Locating distributed generation units in radial systems

A brief context on distributed generation (DG) is given as well as the methodologies employed in solving problems regarding their optimal location and dimensioning in electrical power systems that sets the theoretical foundation of this project. The development of a Python-based analytical algorithm...

Full description

Autores:
Arias Barragan, Luis Alejandro
González Palomino, Gabriel
Rivas Trujillo, Edwin
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11177
Acceso en línea:
http://hdl.handle.net/10614/11177
https://doi.org/10.12988/ces.2017.79112
Palabra clave:
Producción de energía eléctrica
Electric power production
Distributed generation
Optimization
Radial systems
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_4c9cb5647279d9bcee6ce3143138fc58
oai_identifier_str oai:red.uao.edu.co:10614/11177
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Locating distributed generation units in radial systems
title Locating distributed generation units in radial systems
spellingShingle Locating distributed generation units in radial systems
Producción de energía eléctrica
Electric power production
Distributed generation
Optimization
Radial systems
title_short Locating distributed generation units in radial systems
title_full Locating distributed generation units in radial systems
title_fullStr Locating distributed generation units in radial systems
title_full_unstemmed Locating distributed generation units in radial systems
title_sort Locating distributed generation units in radial systems
dc.creator.fl_str_mv Arias Barragan, Luis Alejandro
González Palomino, Gabriel
Rivas Trujillo, Edwin
dc.contributor.author.none.fl_str_mv Arias Barragan, Luis Alejandro
González Palomino, Gabriel
Rivas Trujillo, Edwin
dc.subject.armarc.spa.fl_str_mv Producción de energía eléctrica
topic Producción de energía eléctrica
Electric power production
Distributed generation
Optimization
Radial systems
dc.subject.armarc.eng.fl_str_mv Electric power production
dc.subject.proposal.eng.fl_str_mv Distributed generation
Optimization
Radial systems
description A brief context on distributed generation (DG) is given as well as the methodologies employed in solving problems regarding their optimal location and dimensioning in electrical power systems that sets the theoretical foundation of this project. The development of a Python-based analytical algorithm is shown which interacts with the DigSilent software for the optimal management of distributed generation units in terms of their dimension and location in radial systems. The proposed algorithm is based on the formulation in the analytical method of location and dimensioning of DG units in distribution systems [1] with a 33-node IEEE radial system used a case study. The implementation of the algorithm justifies that the optimal location of DG units in electrical radial systems improves the voltage profiles and the reduction of total losses
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2019-10-08T16:51:42Z
dc.date.available.none.fl_str_mv 2019-10-08T16:51:42Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1314-7641 (en línea)
1313-6569 (impresa)
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11177
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.12988/ces.2017.79112
identifier_str_mv 1314-7641 (en línea)
1313-6569 (impresa)
url http://hdl.handle.net/10614/11177
https://doi.org/10.12988/ces.2017.79112
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 1046
dc.relation.citationissue.none.fl_str_mv 21
dc.relation.citationstartpage.none.fl_str_mv 1035
dc.relation.citationvolume.none.fl_str_mv 10
dc.relation.cites.none.fl_str_mv Arias B., Luis A., González P., Gabriel, Rivas T., Edwin .2017. Locating distributed generation units in radial systems. Hikari. Contemporary Engineering Sciences. 10 (21),1035-1046 p.https://doi.org/10.12988/ces.2017.79112
dc.relation.ispartofjournal.eng.fl_str_mv Contemporary engineering sciences
dc.relation.references.none.fl_str_mv A. M. Abd-el-Motaleb and S. K. Bekdach, Optimal sizing of distributed generation considering uncertainties in a hybrid power system, Int. J. Electr. Power Energy Syst., 82 (2016), 179–188. https://doi.org/10.1016/j.ijepes.2016.03.023
A. Bagheri, H. Monsef and H. Lesani, Integrated distribution network expansion planning incorporating distributed generation considering uncertainties, reliability, and operational conditions, Int. J. Electr. Power Energy Syst., 73 (2015), 56–70. https://doi.org/10.1016/j.ijepes.2015.03.010
P. Chiradeja and A. Ngaopitakkul, The impacts of electrical power losses due to distributed generation integration to distribution system, 2013 Int. Conf. Electr. Mach. Syst. ICEMS, (2013), 1330–1333. https://doi.org/10.1109/icems.2013.6713271
S. Elsaiah, M. Benidris and J. Mitra, An analytical method for placement and sizing of distributed generation on distribution systems, 2014 Clemson Univ. Power Syst. Conf., 7 (2016), 1–7. https://doi.org/10.1109/psc.2014.6808097
R. H. Lasseter, Microgrids and Distributed Generation, J. Energy Eng., 133 (2007), no. 3, 144–149. https://doi.org/10.1061/(asce)0733-9402(2007)133:3(144)
A. Rujula, J. Amada and J. Bernal-Agustin, Definitions for Distributed Generation: A Revision, International Conf. Renew. Energy Power Qual., (2005), 16–18
H. Tazvinga, X. Xia and B. Zhu, Optimal energy management strategy for distributed energy resources, Energy Procedia, 61 (2014), 1331–1334. https://doi.org/10.1016/j.egypro.2014.11.1093
Y. Yuan, Z. Wei, G. Sun, Y. Sun and D. Wang, A real-time optimal generation cost control method for virtual power plant, Neurocomputing, 143 (2014), 322–330. https://doi.org/10.1016/j.neucom.2014.05.060
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 12 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.none.fl_str_mv Hikari
publisher.none.fl_str_mv Hikari
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://dspace7-uao.metacatalogo.com/bitstreams/b4e9f699-a182-40a1-b508-b1e802248f00/download
https://dspace7-uao.metacatalogo.com/bitstreams/db494a7f-21c9-462a-b04e-e523381f0ded/download
https://dspace7-uao.metacatalogo.com/bitstreams/2bba6b65-95e5-445e-8c48-8cb8e51e785c/download
https://dspace7-uao.metacatalogo.com/bitstreams/4002b777-2392-4bdb-b3a7-3a864af95d81/download
https://dspace7-uao.metacatalogo.com/bitstreams/f18d4ecc-8229-46c4-9ab1-f6a872498192/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
686667d6ca9a89fbd4c63e9e51796326
29e9165149a228c714340969e4f84509
a99c1b4542b17a599ef46841b92e24ee
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UAO
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1828230001295622144
spelling Arias Barragan, Luis Alejandro07b272daf29e91840dfad25ae0b2acd1González Palomino, Gabriel3d52c20631e564b1f043775aa5dbc9f3Rivas Trujillo, Edwin2987996f05710ea86a333e9eb1fe921bUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-10-08T16:51:42Z2019-10-08T16:51:42Z20171314-7641 (en línea)1313-6569 (impresa)http://hdl.handle.net/10614/11177https://doi.org/10.12988/ces.2017.79112A brief context on distributed generation (DG) is given as well as the methodologies employed in solving problems regarding their optimal location and dimensioning in electrical power systems that sets the theoretical foundation of this project. The development of a Python-based analytical algorithm is shown which interacts with the DigSilent software for the optimal management of distributed generation units in terms of their dimension and location in radial systems. The proposed algorithm is based on the formulation in the analytical method of location and dimensioning of DG units in distribution systems [1] with a 33-node IEEE radial system used a case study. The implementation of the algorithm justifies that the optimal location of DG units in electrical radial systems improves the voltage profiles and the reduction of total lossesapplication/pdf12 páginasengHikariDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Locating distributed generation units in radial systemsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Producción de energía eléctricaElectric power productionDistributed generationOptimizationRadial systems104621103510Arias B., Luis A., González P., Gabriel, Rivas T., Edwin .2017. Locating distributed generation units in radial systems. Hikari. Contemporary Engineering Sciences. 10 (21),1035-1046 p.https://doi.org/10.12988/ces.2017.79112Contemporary engineering sciencesA. M. Abd-el-Motaleb and S. K. Bekdach, Optimal sizing of distributed generation considering uncertainties in a hybrid power system, Int. J. Electr. Power Energy Syst., 82 (2016), 179–188. https://doi.org/10.1016/j.ijepes.2016.03.023A. Bagheri, H. Monsef and H. Lesani, Integrated distribution network expansion planning incorporating distributed generation considering uncertainties, reliability, and operational conditions, Int. J. Electr. Power Energy Syst., 73 (2015), 56–70. https://doi.org/10.1016/j.ijepes.2015.03.010P. Chiradeja and A. Ngaopitakkul, The impacts of electrical power losses due to distributed generation integration to distribution system, 2013 Int. Conf. Electr. Mach. Syst. ICEMS, (2013), 1330–1333. https://doi.org/10.1109/icems.2013.6713271S. Elsaiah, M. Benidris and J. Mitra, An analytical method for placement and sizing of distributed generation on distribution systems, 2014 Clemson Univ. Power Syst. Conf., 7 (2016), 1–7. https://doi.org/10.1109/psc.2014.6808097R. H. Lasseter, Microgrids and Distributed Generation, J. Energy Eng., 133 (2007), no. 3, 144–149. https://doi.org/10.1061/(asce)0733-9402(2007)133:3(144)A. Rujula, J. Amada and J. Bernal-Agustin, Definitions for Distributed Generation: A Revision, International Conf. Renew. Energy Power Qual., (2005), 16–18H. Tazvinga, X. Xia and B. Zhu, Optimal energy management strategy for distributed energy resources, Energy Procedia, 61 (2014), 1331–1334. https://doi.org/10.1016/j.egypro.2014.11.1093Y. Yuan, Z. Wei, G. Sun, Y. Sun and D. Wang, A real-time optimal generation cost control method for virtual power plant, Neurocomputing, 143 (2014), 322–330. https://doi.org/10.1016/j.neucom.2014.05.060PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://dspace7-uao.metacatalogo.com/bitstreams/b4e9f699-a182-40a1-b508-b1e802248f00/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/db494a7f-21c9-462a-b04e-e523381f0ded/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINAL00344_Locating distributed generation units in radial systems.pdf00344_Locating distributed generation units in radial systems.pdfArchivo texto completo del artículoapplication/pdf429856https://dspace7-uao.metacatalogo.com/bitstreams/2bba6b65-95e5-445e-8c48-8cb8e51e785c/download686667d6ca9a89fbd4c63e9e51796326MD54TEXT00344_Locating distributed generation units in radial systems.pdf.txt00344_Locating distributed generation units in radial systems.pdf.txtExtracted texttext/plain21985https://dspace7-uao.metacatalogo.com/bitstreams/4002b777-2392-4bdb-b3a7-3a864af95d81/download29e9165149a228c714340969e4f84509MD55THUMBNAIL00344_Locating distributed generation units in radial systems.pdf.jpg00344_Locating distributed generation units in radial systems.pdf.jpgGenerated Thumbnailimage/jpeg10200https://dspace7-uao.metacatalogo.com/bitstreams/f18d4ecc-8229-46c4-9ab1-f6a872498192/downloada99c1b4542b17a599ef46841b92e24eeMD5610614/11177oai:dspace7-uao.metacatalogo.com:10614/111772024-01-19 16:09:37.429https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K