Water content monitoring in water-in-oil emulsions using a delay line cell

The extraction process of crude oil requires addition of water, resulting in complex emulsions, in which the phases must be separated before the petrochemical processing starts. An ultrasonic cell may be used to determine in real time the water content in water-in-crude oil emulsions. The water cont...

Full description

Autores:
Franco Guzmán, Ediguer Enrique
Reyna, Carlos A.B.
Tsuzuki, Marcos S.G.
Buiochi, Flávio
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/15552
Acceso en línea:
https://hdl.handle.net/10614/15552
https://doi.org/10.1016/j.ultras.2023.107081
https://red.uao.edu.co/
Palabra clave:
Water-in-crude oil emulsion
Acoustic properties
Urick’s model
Water content
Delay line cell
Rights
openAccess
License
Derechos reservados - Elsevier, 2023
id REPOUAO2_511db00a4f0961c68c73d3c99d7d1cc6
oai_identifier_str oai:red.uao.edu.co:10614/15552
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Water content monitoring in water-in-oil emulsions using a delay line cell
title Water content monitoring in water-in-oil emulsions using a delay line cell
spellingShingle Water content monitoring in water-in-oil emulsions using a delay line cell
Water-in-crude oil emulsion
Acoustic properties
Urick’s model
Water content
Delay line cell
title_short Water content monitoring in water-in-oil emulsions using a delay line cell
title_full Water content monitoring in water-in-oil emulsions using a delay line cell
title_fullStr Water content monitoring in water-in-oil emulsions using a delay line cell
title_full_unstemmed Water content monitoring in water-in-oil emulsions using a delay line cell
title_sort Water content monitoring in water-in-oil emulsions using a delay line cell
dc.creator.fl_str_mv Franco Guzmán, Ediguer Enrique
Reyna, Carlos A.B.
Tsuzuki, Marcos S.G.
Buiochi, Flávio
dc.contributor.author.none.fl_str_mv Franco Guzmán, Ediguer Enrique
Reyna, Carlos A.B.
Tsuzuki, Marcos S.G.
Buiochi, Flávio
dc.subject.proposal.eng.fl_str_mv Water-in-crude oil emulsion
Acoustic properties
Urick’s model
Water content
Delay line cell
topic Water-in-crude oil emulsion
Acoustic properties
Urick’s model
Water content
Delay line cell
description The extraction process of crude oil requires addition of water, resulting in complex emulsions, in which the phases must be separated before the petrochemical processing starts. An ultrasonic cell may be used to determine in real time the water content in water-in-crude oil emulsions. The water content of emulsions can be related to parameters, such as propagation velocity, density and relative attenuation. The ultrasonic measurement cell developed here is composed of two piezoelectric transducers, two rexolite buffer rods, and a sample chamber. It is an inexpensive and robust system. The cell measures the parameters at different temperatures and flow conditions. The tests were performed using emulsions with water volume concentrations from 0% to 40%. The experimental results show that this cell is able to obtain more precise parameters, when compared to similar ultrasonic techniques. The data acquired in real time may be used to improve the emulsion separation, decreasing greenhouse gases and energy requirements
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-09
dc.date.accessioned.none.fl_str_mv 2024-04-19T15:08:03Z
dc.date.available.none.fl_str_mv 2024-04-19T15:08:03Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Franco Guzmán, E. Enrique.; Reyna, C. A.B.; Tsuzuki, M. S.G. y Buiochi, F. (2023). Water content monitoring in water-in-oil emulsions using a delay line cell. Ultrasonics. Volumen 134. p.p. 1-10. https://doi.org/10.1016/j.ultras.2023.107081
dc.identifier.issn.spa.fl_str_mv 0041-624X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/15552
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.ultras.2023.107081
dc.identifier.eissn.spa.fl_str_mv 1874-9968
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Franco Guzmán, E. Enrique.; Reyna, C. A.B.; Tsuzuki, M. S.G. y Buiochi, F. (2023). Water content monitoring in water-in-oil emulsions using a delay line cell. Ultrasonics. Volumen 134. p.p. 1-10. https://doi.org/10.1016/j.ultras.2023.107081
0041-624X
1874-9968
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/15552
https://doi.org/10.1016/j.ultras.2023.107081
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 10
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 134
dc.relation.ispartofjournal.eng.fl_str_mv Ultrasonics
dc.relation.references.none.fl_str_mv [1] H.K. Abdel-Aal, M.A. Aggour, M.A. Fahim, Petroleum and Gas Field Processing, CRC Press, 2003.
[2] J.E. Thomas, Fundamentos de Engenharia de Petróleo, Interciência, 2001.
[3] E. Rio, A.-L. Biance, Thermodynamic and mechanical timescales involved in foam film rupture and liquid foam coalescence, ChemPhysChem 15 (17) (2014) 3692–3707.
[4] D.C. Critello, S.A. Pullano, G. Gallo, T.J. Matula, A.S. Fiorillo, Low frequency ultrasound as a potentially viable foaming option for pathological veins, Colloids Surf. A 599 (2020) 124919.
[5] H. Kiani, S. Moradi, B.S. Soulgani, S. Mousavian, Study of a crude oil desalting plant of the national iranian south oil company in Gachsaran by using artificial neural networks, Int. J. Environ. Ecol. Eng. 7 (12) (2013) 1015–1018.
[6] S. Jadoon, A. Malik, A.A. Amin, Separation of sediment contents and water from crude oil of Khurmala and Guwayer oil fields in Kurdistan region by using centrifuge method, Int. J. Adv. Eng. Res. Sci. 4 (2017) 2919–2922.
[7] P.G. Ivanova, Z.V. Aneva, Assessment and assurance of quality in water measurement by coulometric karl fischer titration of petroleum products, Accredit. Qual. Assur. 10 (2006) 543–549
[8] M. Meribout, A. Al Naamany, K. Al Busaidi, An acoustic system for providing the two-phase liquid profile in oil field storage tanks, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 (10) (2009) 2241–2250
[9] I.M. Saied, M. Meribout, E. Kato, X.H. Zhao, Terahertz spectroscopy for measuring multiphase fractions, IEEE Trans. Terahertz Sci. Technol. 7 (3) (2017) 250–259.
[10] M. Meribout, I.M. Saied, E. Al Hosani, A new FPGA-based terahertz imaging device for multiphase flow metering, IEEE Trans. Terahertz Sci. Technol. 8 (4) (2018) 418–426.
[11] M. Meribout, F. Shehaz, I.M. Saied, Q. Al Bloohsi, A. AlAmri, High gas void fraction flow measurement and imaging using a THz-based device, IEEE Trans. Terahertz Sci. Technol. 9 (6) (2019) 659–668.
[12] V.K. Chillara, B.T. Sturtevant, C. Pantea, D.N. Sinha, Ultrasonic sensing for noninvasive characterization of oil-water-gas flow in a pipe, AIP Conf. Proc. 1806 (1) (2017) 090014.
[13] E.E. Franco, J.C. Adamowski, F. Buiochi, Ultrasonic sensor for the presence of oily contaminants in water, Dyna 79 (2012) 4–9.
[14] E.E. Franco, J.C. Adamowski, R.T. Higuti, F. Buiochi, Viscosity measurement of Newtonian liquids using the complex reflection coefficient, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 (10) (2008) 2247–2253, http://dx.doi.org/10.1109/ TUFFC.923.
[15] R. Kazys, A. Voleisis, R. Sliteris, Investigation of the acoustic properties of viscosity standards, Arch. Acoust. 41 (No 1) (2016) 55–58, http://dx.doi.org/ 10.1515/aoa-2016-0005.
[16] H. Runrun, M. Runyang, W. Chenghui, H. Jing, Ultrasonic shear-wave reflectometry applied to monitor the dynamic viscosity of reheated edible oil, J. Food Process Eng. 43 (6) (2020) e13402, http://dx.doi.org/10.1111/jfpe.13402, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/jfpe.13402. URL https:// onlinelibrary.wiley.com/doi/abs/10.1111/jfpe.13402.
[17] I. Alig, D. Lellinger, J. Sulimma, S. Tadjbakhsch, Ultrasonic shear wave reflection method for measurements of the viscoelastic properties of polymer films, Rev. Sci. Instrum. 68 (3) (1997) 1536–1542, http://dx.doi.org/10.1063/1.1147643.
[18] X. Wang, K.V. Subramaniam, F. Lin, Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste, Ultrasonics (ISSN: 0041-624X) 50 (7) (2010) 726–738, http://dx.doi.org/10.1016/j.ultras.2010.02.010.
[19] G. Meng, A.J. Jaworski, N.M. White, Composition measurements of crude oil and process water emulsions using thick-film ultrasonic transducers, Chem. Eng. Process.: Process Intensif. 45 (5) (2006) 383–391.
[20] Z.Q. Lu, X. Yang, K. Zhao, J.X. Wei, W.J. Jin, C. Jiang, L.J. Zhao, Non-contact measurement of the water content in crude oil with all-optical detection, Energy Fuels 29 (2015) 2919–2922.
[21] A. Taha, E. Ahmed, A. Ismaiel, M. Ashokkumar, X. Xu, S. Pan, H. Hu, Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions, Trends Food Sci. Technol. 105 (2020) 363–377.
[22] C.M.G. Atehortúa, N. Pérez, M.A.B. Andrade, L.O.V. Pereira, J.C. Adamowski, Water-in-oil emulsions separation using an ultrasonic standing wave coalescence chamber, Ultrason. Sonochem. 57 (2019) 57–61.
[23] M.J. Basante-Romo, O. Gutierrez, R.J. Camargo-Amado, Evaluacion de la citotoxicidad inducida por TIO2 modificado funcionalizado con folato y oro sobre lineas celulares de HeLa y CHO, Inform. Tecnol. 27 (5) (2016) 63–68.
[24] C. Wood, S. Evans, J. Cunningham, R. O’Rorke, C. Wälti, A. Davies, Alignment of particles in microfluidic systems using standing surface acoustic waves, Appl. Phys. Lett. 92 (4) (2008) 044104.
[25] E. Franco, C. Burbano, F. Buiochi, J. Lopes, Subwavelength twin ultrasound focused (STUF) beam generated by shear-to-longitudinal mode conversion in a triangular prism, Sensors Actuators A 344 (2022) 113704.
[26] L.L. Foldy, The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers, Phys. Rev. 67 (3–4) (1945) 107.
[27] R.L. Gibson Jr., M.N. Toksöz, Viscous attenuation of acoustic waves in suspensions, J. Acoust. Soc. Am. 85 (5) (1989) 1925–1934.
[28] J. Evans, K. Attenborough, Coupled phase theory for sound propagation in emulsions, J. Acoust. Soc. Am. 102 (1) (1997) 278–282.
[29] A. Richter, T. Voigt, S. Ripperger, Ultrasonic attenuation spectroscopy of emulsions with droplet sizes greater than 10 microm, J. Colloid Interface Sci. 315 (2) (2007) 482–492.
[30] M. Su, X. Cai, M. Xue, L. Dong, F. Xu, Particle sizing in dense two-phase droplet systems by ultrasonic attenuation and velocity spectra, Sci. China Ser. E: Technol. Sci. 52 (6) (2009) 1502–1510.
[31] B. Standard, B. Iso, Measurement and characterization of particles by acoustic methods, 2006.
[32] A.S. Dukhin, P.J. Goetz (Eds.), Characterization of Liquids, Nano- and Microparticulates, and Porous Bodies using Ultrasound, second ed., in: Studies in Interface Science, vol. 24, Elsevier, 2010, ISBN: 0444536213, 9780444536211.
[33] C.A. Silva, S.V. Saraiva, D. Bonetti, R.T. Higuti, R.L. Cunha, L.O. Pereira, F.V. Silva, A.M. Fileti, Application of acoustic models for polydisperse emulsion characterization using ultrasonic spectroscopy in the long wavelength regime, Colloids Surf. A 602 (2020) 125062.
[34] C.A. Reyna, E.E. Franco, A.L. Durán, L.O. Pereira, M.S. Tsuzuki, F. Buiochi, Water content monitoring in water-in-oil emulsions using a piezoceramic sensor, Machines 9 (12) (2021) 335.
[35] N. Perez, F. Blasina, F. Buiochi, A. Duran, J. Adamowski, Evaluation of a multiple scattering sensor for water-in-oil emulsion monitoring, in: Proceedings of Meetings on Acoustics ICU, Vol. 38, Acoustical Society of America, 2019, 055007.
[36] A.L. Durán, E.E. Franco, C.A. Reyna, N. Pérez, M.S. Tsuzuki, F. Buiochi, Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor, Sensors 21 (15) (2021) 5088.
[37] A. Keller, H. Coleman, Chemical introductions to estuarine and coastal systems: Biodegradable organic chemicals, 2011.
[38] R. Santos, W. Loh, A. Bannwart, O. Trevisan, An overview of heavy oil properties and its recovery and transportation methods, Braz. J. Chem. Eng. 31 (2014) 571–590.
[39] J. Kuskibiki, N. Akashi, T. Sannomiya, N. Chubachi, F. Dunn, VHF/UHF range bioultrasonic spectroscopy system and method, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42 (6) (1995) 1028–1039.
[40] J.C. Adamowski, F. Buiochi, C. Simon, E.C. Silva, R.A. Sigelmann, Ultrasonic measurement of density of liquids, J. Acoust. Soc. Am. 97 (1) (1995) 354–361.
[41] J.C. Adamowski, F. Buiochi, R.A. Sigelmann, Ultrasonic measurement of density of liquids flowing in tubes, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 (1) (1998) 48–56.
[42] R.T. Higuti, B.S. Galindo, C. Kitano, F. Buiochi, J.C. Adamowski, Thermal characterization of an ultrasonic density-measurement cell, IEEE Trans. Instrum. Meas. 56 (3) (2007) 924–930.
[43] C.A. Reyna, A.L. Durán, L.O. Pereira, M.S. Tsuzuki, E.E. Franco, F. Buiochi, Development of an adjustable measuring cell for ultrasonic characterization of water-in-crude oil emulsions, in: 2021 IEEE UFFC Latin America Ultrasonics Symposium, LAUS, IEEE, 2021, pp. 1–4.
[44] R.T. Higuti, F. Buiochi, J.C. Adamowski, F.M. de Espinosa, Ultrasonic density measurement cell design and simulation of non-ideal effects, Ultrasonics 44 (3) (2006) 302–309.
[45] R.J. Urick, A sound velocity method for determining the compressibility of finely divided substances, J. Appl. Phys. 18 (11) (1947) 983–987.
[46] V. Del Grosso, C. Mader, Speed of sound in pure water, J. Acoust. Soc. Am. 52 (5B) (1972) 1442–1446.
[47] A. Malaoui, R. Iqdour, M. Ankrim, A. Zeroual, M. Benhayoun, K. Quotb, New model for ultrasonic velocilty with temperature in pure water, 2005.
[48] R. Reijnhart, R. Rose, Evaporation of crude oil at sea, Water Res. 16 (8) (1982) 1319–1325.
[49] D.R. Lide, CRC Handbook of Chemistry and Physics, Vol. 85, CRC Press, 2004, p. 2294.
[50] V.G. Morgan, C. Sad, A.F. Constantino, R.B. Azeredo, V. Lacerda, E.V. Castro, L.L. Barbosa, Droplet size distribution in water-crude oil emulsions by low-field NMR, J. Braz. Chem. Soc. 30 (2019) 1587–1598.
[51] C.A. Silva, S.V. Saraiva, D. Bonetti, R.T. Higuti, R.L. Cunha, L.O. Pereira, F.V. Silva, A.M. Fileti, Measurements of bimodal droplet size distribution of emulsions using ultrasonic spectroscopy in the long and intermediate wavelength regimes, Chem. Eng. Sci. 252 (2022) 117–274.
[52] M. Daaou, D. Bendedouch, Water pH and surfactant addition effects on the stability of an Algerian crude oil emulsion, J. Saudi Chem. Soc. 16 (3) (2012) 333–337.
[53] M. Moradi, V. Alvarado, S. Huzurbazar, Effect of salinity on water-in-crude oil emulsion: evaluation through drop-size distribution proxy, Energy Fuels 25 (1) (2011) 260–268.
[54] M. Fortuny, C.B. Oliveira, R.L. Melo, M. Nele, R.C. Coutinho, A.F. Santos, Effect of salinity, temperature, water content, and pH on the microwave demulsification of crude oil emulsions, Energy Fuels 21 (3) (2007) 1358–1364.
dc.rights.spa.fl_str_mv Derechos reservados - Elsevier, 2023
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Elsevier, 2023
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 10 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Países Bajos
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/d6d2eb64-8d8b-42f5-9ca1-307c04791082/download
bitstream.checksum.fl_str_mv 6987b791264a2b5525252450f99b10d1
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259750437650432
spelling Franco Guzmán, Ediguer Enriquevirtual::5342-1Reyna, Carlos A.B.Tsuzuki, Marcos S.G.Buiochi, Flávio2024-04-19T15:08:03Z2024-04-19T15:08:03Z2023-09Franco Guzmán, E. Enrique.; Reyna, C. A.B.; Tsuzuki, M. S.G. y Buiochi, F. (2023). Water content monitoring in water-in-oil emulsions using a delay line cell. Ultrasonics. Volumen 134. p.p. 1-10. https://doi.org/10.1016/j.ultras.2023.1070810041-624Xhttps://hdl.handle.net/10614/15552https://doi.org/10.1016/j.ultras.2023.1070811874-9968Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/The extraction process of crude oil requires addition of water, resulting in complex emulsions, in which the phases must be separated before the petrochemical processing starts. An ultrasonic cell may be used to determine in real time the water content in water-in-crude oil emulsions. The water content of emulsions can be related to parameters, such as propagation velocity, density and relative attenuation. The ultrasonic measurement cell developed here is composed of two piezoelectric transducers, two rexolite buffer rods, and a sample chamber. It is an inexpensive and robust system. The cell measures the parameters at different temperatures and flow conditions. The tests were performed using emulsions with water volume concentrations from 0% to 40%. The experimental results show that this cell is able to obtain more precise parameters, when compared to similar ultrasonic techniques. The data acquired in real time may be used to improve the emulsion separation, decreasing greenhouse gases and energy requirements10 páginasapplication/pdfengElsevierPaíses BajosDerechos reservados - Elsevier, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Water content monitoring in water-in-oil emulsions using a delay line cellArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85101134Ultrasonics[1] H.K. Abdel-Aal, M.A. Aggour, M.A. Fahim, Petroleum and Gas Field Processing, CRC Press, 2003.[2] J.E. Thomas, Fundamentos de Engenharia de Petróleo, Interciência, 2001.[3] E. Rio, A.-L. Biance, Thermodynamic and mechanical timescales involved in foam film rupture and liquid foam coalescence, ChemPhysChem 15 (17) (2014) 3692–3707.[4] D.C. Critello, S.A. Pullano, G. Gallo, T.J. Matula, A.S. Fiorillo, Low frequency ultrasound as a potentially viable foaming option for pathological veins, Colloids Surf. A 599 (2020) 124919.[5] H. Kiani, S. Moradi, B.S. Soulgani, S. Mousavian, Study of a crude oil desalting plant of the national iranian south oil company in Gachsaran by using artificial neural networks, Int. J. Environ. Ecol. Eng. 7 (12) (2013) 1015–1018.[6] S. Jadoon, A. Malik, A.A. Amin, Separation of sediment contents and water from crude oil of Khurmala and Guwayer oil fields in Kurdistan region by using centrifuge method, Int. J. Adv. Eng. Res. Sci. 4 (2017) 2919–2922.[7] P.G. Ivanova, Z.V. Aneva, Assessment and assurance of quality in water measurement by coulometric karl fischer titration of petroleum products, Accredit. Qual. Assur. 10 (2006) 543–549[8] M. Meribout, A. Al Naamany, K. Al Busaidi, An acoustic system for providing the two-phase liquid profile in oil field storage tanks, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 (10) (2009) 2241–2250[9] I.M. Saied, M. Meribout, E. Kato, X.H. Zhao, Terahertz spectroscopy for measuring multiphase fractions, IEEE Trans. Terahertz Sci. Technol. 7 (3) (2017) 250–259.[10] M. Meribout, I.M. Saied, E. Al Hosani, A new FPGA-based terahertz imaging device for multiphase flow metering, IEEE Trans. Terahertz Sci. Technol. 8 (4) (2018) 418–426.[11] M. Meribout, F. Shehaz, I.M. Saied, Q. Al Bloohsi, A. AlAmri, High gas void fraction flow measurement and imaging using a THz-based device, IEEE Trans. Terahertz Sci. Technol. 9 (6) (2019) 659–668.[12] V.K. Chillara, B.T. Sturtevant, C. Pantea, D.N. Sinha, Ultrasonic sensing for noninvasive characterization of oil-water-gas flow in a pipe, AIP Conf. Proc. 1806 (1) (2017) 090014.[13] E.E. Franco, J.C. Adamowski, F. Buiochi, Ultrasonic sensor for the presence of oily contaminants in water, Dyna 79 (2012) 4–9.[14] E.E. Franco, J.C. Adamowski, R.T. Higuti, F. Buiochi, Viscosity measurement of Newtonian liquids using the complex reflection coefficient, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 (10) (2008) 2247–2253, http://dx.doi.org/10.1109/ TUFFC.923.[15] R. Kazys, A. Voleisis, R. Sliteris, Investigation of the acoustic properties of viscosity standards, Arch. Acoust. 41 (No 1) (2016) 55–58, http://dx.doi.org/ 10.1515/aoa-2016-0005.[16] H. Runrun, M. Runyang, W. Chenghui, H. Jing, Ultrasonic shear-wave reflectometry applied to monitor the dynamic viscosity of reheated edible oil, J. Food Process Eng. 43 (6) (2020) e13402, http://dx.doi.org/10.1111/jfpe.13402, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/jfpe.13402. URL https:// onlinelibrary.wiley.com/doi/abs/10.1111/jfpe.13402.[17] I. Alig, D. Lellinger, J. Sulimma, S. Tadjbakhsch, Ultrasonic shear wave reflection method for measurements of the viscoelastic properties of polymer films, Rev. Sci. Instrum. 68 (3) (1997) 1536–1542, http://dx.doi.org/10.1063/1.1147643.[18] X. Wang, K.V. Subramaniam, F. Lin, Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste, Ultrasonics (ISSN: 0041-624X) 50 (7) (2010) 726–738, http://dx.doi.org/10.1016/j.ultras.2010.02.010.[19] G. Meng, A.J. Jaworski, N.M. White, Composition measurements of crude oil and process water emulsions using thick-film ultrasonic transducers, Chem. Eng. Process.: Process Intensif. 45 (5) (2006) 383–391.[20] Z.Q. Lu, X. Yang, K. Zhao, J.X. Wei, W.J. Jin, C. Jiang, L.J. Zhao, Non-contact measurement of the water content in crude oil with all-optical detection, Energy Fuels 29 (2015) 2919–2922.[21] A. Taha, E. Ahmed, A. Ismaiel, M. Ashokkumar, X. Xu, S. Pan, H. Hu, Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions, Trends Food Sci. Technol. 105 (2020) 363–377.[22] C.M.G. Atehortúa, N. Pérez, M.A.B. Andrade, L.O.V. Pereira, J.C. Adamowski, Water-in-oil emulsions separation using an ultrasonic standing wave coalescence chamber, Ultrason. Sonochem. 57 (2019) 57–61.[23] M.J. Basante-Romo, O. Gutierrez, R.J. Camargo-Amado, Evaluacion de la citotoxicidad inducida por TIO2 modificado funcionalizado con folato y oro sobre lineas celulares de HeLa y CHO, Inform. Tecnol. 27 (5) (2016) 63–68.[24] C. Wood, S. Evans, J. Cunningham, R. O’Rorke, C. Wälti, A. Davies, Alignment of particles in microfluidic systems using standing surface acoustic waves, Appl. Phys. Lett. 92 (4) (2008) 044104.[25] E. Franco, C. Burbano, F. Buiochi, J. Lopes, Subwavelength twin ultrasound focused (STUF) beam generated by shear-to-longitudinal mode conversion in a triangular prism, Sensors Actuators A 344 (2022) 113704.[26] L.L. Foldy, The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers, Phys. Rev. 67 (3–4) (1945) 107.[27] R.L. Gibson Jr., M.N. Toksöz, Viscous attenuation of acoustic waves in suspensions, J. Acoust. Soc. Am. 85 (5) (1989) 1925–1934.[28] J. Evans, K. Attenborough, Coupled phase theory for sound propagation in emulsions, J. Acoust. Soc. Am. 102 (1) (1997) 278–282.[29] A. Richter, T. Voigt, S. Ripperger, Ultrasonic attenuation spectroscopy of emulsions with droplet sizes greater than 10 microm, J. Colloid Interface Sci. 315 (2) (2007) 482–492.[30] M. Su, X. Cai, M. Xue, L. Dong, F. Xu, Particle sizing in dense two-phase droplet systems by ultrasonic attenuation and velocity spectra, Sci. China Ser. E: Technol. Sci. 52 (6) (2009) 1502–1510.[31] B. Standard, B. Iso, Measurement and characterization of particles by acoustic methods, 2006.[32] A.S. Dukhin, P.J. Goetz (Eds.), Characterization of Liquids, Nano- and Microparticulates, and Porous Bodies using Ultrasound, second ed., in: Studies in Interface Science, vol. 24, Elsevier, 2010, ISBN: 0444536213, 9780444536211.[33] C.A. Silva, S.V. Saraiva, D. Bonetti, R.T. Higuti, R.L. Cunha, L.O. Pereira, F.V. Silva, A.M. Fileti, Application of acoustic models for polydisperse emulsion characterization using ultrasonic spectroscopy in the long wavelength regime, Colloids Surf. A 602 (2020) 125062.[34] C.A. Reyna, E.E. Franco, A.L. Durán, L.O. Pereira, M.S. Tsuzuki, F. Buiochi, Water content monitoring in water-in-oil emulsions using a piezoceramic sensor, Machines 9 (12) (2021) 335.[35] N. Perez, F. Blasina, F. Buiochi, A. Duran, J. Adamowski, Evaluation of a multiple scattering sensor for water-in-oil emulsion monitoring, in: Proceedings of Meetings on Acoustics ICU, Vol. 38, Acoustical Society of America, 2019, 055007.[36] A.L. Durán, E.E. Franco, C.A. Reyna, N. Pérez, M.S. Tsuzuki, F. Buiochi, Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor, Sensors 21 (15) (2021) 5088.[37] A. Keller, H. Coleman, Chemical introductions to estuarine and coastal systems: Biodegradable organic chemicals, 2011.[38] R. Santos, W. Loh, A. Bannwart, O. Trevisan, An overview of heavy oil properties and its recovery and transportation methods, Braz. J. Chem. Eng. 31 (2014) 571–590.[39] J. Kuskibiki, N. Akashi, T. Sannomiya, N. Chubachi, F. Dunn, VHF/UHF range bioultrasonic spectroscopy system and method, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42 (6) (1995) 1028–1039.[40] J.C. Adamowski, F. Buiochi, C. Simon, E.C. Silva, R.A. Sigelmann, Ultrasonic measurement of density of liquids, J. Acoust. Soc. Am. 97 (1) (1995) 354–361.[41] J.C. Adamowski, F. Buiochi, R.A. Sigelmann, Ultrasonic measurement of density of liquids flowing in tubes, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 (1) (1998) 48–56.[42] R.T. Higuti, B.S. Galindo, C. Kitano, F. Buiochi, J.C. Adamowski, Thermal characterization of an ultrasonic density-measurement cell, IEEE Trans. Instrum. Meas. 56 (3) (2007) 924–930.[43] C.A. Reyna, A.L. Durán, L.O. Pereira, M.S. Tsuzuki, E.E. Franco, F. Buiochi, Development of an adjustable measuring cell for ultrasonic characterization of water-in-crude oil emulsions, in: 2021 IEEE UFFC Latin America Ultrasonics Symposium, LAUS, IEEE, 2021, pp. 1–4.[44] R.T. Higuti, F. Buiochi, J.C. Adamowski, F.M. de Espinosa, Ultrasonic density measurement cell design and simulation of non-ideal effects, Ultrasonics 44 (3) (2006) 302–309.[45] R.J. Urick, A sound velocity method for determining the compressibility of finely divided substances, J. Appl. Phys. 18 (11) (1947) 983–987.[46] V. Del Grosso, C. Mader, Speed of sound in pure water, J. Acoust. Soc. Am. 52 (5B) (1972) 1442–1446.[47] A. Malaoui, R. Iqdour, M. Ankrim, A. Zeroual, M. Benhayoun, K. Quotb, New model for ultrasonic velocilty with temperature in pure water, 2005.[48] R. Reijnhart, R. Rose, Evaporation of crude oil at sea, Water Res. 16 (8) (1982) 1319–1325.[49] D.R. Lide, CRC Handbook of Chemistry and Physics, Vol. 85, CRC Press, 2004, p. 2294.[50] V.G. Morgan, C. Sad, A.F. Constantino, R.B. Azeredo, V. Lacerda, E.V. Castro, L.L. Barbosa, Droplet size distribution in water-crude oil emulsions by low-field NMR, J. Braz. Chem. Soc. 30 (2019) 1587–1598.[51] C.A. Silva, S.V. Saraiva, D. Bonetti, R.T. Higuti, R.L. Cunha, L.O. Pereira, F.V. Silva, A.M. Fileti, Measurements of bimodal droplet size distribution of emulsions using ultrasonic spectroscopy in the long and intermediate wavelength regimes, Chem. Eng. Sci. 252 (2022) 117–274.[52] M. Daaou, D. Bendedouch, Water pH and surfactant addition effects on the stability of an Algerian crude oil emulsion, J. Saudi Chem. Soc. 16 (3) (2012) 333–337.[53] M. Moradi, V. Alvarado, S. Huzurbazar, Effect of salinity on water-in-crude oil emulsion: evaluation through drop-size distribution proxy, Energy Fuels 25 (1) (2011) 260–268.[54] M. Fortuny, C.B. Oliveira, R.L. Melo, M. Nele, R.C. Coutinho, A.F. Santos, Effect of salinity, temperature, water content, and pH on the microwave demulsification of crude oil emulsions, Energy Fuels 21 (3) (2007) 1358–1364.Water-in-crude oil emulsionAcoustic propertiesUrick’s modelWater contentDelay line cellComunidad generalPublicationff78380a-274b-4973-8760-dee857b38a0dvirtual::5342-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::5342-1https://scholar.google.com/citations?user=4paPIoAAAAAJ&hl=esvirtual::5342-10000-0001-7518-704Xvirtual::5342-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001243730virtual::5342-1ORIGINALLICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/d6d2eb64-8d8b-42f5-9ca1-307c04791082/download6987b791264a2b5525252450f99b10d1MD5210614/15552oai:red.uao.edu.co:10614/155522024-04-19 10:10:18.804https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2023metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==