Isolation, characterization, and agent-based modeling of mesenchymal stem cells in a bio-construct for myocardial regeneration scaffold design
Regenerative medicine involves methods to control and modify normal tissue repair processes. Polymer and cell constructs are under research to create tissue that replaces the affected area in cardiac tissue after myocardial infarction (MI). The aim of the present study is to evaluate the behavior of...
- Autores:
-
Rojas Arciniegas, Álvaro José
Neuta-Arciniegas, Paola
Peña-Reyes, Carlos
Melo-Escobar, Maria Isabel
Ramírez López, Victoria
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11552
- Acceso en línea:
- http://hdl.handle.net/10614/11552
- Palabra clave:
- Mecanismos de control celular
Cellular control mechanisms
Agent-based modeling
Biological system modeling
Cell migration
Cell viability
Computational modeling
Myocardium
Myocardial infarction
Scaffold
Stem cells
Tissue engineering
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_4ef4360f1cb8df652b3d0f08b1aa1d3a |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11552 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Isolation, characterization, and agent-based modeling of mesenchymal stem cells in a bio-construct for myocardial regeneration scaffold design |
title |
Isolation, characterization, and agent-based modeling of mesenchymal stem cells in a bio-construct for myocardial regeneration scaffold design |
spellingShingle |
Isolation, characterization, and agent-based modeling of mesenchymal stem cells in a bio-construct for myocardial regeneration scaffold design Mecanismos de control celular Cellular control mechanisms Agent-based modeling Biological system modeling Cell migration Cell viability Computational modeling Myocardium Myocardial infarction Scaffold Stem cells Tissue engineering |
title_short |
Isolation, characterization, and agent-based modeling of mesenchymal stem cells in a bio-construct for myocardial regeneration scaffold design |
title_full |
Isolation, characterization, and agent-based modeling of mesenchymal stem cells in a bio-construct for myocardial regeneration scaffold design |
title_fullStr |
Isolation, characterization, and agent-based modeling of mesenchymal stem cells in a bio-construct for myocardial regeneration scaffold design |
title_full_unstemmed |
Isolation, characterization, and agent-based modeling of mesenchymal stem cells in a bio-construct for myocardial regeneration scaffold design |
title_sort |
Isolation, characterization, and agent-based modeling of mesenchymal stem cells in a bio-construct for myocardial regeneration scaffold design |
dc.creator.fl_str_mv |
Rojas Arciniegas, Álvaro José Neuta-Arciniegas, Paola Peña-Reyes, Carlos Melo-Escobar, Maria Isabel Ramírez López, Victoria |
dc.contributor.author.none.fl_str_mv |
Rojas Arciniegas, Álvaro José Neuta-Arciniegas, Paola Peña-Reyes, Carlos Melo-Escobar, Maria Isabel Ramírez López, Victoria |
dc.subject.lemb.spa.fl_str_mv |
Mecanismos de control celular |
topic |
Mecanismos de control celular Cellular control mechanisms Agent-based modeling Biological system modeling Cell migration Cell viability Computational modeling Myocardium Myocardial infarction Scaffold Stem cells Tissue engineering |
dc.subject.lemb.eng.fl_str_mv |
Cellular control mechanisms |
dc.subject.proposal.eng.fl_str_mv |
Agent-based modeling Biological system modeling Cell migration Cell viability Computational modeling Myocardium Myocardial infarction Scaffold Stem cells Tissue engineering |
description |
Regenerative medicine involves methods to control and modify normal tissue repair processes. Polymer and cell constructs are under research to create tissue that replaces the affected area in cardiac tissue after myocardial infarction (MI). The aim of the present study is to evaluate the behavior of differentiated and undifferentiated mesenchymal stem cells (MSCs) in vitro and in silico and to compare the results that both offer when it comes to the design process of biodevices for the treatment of infarcted myocardium in biomodels. To assess in vitro behavior, MSCs are isolated from rat bone marrow and seeded undifferentiated and differentiated in multiple scaffolds of a gelled biomaterial. Subsequently, cell behavior is evaluated by trypan blue and fluorescence microscopy, which showed that the cells presented high viability and low cell migration in the biomaterial. An agent-based model intended to reproduce as closely as possible the behavior of individual MSCs by simulating cellular-level processes was developed, where the in vitro results are used to identify parameters in the agent-based model that is developed, and which simulates cellular-level processes: Apoptosis, differentiation, proliferation, and migration. Thanks to the results obtained, suggestions for good results in the design and fabrication of the proposed scaffolds and how an agent-based model can be helpful for testing hypothesis are presented in the discussion. It is concluded that assessment of cell behavior through the observation of viability, proliferation, migration, inflammation reduction, and spatial composition in vitro and in silico, represents an appropriate strategy for scaffold engineering |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-20T19:10:25Z |
dc.date.available.none.fl_str_mv |
2019-11-20T19:10:25Z |
dc.date.issued.none.fl_str_mv |
2019-05-19 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
2306-5729 |
dc.identifier.uri.spa.fl_str_mv |
http://hdl.handle.net/10614/11552 |
dc.identifier.doi.none.fl_str_mv |
doi:10.3390/data4020071 |
identifier_str_mv |
2306-5729 doi:10.3390/data4020071 |
url |
http://hdl.handle.net/10614/11552 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
19 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.none.fl_str_mv |
4 |
dc.relation.cites.none.fl_str_mv |
Ramírez López, D. V., Melo Escobar, M. I., Peña-Reyes, C. A., Rojas Arciniegas, Á. J., & Neuta Arciniegas, P. A. (2019). Isolation, Characterization, and Agent-Based Modeling of Mesenchymal Stem Cells in a Bio-construct for Myocardial Regeneration Scaffold Design. Data, 4(2), 71, pp 1-19. doi:10.3390/data4020071 |
dc.relation.ispartofjournal.none.fl_str_mv |
Data |
dc.relation.references.none.fl_str_mv |
1. Malliaras, K.; Marbán, E. Cardiac cell therapy: Where we’ve been, where we are, and where we should be headed. Br. Med Bull. 2011, 98, 161–185. [CrossRef] 2. Chan, B.P.; Leong, K.W. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur. spine J. 2018, 17 (Suppl. 4), 467–479. [CrossRef] 3. Domenech, M.; Polo-Corrales, L.; Ramirez-Vick, J.E.; Freytes, D.O. Tissue Engineering Strategies for Myocardial Regeneration: Acellular Versus Cellular Scaffolds? Tissue Eng. Part B Rev. 2016, 22, 438–458. [CrossRef] [PubMed] 4. Bitar, K.N.; Zakhem, E. Design strategies of biodegradable scaffolds for tissue regeneration. Biomed. Eng. Comput. Biol. 2014, 6, 13–20. [CrossRef] [PubMed] 5. Brodland, G.W. How computational models can help unlock biological systems. Semin. Cell Dev. Biol. 2015, 47–48, 62–73. [CrossRef] 6. Briers, D.; Haghighi, I.; White, D.; Kemp, M.L.; Belta, C. Pattern synthesis in a 3D agent-based model of stem cell differentiation. In Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016. 7. Tanaka, N.; Yamashita, T.; Sato, A.; Vogel, V.; Tanaka, Y. Simple agarose micro-confinement array and machine-learning-based classification for analyzing the patterned differentiation of mesenchymal stem cells. PLoS ONE 2017, 12, 1–17. [CrossRef] [PubMed] 8. Inverno, M.; Saunders, R. Agent-Based Modelling of Stem Cell Self- organisation in a Niche. Engineering Self-Organising Systems: Methodologies and Applications; Springer: Berlin, Germany, 2005; pp. 52–68. 9. Garzoni, L.R.; Rossi, M.I.D.; de Barros, A.P.D.N. Dissecting coronary angiogenesis: 3D co-culture of cardiomyocytes with endothelial or mesenchymal cells. Exp. Cell Res. 2009, 315, 3406–3418. [CrossRef] [PubMed] 10. Ramirez Lopez, D.V.; Pena-Reyes, C.; Rojas, A.J. Agent-based modeling of mesenchymal stem cells on a 3D-printed bio-device for the regenerative treatment of the infarcted myocardium. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 2033–2040. 11. Wilensky, U. What is NetLogo? The NetLogo 6.0.2 User Manual; Northwestern University: Evanston, IL, USA, 1999. 12. Hatzistergos, K.E.; Quevedo, H.; Oskouei, B.N.; Hu, Q.; Feigenbaum, G.S.; Margitich, I.S.; Mazhari, R.; Boyle, A.J.; Zambrano, J.P.; Rodriguez, J.E.; et al. Bone Marrow Mesenchymal Stem Cells Stimulate Cardiac Stem Cell Proliferation and Differentiation. Circulation Res. 2010, 107, 913–922. [CrossRef] [PubMed] 13. Frangogiannis, N.G.; Smith, C.W.; Entman, M.L. The inflammatory response in myocardial infarction. Cardiovasc. Res. 2002, 53, 31–47. [CrossRef] 14. Swi ˛atkiewicz, I.; Kozi ´nski, M.; Magielski, P. Course of inflammatory activation during acute myocardial ´infarction in patients with preserved left ventricular systolic function. Folia Med. Copernic. 2014, 2, 6–18. 15. Martire, A.; Bedada, F.B.; Uchida, S. Mesenchymal stem cells attenuate inflammatory processes in the heart and lung via inhibition of TNF signaling. Basic Res. Cardiol. 2016, 111, 54. [CrossRef] [PubMed] 16. Cano, G.; García-Rodríguez, J.; Orts, S. Predicción de solubilidad de fármacos usando máquinas de soporte vectorial sobre unidades de procesamiento gráfico. Rev. Int. Methodos. Numer. Calc. Diseno. 2007, 33, 97–102. [CrossRef] 17. Tan, J.; et al. Ablation of TNF-α receptors influences mesenchymal stem cell-mediated cardiac protection against ischemia. Shock 2010, 3, 236–242. [CrossRef] [PubMed] 18. Høyem, M.R.; Måløy, F.; Jakobsen, P.; Brandsdal, B.O. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division. J. Theor. Biol. 2015, 380, 203–219. [CrossRef] [PubMed] 19. Thrivikraman, G.; Boda, S.K.; Basu, B. Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials 2018, 150, 60–86. [CrossRef] 20. Garijo, N.; Manzano, R.; Osta, R.; Perez, M.A. Stochastic cellular automata model of cell migration, proliferation and differentiation: Validation with in vitro cultures of muscle satellite cells. J. Theor. Biol. 2012, 314, 1–9. [CrossRef] 21. Toma, C.; Pittenger, M.F.; Cahill, K.S.; Byrne, B.J.; Kessler, P.D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002, 105, 93–98. [CrossRef] 22. Yu, H.-S.; Won, J.-E.; Jin, G.-Z.; Kim, H.-W. Construction of mesenchymal stem cell-containing collagen gel with a macrochanneled polycaprolactone scaffold and the flow perfusion culturing for bone tissue engineering. Biores. Open Access 2012, 1, 124–136. [CrossRef] 23. Spees, J.L.; Lee, R.H.; Gregory, C.A. Mechanisms of mesenchymal stem/stromal cell function. Stem cell Res. Ther. 2016, 7, 125. [CrossRef] [PubMed] 24. Krampe, B.; Al-Rubeai, M. Cell death in mammalian cell culture: Molecular mechanisms and cell line engineering strategies. Cytotechnology 2010, 62, 175–188. [CrossRef] 25. Janeczek Portalska, K.; Leferink, A.; Groen, N. Endothelial Differentiation of Mesenchymal Stromal Cells. PLoS ONE 2012, 7, e46842. [CrossRef] [PubMed] 26. Bear, J.E.; Haugh, J.M. Directed migration of mesenchymal cells: Where signaling and the cytoskeleton meet. Curr Opin. Cell Biol. 2014, 30, 74–82. [CrossRef] [PubMed] |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
19 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.eng.fl_str_mv |
MDPI |
dc.source.spa.fl_str_mv |
reponame:Repositorio Institucional UAO |
institution |
Universidad Autónoma de Occidente |
reponame_str |
Repositorio Institucional UAO |
collection |
Repositorio Institucional UAO |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/28eea816-de22-460c-a744-bb4c10b663d4/download https://red.uao.edu.co/bitstreams/c6311a6b-1673-4fdc-a847-1ffad5bc86b8/download https://red.uao.edu.co/bitstreams/6ddc0438-a0c8-4907-8a7b-25fa1d3c4725/download https://red.uao.edu.co/bitstreams/dd27d272-6499-4917-b7c0-772f05477d0f/download https://red.uao.edu.co/bitstreams/e2760f60-4c45-4827-a495-3ecb21440951/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 d44f18118764fd0242fdf66f08c23c4e f76df939d42373ee4f92c6e845960bc2 59849fa16be104f1bc27c9f2853848fd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1828230057300066304 |
spelling |
Rojas Arciniegas, Álvaro Josévirtual::4450-1Neuta-Arciniegas, Paolaf12d6cc0eb11ddf742dadbd88cc8e3baPeña-Reyes, Carlosf8830e520e8c527f94d7aab47c632dffMelo-Escobar, Maria Isabel6a149ba8677a0eb6022389614eb2ea08Ramírez López, Victoria769b56c16633242a3cf994ddae4597d5Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-20T19:10:25Z2019-11-20T19:10:25Z2019-05-192306-5729http://hdl.handle.net/10614/11552doi:10.3390/data4020071Regenerative medicine involves methods to control and modify normal tissue repair processes. Polymer and cell constructs are under research to create tissue that replaces the affected area in cardiac tissue after myocardial infarction (MI). The aim of the present study is to evaluate the behavior of differentiated and undifferentiated mesenchymal stem cells (MSCs) in vitro and in silico and to compare the results that both offer when it comes to the design process of biodevices for the treatment of infarcted myocardium in biomodels. To assess in vitro behavior, MSCs are isolated from rat bone marrow and seeded undifferentiated and differentiated in multiple scaffolds of a gelled biomaterial. Subsequently, cell behavior is evaluated by trypan blue and fluorescence microscopy, which showed that the cells presented high viability and low cell migration in the biomaterial. An agent-based model intended to reproduce as closely as possible the behavior of individual MSCs by simulating cellular-level processes was developed, where the in vitro results are used to identify parameters in the agent-based model that is developed, and which simulates cellular-level processes: Apoptosis, differentiation, proliferation, and migration. Thanks to the results obtained, suggestions for good results in the design and fabrication of the proposed scaffolds and how an agent-based model can be helpful for testing hypothesis are presented in the discussion. It is concluded that assessment of cell behavior through the observation of viability, proliferation, migration, inflammation reduction, and spatial composition in vitro and in silico, represents an appropriate strategy for scaffold engineeringapplication/pdf19 páginasengMDPIDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2reponame:Repositorio Institucional UAOIsolation, characterization, and agent-based modeling of mesenchymal stem cells in a bio-construct for myocardial regeneration scaffold designArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Mecanismos de control celularCellular control mechanismsAgent-based modelingBiological system modelingCell migrationCell viabilityComputational modelingMyocardiumMyocardial infarctionScaffoldStem cellsTissue engineering1914Ramírez López, D. V., Melo Escobar, M. I., Peña-Reyes, C. A., Rojas Arciniegas, Á. J., & Neuta Arciniegas, P. A. (2019). Isolation, Characterization, and Agent-Based Modeling of Mesenchymal Stem Cells in a Bio-construct for Myocardial Regeneration Scaffold Design. Data, 4(2), 71, pp 1-19. doi:10.3390/data4020071Data1. Malliaras, K.; Marbán, E. Cardiac cell therapy: Where we’ve been, where we are, and where we should be headed. Br. Med Bull. 2011, 98, 161–185. [CrossRef]2. Chan, B.P.; Leong, K.W. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur. spine J. 2018, 17 (Suppl. 4), 467–479. [CrossRef]3. Domenech, M.; Polo-Corrales, L.; Ramirez-Vick, J.E.; Freytes, D.O. Tissue Engineering Strategies for Myocardial Regeneration: Acellular Versus Cellular Scaffolds? Tissue Eng. Part B Rev. 2016, 22, 438–458. [CrossRef] [PubMed]4. Bitar, K.N.; Zakhem, E. Design strategies of biodegradable scaffolds for tissue regeneration. Biomed. Eng. Comput. Biol. 2014, 6, 13–20. [CrossRef] [PubMed]5. Brodland, G.W. How computational models can help unlock biological systems. Semin. Cell Dev. Biol. 2015, 47–48, 62–73. [CrossRef]6. Briers, D.; Haghighi, I.; White, D.; Kemp, M.L.; Belta, C. Pattern synthesis in a 3D agent-based model of stem cell differentiation. In Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016.7. Tanaka, N.; Yamashita, T.; Sato, A.; Vogel, V.; Tanaka, Y. Simple agarose micro-confinement array and machine-learning-based classification for analyzing the patterned differentiation of mesenchymal stem cells. PLoS ONE 2017, 12, 1–17. [CrossRef] [PubMed]8. Inverno, M.; Saunders, R. Agent-Based Modelling of Stem Cell Self- organisation in a Niche. Engineering Self-Organising Systems: Methodologies and Applications; Springer: Berlin, Germany, 2005; pp. 52–68.9. Garzoni, L.R.; Rossi, M.I.D.; de Barros, A.P.D.N. Dissecting coronary angiogenesis: 3D co-culture of cardiomyocytes with endothelial or mesenchymal cells. Exp. Cell Res. 2009, 315, 3406–3418. [CrossRef] [PubMed]10. Ramirez Lopez, D.V.; Pena-Reyes, C.; Rojas, A.J. Agent-based modeling of mesenchymal stem cells on a 3D-printed bio-device for the regenerative treatment of the infarcted myocardium. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 2033–2040.11. Wilensky, U. What is NetLogo? The NetLogo 6.0.2 User Manual; Northwestern University: Evanston, IL, USA, 1999.12. Hatzistergos, K.E.; Quevedo, H.; Oskouei, B.N.; Hu, Q.; Feigenbaum, G.S.; Margitich, I.S.; Mazhari, R.; Boyle, A.J.; Zambrano, J.P.; Rodriguez, J.E.; et al. Bone Marrow Mesenchymal Stem Cells Stimulate Cardiac Stem Cell Proliferation and Differentiation. Circulation Res. 2010, 107, 913–922. [CrossRef] [PubMed]13. Frangogiannis, N.G.; Smith, C.W.; Entman, M.L. The inflammatory response in myocardial infarction. Cardiovasc. Res. 2002, 53, 31–47. [CrossRef]14. Swi ˛atkiewicz, I.; Kozi ´nski, M.; Magielski, P. Course of inflammatory activation during acute myocardial ´infarction in patients with preserved left ventricular systolic function. Folia Med. Copernic. 2014, 2, 6–18.15. Martire, A.; Bedada, F.B.; Uchida, S. Mesenchymal stem cells attenuate inflammatory processes in the heart and lung via inhibition of TNF signaling. Basic Res. Cardiol. 2016, 111, 54. [CrossRef] [PubMed]16. Cano, G.; García-Rodríguez, J.; Orts, S. Predicción de solubilidad de fármacos usando máquinas de soporte vectorial sobre unidades de procesamiento gráfico. Rev. Int. Methodos. Numer. Calc. Diseno. 2007, 33, 97–102. [CrossRef]17. Tan, J.; et al. Ablation of TNF-α receptors influences mesenchymal stem cell-mediated cardiac protection against ischemia. Shock 2010, 3, 236–242. [CrossRef] [PubMed]18. Høyem, M.R.; Måløy, F.; Jakobsen, P.; Brandsdal, B.O. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division. J. Theor. Biol. 2015, 380, 203–219. [CrossRef] [PubMed]19. Thrivikraman, G.; Boda, S.K.; Basu, B. Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials 2018, 150, 60–86. [CrossRef]20. Garijo, N.; Manzano, R.; Osta, R.; Perez, M.A. Stochastic cellular automata model of cell migration, proliferation and differentiation: Validation with in vitro cultures of muscle satellite cells. J. Theor. Biol. 2012, 314, 1–9. [CrossRef]21. Toma, C.; Pittenger, M.F.; Cahill, K.S.; Byrne, B.J.; Kessler, P.D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002, 105, 93–98. [CrossRef]22. Yu, H.-S.; Won, J.-E.; Jin, G.-Z.; Kim, H.-W. Construction of mesenchymal stem cell-containing collagen gel with a macrochanneled polycaprolactone scaffold and the flow perfusion culturing for bone tissue engineering. Biores. Open Access 2012, 1, 124–136. [CrossRef]23. Spees, J.L.; Lee, R.H.; Gregory, C.A. Mechanisms of mesenchymal stem/stromal cell function. Stem cell Res. Ther. 2016, 7, 125. [CrossRef] [PubMed]24. Krampe, B.; Al-Rubeai, M. Cell death in mammalian cell culture: Molecular mechanisms and cell line engineering strategies. Cytotechnology 2010, 62, 175–188. [CrossRef]25. Janeczek Portalska, K.; Leferink, A.; Groen, N. Endothelial Differentiation of Mesenchymal Stromal Cells. PLoS ONE 2012, 7, e46842. [CrossRef] [PubMed]26. Bear, J.E.; Haugh, J.M. Directed migration of mesenchymal cells: Where signaling and the cytoskeleton meet. Curr Opin. Cell Biol. 2014, 30, 74–82. [CrossRef] [PubMed]Publication5d4f6e65-758a-44ee-be02-f12af232a478virtual::4450-15d4f6e65-758a-44ee-be02-f12af232a478virtual::4450-1https://scholar.google.com/citations?user=Jk__bOIAAAAJ&hl=envirtual::4450-10000-0001-9242-799Xvirtual::4450-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000657956virtual::4450-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/28eea816-de22-460c-a744-bb4c10b663d4/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/c6311a6b-1673-4fdc-a847-1ffad5bc86b8/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALIsolation, characterization, and agent-based modeling of mesenchymal stem cells in a bio-construct for myocardial regeneration saffold design.pdfIsolation, characterization, and agent-based modeling of mesenchymal stem cells in a bio-construct for myocardial regeneration saffold design.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf6768241https://red.uao.edu.co/bitstreams/6ddc0438-a0c8-4907-8a7b-25fa1d3c4725/downloadd44f18118764fd0242fdf66f08c23c4eMD54TEXTIsolation, characterization, and agent-based modeling of mesenchymal stem cells in a bio-construct for myocardial regeneration saffold design.pdf.txtIsolation, characterization, and agent-based modeling of mesenchymal stem cells in a bio-construct for myocardial regeneration saffold design.pdf.txtExtracted texttext/plain84820https://red.uao.edu.co/bitstreams/dd27d272-6499-4917-b7c0-772f05477d0f/downloadf76df939d42373ee4f92c6e845960bc2MD55THUMBNAILIsolation, characterization, and agent-based modeling of mesenchymal stem cells in a bio-construct for myocardial regeneration saffold design.pdf.jpgIsolation, characterization, and agent-based modeling of mesenchymal stem cells in a bio-construct for myocardial regeneration saffold design.pdf.jpgGenerated Thumbnailimage/jpeg14880https://red.uao.edu.co/bitstreams/e2760f60-4c45-4827-a495-3ecb21440951/download59849fa16be104f1bc27c9f2853848fdMD5610614/11552oai:red.uao.edu.co:10614/115522024-03-14 10:11:04.806https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |