & Environment, 209, 15-25. https://www.sciencedirect.com/science/article/pii/S0167880915000717Smith, V. H., y Schindler, D. W. (2009). Eutrophication science: Where do we go from here?. Trends in Ecology & Evolution, 24(4), 201-207. https://www.cell.com/ajhg/abstract/S0169-5347(09)00041-XSolomon, S., Plattner, G. K., Knutti, R., y Friedlingstein, P. (2009). Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences, 106(6), 1704-1709. https://www.pnas.org/doi/abs/10.1073/pnas.0812721106Song, X., Wen, M., Shen, Y., Feng, Q., Xiang, J., Zhang, W., ... y Wu, Z. (2020). Urban vacant land in growing urbanization: An international review. Journal of Geographical Sciences, 30(6), 841-860. https://link.springer.com/article/10.1007/s11442-020-1749-0Stec, M., Tatarczuk, A., Iluk, T., y Szul, M. (2021). Reducing the energy efficiency design index for ships through a post-combustion carbon capture process. International Journal of Greenhouse Gas Control, 107, 103275. https://www.sciencedirect.com/science/article/abs/pii/S1750583621000852Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., ... y Sörlin, S. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855. https://www.science.org/doi/10.1126/science.1259855Sun, Y., Chen, Z., Wu, G., Wu, Q., Zhang, F., Niu, Z., y Hu, H. Y. (2016). Characteristics of water quality of municipal wastewater treatment plants in China: Implications for resources utilization and management. Journal of Cleaner Production, 131, 1-9. https://www.sciencedirect.com/science/article/abs/pii/S0959652616305327Tamburini, G., Bommarco, R., Wanger, T. C., Kremen, C., Van Der Heijden, M. G., Liebman, M., y Hallin, S. (2020). Agricultural diversification promotes multiple ecosystem services without compromising yield. Science Advances, 6(45), eaba1715. https://www.science.org/doi/full/10.1126/sciadv.aba1715Tam-Pham, L., Kumar, P., Dahana, W. D., y Nguyen, H. D. (2024). Advancing sustainable development through planetary health – A holistic approach to global health: A systematic review. Environmental Science and Policy, 151, 45-58. https://www.sciencedirect.com/science/article/pii/S146290112400043Tan, Z. X., Lal, R., y Wiebe, K. D. (2005). Global soil nutrient depletion and yield reduction. Journal of Sustainable Agriculture, 26(1), 123-146. https://www.tandfonline.com/doi/abs/10.1300/J064v26n01_10Taylor, L. K. (2016). Impact of political violence, social trust, and depression on civic participation in Colombia. Peace and Conflict: Journal of Peace Psychology, 22(4), 337-346. https://psycnet.apa.org/record/2015-38671-001Thomas, R., Hsu, A., y Weinfurter, A. (2021). Sustainable and inclusive–Evaluating urban sustainability indicators’ suitability for measuring progress towards SDG-11. Environment and Planning B: Urban Analytics and City Science, 48(4), 663-677. https://journals.sagepub.com/doi/abs/10.1177/2399808320975404Tirumala, R. D., y Tiwari, P. (2022). Importance of land in SDG policy instruments: A study of ASEAN developing countries. Land, 11(2), 218. https://www.mdpi.com/2073-445X/11/2/218Tol, R. S. (2018). The economic impacts of climate change. Review of Environmental Economics and Policy, 12(1), 4-25. https://www.journals.uchicago.edu/doi/abs/10.1093/reep/rex027Tomer, M. D., y Schilling, K. E. (2009). A simple approach to distinguish land-use and climate-change effects on watershed hydrology. Journal of Hydrology, 376(1-2), 24-33. https://www.sciencedirect.com/science/article/abs/pii/S002216940900403XUnited Nations. (2000). United Nations Millennium Declaration. General Assembly (A/RES/55/2). https://www.preventionweb.net/files/13539_13539ARES552ResolutiononUNMillenniu.pdfUnited Nations. (2015). Transforming our world: The 2030 Agenda for Sustainable Development. General Assembly (A/RES/70/1). https://sdgs.un.org/2030agendaUniversidad Autónoma de Occidente, Universidad del Valle, Pontificia Universidad Javeriana, Universidad ICESI, Universidad de San Buenaventura, Universidad Nacional de Colombia (Sede Palmira), Universidad Santiago de Cali, Universidad Libre, CIAT, ProPacífico DAGMA, Departamento Administrativo de Planeación Municipal. (2024). Proyecto Cali Biodiverciudad. Comunicación interna.University of Leeds. (2024). A good life for all within planetary boundaries. National snapshots. https://goodlife.leeds.ac.uk/national-snapshots/countries/#Colombia Vaidya, H., y Chatterji, T. (2020). SDG 11 sustainable cities and communities: SDG 11 and the new urban agenda: Global sustainability frameworks for local action. En Actioning the Global Goals for Local Impact: Towards Sustainability Science, Policy, Education and Practice (pp. 267-285). Springer. https://link.springer.com/chapter/10.1007/978-981-32-9927-6_12Vanham, D., Hoekstra, A. Y., Wada, Y., Bouraoui, F., de Roo, A., Mekonnen, M. M., ... y Bidoglio, G. (2018). Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 “Level of water stress”. Science of the Total Environment, 613-614, 218-232. https://www.sciencedirect.com/science/article/pii/S0048969717323963Vargas, C., Gomez-Valencia, M., Gonzalez-Perez, M. A., Cordova, M., Casnici, C. V. C., Monje-Cueto, F., ... y Coronado, F. (2022). Climate-resilient and regenerative futures for Latin America and the Caribbean. Futures, 140, 102915. https://www.sciencedirect.com/science/article/pii/S0016328722001148Vingerhoets, R., Spiller, M., De Backer, J., Adriaens, A., Vlaeminck, S. E., y Meers, E. (2023). Detailed nitrogen and phosphorus flow analysis, nutrient use efficiency and circularity in the agri-food system of a livestock-intensive region. Journal of Cleaner Production, 404, 136939. https://www.sciencedirect.com/science/article/pii/S0959652623014361Vitkova, L., y Dhubháin, Á. N. (2013). Transformation to continuous cover forestry–A review. Irish Forestry, 70(1), 33-46. https://journal.societyofirishforesters.ie/index.php/forestry/article/view/10105Wang, Y., Liu, D., Xiao, W., Zhou, P., Tian, C., Zhang, C., ... y Wang, B. (2021). Coastal eutrophication in China: Trend, sources, and ecological effects. Harmful Algae, 105, 102915. https://www.sciencedirect.com/science/article/pii/S1568988321000883Weerasooriya, R. R., Liyanage, L. P. K., Rathnappriya, R. H. K., Bandara, W. B. M. A. C., Perera, T. A. N. T., Gunarathna, M. H. J. P., y Jayasinghe, G. Y. (2021). Industrial water conservation by water footprint and sustainable development goals: A review. Environment, Development and Sustainability, 23(3), 3009-3030. https://link.springer.com/article/10.1007/S10668-020-01184-0Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M., y Wade, A. J. (2009). A review of the potential impacts of climate change on surface water quality. Hydrological Sciences Journal, 54(1), 101-123. https://www.tandfonline.com/doi/abs/10.1623/hysj.54.1.101Wiek, A., Withycombe, L., y Redman, C. L. (2011). Key competencies in sustainability: A reference framework for academic program development. Sustainability Science, 6(2), 203-218. https://link.springer.com/article/10.1007/s11625-011-0132-6Williamson, M., y Ball, B. A. (2023). Soil biogeochemical responses to multiple co-occurring forms of human-induced environmental change. Oecologia, 203(3), 465-478. https://link.springer.com/article/10.1007/s00442-023-05360-7Woodhouse, P., y Muller, M. (2017). Water governance–An historical perspective on current debates. World Development, 94, 216-227. https://www.sciencedirect.com/science/article/abs/pii/S0305750X16305460Woodward, G., Gessner, M. O., Giller, P. S., Gulis, V., Hladyz, S., Lecerf, A., ... y Chauvet, E. (2012). Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science, 336(6087), 1438-1440. https://www.science.org/doi/abs/10.1126/science.1219534World Economic Forum. (2024). BiodiverCities by 2030. Intelligence. https://intelligence.weforum.org/topics/a1G680000004DsJEAUWu, B., Tian, F., Zhang, M., Piao, S., Zeng, H., Zhu, W., ... y Lu, Y. (2022). Quantifying global agricultural water appropriation with data derived from earth observations. Journal of Cleaner Production, 370, 133542. https://www.sciencedirect.com/science/article/pii/S0959652622015013Wu, J. (2019). Linking landscape, land system and design approaches to achieve sustainability. Journal of Land Use Science, 14(3), 191-201. https://www.tandfonline.com/doi/full/10.1080/1747423X.2019.1602677Yang, D., Yang, Y., y Xia, J. (2021). Hydrological cycle and water resources in a changing world: A review. Geography and Sustainability, 2(4), 281-295. https://www.sciencedirect.com/science/article/pii/S2666683921000213Yang, R., Hu, Z., y Hu, S. (2023). The failure of collaborative agglomeration: From the perspective of industrial pollution emission. Journal of Cleaner Production, 408, 137239. https://www.sciencedirect.com/science/article/pii/S0959652623001105Yang, S., Zhao, W., Liu, Y., Cherubini, F., Fu, B., y Pereira, P. (2020). Prioritizing sustainable development goals and linking them to ecosystem services: A global experts knowledge evaluation. Geography and Sustainability, 1(3), 205-214. https://www.sciencedirect.com/science/article/pii/S2666683920300511Ydesen, C., y Elfert, M. (2023). SDG4 as a global governance tool and the quest for recognizing diversity–Implications emerging from the intersections between inclusive education and assessment. International Journal of Educational Development, 97, 102752. https://www.sciencedirect.com/science/article/pii/S0738059323002080Zhou, J., Leavitt, P. R., Zhang, Y., y Qin, B. (2022). Anthropogenic eutrophication of shallow lakes: Is it occasional?. Water Research, 219, 118608. https://www.sciencedirect.com/science/article/pii/S0043135422006819Zubaidi, S. L., Gharghan, S. K., Dooley, J., Alkhaddar, R. M., y Abdellatif, M. (2018). Short-term urban water demand prediction considering weather factors. Water Resources Management, 32(15), 4941-4954. https://link.springer.com/article/10.1007/s11269-018-2061-yIngeniería AmbientalGran AmbiciónPlanes de Desarrollo Territoriales (PDT)Límites planetariosObjetivos de Desarrollo Sostenible (ODS)SostenibilidadEntropíaGrand ambitionTerritorial Development Plans (TDP)Planetary boundariesSustainable Development Goals (SDGs)SustainabilityEntropyComunidad generalPublicationhttps://scholar.google.com/citations?user=rq0x3Y0AAAAJ&hl=envirtual::5878-10000-0002-6430-2601virtual::5877-10000-0002-1875-8245virtual::5878-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000952028virtual::5877-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000521701virtual::5878-11b7ae0bb-d40b-4d15-94ee-5d8949aad3c5virtual::5877-11b7ae0bb-d40b-4d15-94ee-5d8949aad3c5virtual::5877-1fca751bd-8d1e-4f05-88e4-aa1856a4e9a9virtual::5878-1fca751bd-8d1e-4f05-88e4-aa1856a4e9a9virtual::5878-1ORIGINALT11295_Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la gran ambición.pdfT11295_Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la gran ambición.pdfArchivo texto completo del trabajo de grado, PDFapplication/pdf2481569https://red.uao.edu.co/bitstreams/aa1fd52f-39a3-451e-aab8-2cd9c750b09c/downloadff2135abe172898674f057ec233efd5fMD51TA11295_Autorización trabajo de grado.pdfTA11295_Autorización trabajo de grado.pdfAutorización para publicación del trabajo de gradoapplication/pdf247620https://red.uao.edu.co/bitstreams/f0a3cfda-7952-4cff-9672-c56efd3602c5/download5ad5d9d1faa70ea1b7983dd4857f4e7fMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/ea84938d-cbf1-44c4-9cf6-94ee8ba6aa9f/download6987b791264a2b5525252450f99b10d1MD53TEXTT11295_Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la gran ambición.pdf.txtT11295_Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la gran ambición.pdf.txtExtracted texttext/plain101998https://red.uao.edu.co/bitstreams/6ddf9ebb-0634-44ef-badf-9b43a31e76ee/download4f29b574a4f8ef0bdd8f39f789d5181fMD55TA11295_Autorización trabajo de grado.pdf.txtTA11295_Autorización trabajo de grado.pdf.txtExtracted texttext/plain4540https://red.uao.edu.co/bitstreams/84373a9b-2319-4632-8f2d-5ce6abbe596c/downloadf96219c6c301a87230476fb0b89222cbMD57THUMBNAILT11295_Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la gran ambición.pdf.jpgT11295_Evaluación de los planes de desarrollo (2024-2027) de algunos municipios del Valle del Cauca desde la perspectiva de la gran ambición.pdf.jpgGenerated Thumbnailimage/jpeg7160https://red.uao.edu.co/bitstreams/e823ff2c-add5-4fe0-8b87-f05b32c4a69a/downloadf19c903fdbbc7f709ddeba7ccea57bddMD56TA11295_Autorización trabajo de grado.pdf.jpgTA11295_Autorización trabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg13911https://red.uao.edu.co/bitstreams/a2dee76b-99ca-45f5-848d-6127e3aebef1/downloadec31c82cab61e715679459ccf49c43a6MD5810614/15964oai:red.uao.edu.co:10614/159642025-01-25 03:02:18.484https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Universidad Autónoma de Occidente, 2024open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg== |