Electron g-factor study in Ga1-xInxAsySb1-yGaSb and GaSb-Ga1-xInxAsySb1-y-GaSb quaternary alloy semiconductor spherical quantum dots

Within an interpolation scheme, we have determined the electron g-factor and the Kane interband energetic parameter of Ga1 − xInxAsySb1 − y–GaSb semiconductors quaternary alloy and used them to determine the electron g-factor in GaSb–Ga1 − xInxAsySb1 − y–GaSb spherical quantum dots (SQDs) as well as...

Full description

Autores:
Sánchez Cano, Robert
Porras Montenegro, Nelson
Tipo de recurso:
Article of journal
Fecha de publicación:
2011
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/15106
Acceso en línea:
https://hdl.handle.net/10614/15106
https://red.uao.edu.co/
Palabra clave:
Semiconductores
Comunicación cuántica
Quantum communication
Semiconductors
Rights
openAccess
License
Derechos reservados - Editorial IOP, 2011
id REPOUAO2_4d617df50ed6d204e5d2b3d94074c672
oai_identifier_str oai:red.uao.edu.co:10614/15106
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Electron g-factor study in Ga1-xInxAsySb1-yGaSb and GaSb-Ga1-xInxAsySb1-y-GaSb quaternary alloy semiconductor spherical quantum dots
title Electron g-factor study in Ga1-xInxAsySb1-yGaSb and GaSb-Ga1-xInxAsySb1-y-GaSb quaternary alloy semiconductor spherical quantum dots
spellingShingle Electron g-factor study in Ga1-xInxAsySb1-yGaSb and GaSb-Ga1-xInxAsySb1-y-GaSb quaternary alloy semiconductor spherical quantum dots
Semiconductores
Comunicación cuántica
Quantum communication
Semiconductors
title_short Electron g-factor study in Ga1-xInxAsySb1-yGaSb and GaSb-Ga1-xInxAsySb1-y-GaSb quaternary alloy semiconductor spherical quantum dots
title_full Electron g-factor study in Ga1-xInxAsySb1-yGaSb and GaSb-Ga1-xInxAsySb1-y-GaSb quaternary alloy semiconductor spherical quantum dots
title_fullStr Electron g-factor study in Ga1-xInxAsySb1-yGaSb and GaSb-Ga1-xInxAsySb1-y-GaSb quaternary alloy semiconductor spherical quantum dots
title_full_unstemmed Electron g-factor study in Ga1-xInxAsySb1-yGaSb and GaSb-Ga1-xInxAsySb1-y-GaSb quaternary alloy semiconductor spherical quantum dots
title_sort Electron g-factor study in Ga1-xInxAsySb1-yGaSb and GaSb-Ga1-xInxAsySb1-y-GaSb quaternary alloy semiconductor spherical quantum dots
dc.creator.fl_str_mv Sánchez Cano, Robert
Porras Montenegro, Nelson
dc.contributor.author.none.fl_str_mv Sánchez Cano, Robert
Porras Montenegro, Nelson
dc.subject.armarc.spa.fl_str_mv Semiconductores
Comunicación cuántica
topic Semiconductores
Comunicación cuántica
Quantum communication
Semiconductors
dc.subject.armarc.eng.fl_str_mv Quantum communication
Semiconductors
description Within an interpolation scheme, we have determined the electron g-factor and the Kane interband energetic parameter of Ga1 − xInxAsySb1 − y–GaSb semiconductors quaternary alloy and used them to determine the electron g-factor in GaSb–Ga1 − xInxAsySb1 − y–GaSb spherical quantum dots (SQDs) as well as to calculate the Landau levels. In the low-dimensional systems a framework of an eight-band effective-mass model in which the contribution of the conduction remote bands and the mixing between the conduction band Γc6 and the valence bands Γv8 and Γv7 states are considered. Our results show that the dependence of the bulk electron g-factor as a function of x can be fit with a cubic polynomial. We have established a relation between the electron g-factor and both the radius and the indium concentration in GaSb–Ga1 − xInxAsySb1 − y–GaSb SQDs. For these quaternary SQDs with a parabolic confining potential we have found that the difference between the electron energy levels corresponding to spin-up and spin-down states is larger (∼ 10 meV) than the corresponding states in GaAs–(Ga, Al)As quantum wells (QWs) (∼ 0.2 meV) of comparable dimensions and increases with the applied magnetic field
publishDate 2011
dc.date.issued.none.fl_str_mv 2011
dc.date.accessioned.none.fl_str_mv 2023-11-28T13:31:19Z
dc.date.available.none.fl_str_mv 2023-11-28T13:31:19Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0268-1242
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/15106
dc.identifier.eissn.spa.fl_str_mv 1361-6641
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 0268-1242
1361-6641
Universidad Autónoma de Occidente
Repositorio Educativo Digital
url https://hdl.handle.net/10614/15106
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationissue.spa.fl_str_mv 10
dc.relation.citationvolume.spa.fl_str_mv 26
dc.relation.cites.spa.fl_str_mv Sánchez Cano, R. y Porras Montenegro, N. (2011). lectron g-factor study in Ga1 − xInxAsySb1 − y–GaSb and GaSb–Ga1 − xInxAsySb1 − y–GaSb quaternary alloy semiconductor spherical quantum dots. Semiconductor Science and Technology. 26(10). 1-7. https://hdl.handle.net/10614/15106
dc.relation.ispartofjournal.spa.fl_str_mv Semiconductor Science and Technology
dc.relation.references.none.fl_str_mv [1]Joullié P, Christol P, Baranov A N and Vicet A 2003 Solid-state mid-infrared laser sources Topics in Applied Physics vol 89 ed I T Sorokina and K L Vodopyanov (Berlin: Springer) pp 1–59 Google Scholar
[2]Ru G, Zheng Y and Li A 1995 J. Appl. Phys. 77 6721–3 Crossref Google Scholar
[3]Mikhailova M P, Moiseev K D and Yakovlev Y P 2004 Semicond. Sci. Technol. 19 R109–R128 Google Scholar
[4]Vicet A, Nicolas J C, Genty F, Rouillard Y, Skouri E M, Baranov A N and Alibert C 2000 IEE Proc., Optoelectron. 147 172–6 Crossref Google Scholar
[5]Andreev I A, Il'inskaya N D, Kunitsyna E V, Mikhailova M P and Yakovlev Yu P 2003 Semicond. 37 949–54 Crossref Google Scholar
[6]Stoyanov N D, Mikhailova M P, Andreichuk O V, Moiseev K D, Andreev I A, Afrailov M A and Yakovlev Yu P 2001 Semicond. 35 453–8 Crossref Google Scholar
[7]Kosaka H, Kiselev A A, Baron F A, Kim K W and Yablonovitch E 2001 Electron. Lett. 37 464–5 Crossref Google Scholar
[8]Kiselev A A, Kim K W and Yablonovitch E 2002 Physica E 13 630–3 Crossref Google Scholar
[9]Baranov A N, Bertru N, Cuminal Y, Goissier G, Rouillard Y, Nicolas J C, Grech P, Joullié A F and Alibert C 1998 Proc. SPIE 3284 247 Crossref Google Scholar
[10]Magri R, Zunger A and Kroemer H 2005 J. Appl. Phys. 98 043701 Crossref Google Scholar
[11]Palmer D W 1999 Microelectron. J. 30 665–72 Crossref Google Scholar
[12]Krijn M P C M 1991 Semicond. Sci. Technol. 6 27 Crossref Google Scholar
[13]Afrailov M A 2008 Thin Solid Films 516 1227–31 Crossref Google Scholar
[14]Adachi S 2006 Springer Handbook of Electronics and Photonic Materials ed S Kasap and P Capper (Berlin: Springer) pp 735–48 Crossref Google Scholar View article
[15]Mikhailova M P 1999 Handbook Series on Semiconductor Parameters vol 2 ed M Levinshtein, S Rumyantsev and M Shur (Singapore: World Scientific) pp 180–91 Crossref Google Scholar
[16]Hermann C and Weisbuch C 1977 Phys. Rev. B 15 823–33 Crossref Google Scholar
[17]Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815 Crossref Google Scholar
[18]Mikhailova M P and Titkov A N 1994 Semicond. Sci. Technol. 9 1279 Crossref Google Scholar
[19]Sánchez-Cano R and Porras-Montenegro N 2010 Physica E 43 76–80 Crossref Google Scholar View article
[20]Adachi S 2005 Properties of Group IV, III–V and II–VI Semiconductors (Wiley Series in Materials for Electronic and Optoelectronic Applications) (Chichester: Wiley) pp 195–8 Google Scholar
[21]Rodina A V, Efros Al L and Alekseev A Yu 2003 Phys. Rev. B 67 155312 IOPscience Google Scholar
[22]Pidgeon C R and Brown R N 1966 Phys. Rev. 146 575–83 Crossref Google Scholar
[23]Sercel P C and Vahala K J 1990 Phys. Rev. B 42 3690–710 Crossref Google Scholar
[24]Planelles J and Jaskólski W 2003 J. Phys.: Condens. Matter 15 L67–L75 Google Scholar
[25]Roth L M, Lax B and Zwerdling S 1959 Phys. Rev. 114 90–104 Crossref Google Scholar
[26]Lax B, Mavroides J G, Zeiger H J and Keyes R J 1961 Phys. Rev. 112 31–5 Crossref Google Scholar
[27]Kiselev A A and Ivchenko E L 1998 Phys. Rev. B 58 16353–9 Crossref Google Scholar
[28]Fock V 1928 Z. Phys. 47 446–8 Crossref Google Scholar
[29]Darwin C G 1930 Prod. Camb. Phil. Soc. 27 86–90 Crossref Google Scholar
[30]Chakraborty T 1999 Quantum Dots 1st edn (Amsterdam: Elsevier) pp 12–4 Google Scholar
[31]Prado S J, Trallero-Giner C, López-Richard V, Alcalde A M and Marques G E 2004 Physica E 20 286–9 Crossref Google Scholar
[32]Prado S J, Trallero-Giner C, Alcalde A M, López-Richard V and Marques G E 2004 Phys. Rev. B 69 201310 IOPscience Google Scholar
[33]Nakaoka T, Saito T, Tatebayashi J and Arakawa Y 2004 Phys. Rev. B 70 235337 IOPscience Google Scholar
[34]Sheng W 2008 Physica E 40 1473–5 Crossref Google Scholar View article
[35]Sheng W 2010 Appl. Phys. Lett. 96 133102 Crossref Google Scholar
[36]Kudrawiec R and Misiewicz J 2009 J. Phys.: Conf. Ser. 146 012029 Google Scholar
[37]de Dios-Leyva M, Porras-Montenegro N, Brandi H S and Oliveira L E 2006 J. Appl. Phys. 99 104303 Crossref Google Scholar
[38]de Dios-Leyva M, Reyes-Gómez E, Perdomo-Leiva C A and Oliveira L E 2006 Phys. Rev. B 73 085316 IOPscience Google Scholar
[39]Tadic M and Peeters F M 2005 Phys. Rev. B 71 125342 IOPscience Google Scholar
[40]Revathi M and John Peter A 2010 Solid Stat Commun. 150 816–9 Crossref Google Scholar View article
dc.rights.spa.fl_str_mv Derechos reservados - Editorial IOP, 2011
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Editorial IOP, 2011
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Editorial IOP
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/b1a2b4fd-11b0-444e-bcc7-d6c14e12b392/download
https://red.uao.edu.co/bitstreams/308b5328-d33f-4756-920a-a63908e5caef/download
https://red.uao.edu.co/bitstreams/a39a3d2d-22f6-4bcf-945f-9fe2ac5624d2/download
https://red.uao.edu.co/bitstreams/6defc820-4fc6-4e72-88a8-410d09effa8e/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
a259da1fa6cc0ed4f6572b650d55db08
e2600b71c6276cc8ac77f834345994ed
8b1b706059372c3aa0caf8c1f6884c47
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260095369871360
spelling Sánchez Cano, Robertvirtual::4600-1Porras Montenegro, Nelson3306619e6cb5c07b69120fbf5bd6292e2023-11-28T13:31:19Z2023-11-28T13:31:19Z20110268-1242https://hdl.handle.net/10614/151061361-6641Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/Within an interpolation scheme, we have determined the electron g-factor and the Kane interband energetic parameter of Ga1 − xInxAsySb1 − y–GaSb semiconductors quaternary alloy and used them to determine the electron g-factor in GaSb–Ga1 − xInxAsySb1 − y–GaSb spherical quantum dots (SQDs) as well as to calculate the Landau levels. In the low-dimensional systems a framework of an eight-band effective-mass model in which the contribution of the conduction remote bands and the mixing between the conduction band Γc6 and the valence bands Γv8 and Γv7 states are considered. Our results show that the dependence of the bulk electron g-factor as a function of x can be fit with a cubic polynomial. We have established a relation between the electron g-factor and both the radius and the indium concentration in GaSb–Ga1 − xInxAsySb1 − y–GaSb SQDs. For these quaternary SQDs with a parabolic confining potential we have found that the difference between the electron energy levels corresponding to spin-up and spin-down states is larger (∼ 10 meV) than the corresponding states in GaAs–(Ga, Al)As quantum wells (QWs) (∼ 0.2 meV) of comparable dimensions and increases with the applied magnetic fieldapplication/pdfengEditorial IOPDerechos reservados - Editorial IOP, 2011https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Electron g-factor study in Ga1-xInxAsySb1-yGaSb and GaSb-Ga1-xInxAsySb1-y-GaSb quaternary alloy semiconductor spherical quantum dotsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85SemiconductoresComunicación cuánticaQuantum communicationSemiconductors1026Sánchez Cano, R. y Porras Montenegro, N. (2011). lectron g-factor study in Ga1 − xInxAsySb1 − y–GaSb and GaSb–Ga1 − xInxAsySb1 − y–GaSb quaternary alloy semiconductor spherical quantum dots. Semiconductor Science and Technology. 26(10). 1-7. https://hdl.handle.net/10614/15106Semiconductor Science and Technology[1]Joullié P, Christol P, Baranov A N and Vicet A 2003 Solid-state mid-infrared laser sources Topics in Applied Physics vol 89 ed I T Sorokina and K L Vodopyanov (Berlin: Springer) pp 1–59 Google Scholar[2]Ru G, Zheng Y and Li A 1995 J. Appl. Phys. 77 6721–3 Crossref Google Scholar[3]Mikhailova M P, Moiseev K D and Yakovlev Y P 2004 Semicond. Sci. Technol. 19 R109–R128 Google Scholar[4]Vicet A, Nicolas J C, Genty F, Rouillard Y, Skouri E M, Baranov A N and Alibert C 2000 IEE Proc., Optoelectron. 147 172–6 Crossref Google Scholar[5]Andreev I A, Il'inskaya N D, Kunitsyna E V, Mikhailova M P and Yakovlev Yu P 2003 Semicond. 37 949–54 Crossref Google Scholar[6]Stoyanov N D, Mikhailova M P, Andreichuk O V, Moiseev K D, Andreev I A, Afrailov M A and Yakovlev Yu P 2001 Semicond. 35 453–8 Crossref Google Scholar[7]Kosaka H, Kiselev A A, Baron F A, Kim K W and Yablonovitch E 2001 Electron. Lett. 37 464–5 Crossref Google Scholar[8]Kiselev A A, Kim K W and Yablonovitch E 2002 Physica E 13 630–3 Crossref Google Scholar[9]Baranov A N, Bertru N, Cuminal Y, Goissier G, Rouillard Y, Nicolas J C, Grech P, Joullié A F and Alibert C 1998 Proc. SPIE 3284 247 Crossref Google Scholar[10]Magri R, Zunger A and Kroemer H 2005 J. Appl. Phys. 98 043701 Crossref Google Scholar[11]Palmer D W 1999 Microelectron. J. 30 665–72 Crossref Google Scholar[12]Krijn M P C M 1991 Semicond. Sci. Technol. 6 27 Crossref Google Scholar[13]Afrailov M A 2008 Thin Solid Films 516 1227–31 Crossref Google Scholar[14]Adachi S 2006 Springer Handbook of Electronics and Photonic Materials ed S Kasap and P Capper (Berlin: Springer) pp 735–48 Crossref Google Scholar View article[15]Mikhailova M P 1999 Handbook Series on Semiconductor Parameters vol 2 ed M Levinshtein, S Rumyantsev and M Shur (Singapore: World Scientific) pp 180–91 Crossref Google Scholar[16]Hermann C and Weisbuch C 1977 Phys. Rev. B 15 823–33 Crossref Google Scholar[17]Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815 Crossref Google Scholar[18]Mikhailova M P and Titkov A N 1994 Semicond. Sci. Technol. 9 1279 Crossref Google Scholar[19]Sánchez-Cano R and Porras-Montenegro N 2010 Physica E 43 76–80 Crossref Google Scholar View article[20]Adachi S 2005 Properties of Group IV, III–V and II–VI Semiconductors (Wiley Series in Materials for Electronic and Optoelectronic Applications) (Chichester: Wiley) pp 195–8 Google Scholar[21]Rodina A V, Efros Al L and Alekseev A Yu 2003 Phys. Rev. B 67 155312 IOPscience Google Scholar[22]Pidgeon C R and Brown R N 1966 Phys. Rev. 146 575–83 Crossref Google Scholar[23]Sercel P C and Vahala K J 1990 Phys. Rev. B 42 3690–710 Crossref Google Scholar[24]Planelles J and Jaskólski W 2003 J. Phys.: Condens. Matter 15 L67–L75 Google Scholar[25]Roth L M, Lax B and Zwerdling S 1959 Phys. Rev. 114 90–104 Crossref Google Scholar[26]Lax B, Mavroides J G, Zeiger H J and Keyes R J 1961 Phys. Rev. 112 31–5 Crossref Google Scholar[27]Kiselev A A and Ivchenko E L 1998 Phys. Rev. B 58 16353–9 Crossref Google Scholar[28]Fock V 1928 Z. Phys. 47 446–8 Crossref Google Scholar[29]Darwin C G 1930 Prod. Camb. Phil. Soc. 27 86–90 Crossref Google Scholar[30]Chakraborty T 1999 Quantum Dots 1st edn (Amsterdam: Elsevier) pp 12–4 Google Scholar[31]Prado S J, Trallero-Giner C, López-Richard V, Alcalde A M and Marques G E 2004 Physica E 20 286–9 Crossref Google Scholar[32]Prado S J, Trallero-Giner C, Alcalde A M, López-Richard V and Marques G E 2004 Phys. Rev. B 69 201310 IOPscience Google Scholar[33]Nakaoka T, Saito T, Tatebayashi J and Arakawa Y 2004 Phys. Rev. B 70 235337 IOPscience Google Scholar[34]Sheng W 2008 Physica E 40 1473–5 Crossref Google Scholar View article[35]Sheng W 2010 Appl. Phys. Lett. 96 133102 Crossref Google Scholar[36]Kudrawiec R and Misiewicz J 2009 J. Phys.: Conf. Ser. 146 012029 Google Scholar[37]de Dios-Leyva M, Porras-Montenegro N, Brandi H S and Oliveira L E 2006 J. Appl. Phys. 99 104303 Crossref Google Scholar[38]de Dios-Leyva M, Reyes-Gómez E, Perdomo-Leiva C A and Oliveira L E 2006 Phys. Rev. B 73 085316 IOPscience Google Scholar[39]Tadic M and Peeters F M 2005 Phys. Rev. B 71 125342 IOPscience Google Scholar[40]Revathi M and John Peter A 2010 Solid Stat Commun. 150 816–9 Crossref Google Scholar View articleComunidad generalPublication56129f5e-4a76-48d6-b925-bc429fd6d848virtual::4600-156129f5e-4a76-48d6-b925-bc429fd6d848virtual::4600-1https://scholar.google.com/citations?hl=es&user=WXol0WcAAAAJvirtual::4600-10000-0003-0906-4150virtual::4600-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000311405virtual::4600-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/b1a2b4fd-11b0-444e-bcc7-d6c14e12b392/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALElectron gfactor study Semicond.Sci.Technol.262011105005.Paper3 (1).pdfElectron gfactor study Semicond.Sci.Technol.262011105005.Paper3 (1).pdfapplication/pdf551023https://red.uao.edu.co/bitstreams/308b5328-d33f-4756-920a-a63908e5caef/downloada259da1fa6cc0ed4f6572b650d55db08MD53TEXTElectron gfactor study Semicond.Sci.Technol.262011105005.Paper3 (1).pdf.txtElectron gfactor study Semicond.Sci.Technol.262011105005.Paper3 (1).pdf.txtExtracted texttext/plain32211https://red.uao.edu.co/bitstreams/a39a3d2d-22f6-4bcf-945f-9fe2ac5624d2/downloade2600b71c6276cc8ac77f834345994edMD54THUMBNAILElectron gfactor study Semicond.Sci.Technol.262011105005.Paper3 (1).pdf.jpgElectron gfactor study Semicond.Sci.Technol.262011105005.Paper3 (1).pdf.jpgGenerated Thumbnailimage/jpeg15272https://red.uao.edu.co/bitstreams/6defc820-4fc6-4e72-88a8-410d09effa8e/download8b1b706059372c3aa0caf8c1f6884c47MD5510614/15106oai:red.uao.edu.co:10614/151062024-03-14 16:43:07.576https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Editorial IOP, 2011open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K