Coffee maturity classification using convolutional neural networks and transfer learning

This work presents a framework for coffee maturity classification from multispectral image data based on Convolutional Neural Networks (CNNs). The system leverages the use of multispectral image acquisition systems that generate large amounts of data, by taking advantage of the ability of CNNs to ex...

Full description

Autores:
Tamayo Monsalve, Manuel Alejandro
Mercado Ruiz, Esteban
Villa Pulgarin, Juan Pablo
Bravo Ortíz, Mario Alejandro
Arteaga Arteaga, Harold Brayan
Mora Rubio, Alejandro
Alzate Grisales, Jesús Alejandro
Arias Garzón, Daniel
Romero Cano, Víctor
Orozco Arias, Simón
Osorio, Gustavo
Tabares Soto, Reinel
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/14730
Acceso en línea:
https://hdl.handle.net/10614/14730
https://red.uao.edu.co/
Palabra clave:
Redes neuronales (Computadores)
Neural networks (Computer science)
Coffee maturity classification
Convolutional neural network
Data augmentation
Deep learning
Multispectral images
Transfer learning
Rights
openAccess
License
Derechos reservados - IEEE, 2022
id REPOUAO2_4b4031bdd2a10f0540faea0d036d94a3
oai_identifier_str oai:red.uao.edu.co:10614/14730
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Coffee maturity classification using convolutional neural networks and transfer learning
title Coffee maturity classification using convolutional neural networks and transfer learning
spellingShingle Coffee maturity classification using convolutional neural networks and transfer learning
Redes neuronales (Computadores)
Neural networks (Computer science)
Coffee maturity classification
Convolutional neural network
Data augmentation
Deep learning
Multispectral images
Transfer learning
title_short Coffee maturity classification using convolutional neural networks and transfer learning
title_full Coffee maturity classification using convolutional neural networks and transfer learning
title_fullStr Coffee maturity classification using convolutional neural networks and transfer learning
title_full_unstemmed Coffee maturity classification using convolutional neural networks and transfer learning
title_sort Coffee maturity classification using convolutional neural networks and transfer learning
dc.creator.fl_str_mv Tamayo Monsalve, Manuel Alejandro
Mercado Ruiz, Esteban
Villa Pulgarin, Juan Pablo
Bravo Ortíz, Mario Alejandro
Arteaga Arteaga, Harold Brayan
Mora Rubio, Alejandro
Alzate Grisales, Jesús Alejandro
Arias Garzón, Daniel
Romero Cano, Víctor
Orozco Arias, Simón
Osorio, Gustavo
Tabares Soto, Reinel
dc.contributor.author.none.fl_str_mv Tamayo Monsalve, Manuel Alejandro
Mercado Ruiz, Esteban
Villa Pulgarin, Juan Pablo
Bravo Ortíz, Mario Alejandro
Arteaga Arteaga, Harold Brayan
Mora Rubio, Alejandro
Alzate Grisales, Jesús Alejandro
Arias Garzón, Daniel
Romero Cano, Víctor
Orozco Arias, Simón
Osorio, Gustavo
Tabares Soto, Reinel
dc.subject.armarc.spa.fl_str_mv Redes neuronales (Computadores)
topic Redes neuronales (Computadores)
Neural networks (Computer science)
Coffee maturity classification
Convolutional neural network
Data augmentation
Deep learning
Multispectral images
Transfer learning
dc.subject.armarc.eng.fl_str_mv Neural networks (Computer science)
dc.subject.proposal.eng.fl_str_mv Coffee maturity classification
Convolutional neural network
Data augmentation
Deep learning
Multispectral images
Transfer learning
description This work presents a framework for coffee maturity classification from multispectral image data based on Convolutional Neural Networks (CNNs). The system leverages the use of multispectral image acquisition systems that generate large amounts of data, by taking advantage of the ability of CNNs to extract meaningful patterns from very high-dimensional data. We validated the use of five different popular CNN architectures on the classification of cherry coffee fruits according to their ripening stage. The different models were trained on a training dataset balanced in different ways, which resulted in a top accuracy higher than 98% when applied to the classification of 600 coffee fruits in 5 different stages of ripening. This work has the potential of providing the farmer with a high-quality, optimized, accurate and viable method for classifying coffee fruits. In order to foster future research in this area, the data used in this work, which was acquired with a custom-developed multispectral image acquisition system, have been released
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-04
dc.date.accessioned.none.fl_str_mv 2023-05-11T18:51:22Z
dc.date.available.none.fl_str_mv 2023-05-11T18:51:22Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 21693536
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/14730
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital UAO
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 21693536
Universidad Autónoma de Occidente
Repositorio Educativo Digital UAO
url https://hdl.handle.net/10614/14730
https://red.uao.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 42982
dc.relation.citationstartpage.spa.fl_str_mv 42971
dc.relation.citationvolume.spa.fl_str_mv 10
dc.relation.cites.none.fl_str_mv Tamayo Monsalve, M. A., Mercado Ruiz, E., Villa Pulgarin, J. P., Bravo Ortíz., M. A., Arteaga, H. B. Arteaga. A. Mora Rubio. Alzate Grisales, J. A., Arias Garzon., D. Romero Cano, V., Orozco Arias, S., Osorio, G., Tabares Soto, R. (2022). Coffee Maturity Classification Using Convolutional Neural Networks and Transfer Learning. IEEE Access, 10, 42971-42982. https://hdl.handle.net/10614/14730
dc.relation.ispartofjournal.spa.fl_str_mv IEEE Access
dc.relation.references.spa.fl_str_mv G. Gyarmati and T. Mizik, ‘‘The present and future of the precision agri- culture,’’ in Proc. IEEE 15th Int. Conf. Syst. Syst. Eng. (SoSE), Jun. 2020, pp. 593–596
S. Cubero, N. Aleixos, E. Moltó, J. Gómez-Sanchis, and J. Blasco, ‘‘Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables,’’ Food Bioprocess Technol., vol. 4, no. 4, pp. 487–504, May 2011.
Y. A. Ohali, ‘‘Computer vision based date fruit grading system: Design and implementation,’’ J. King Saud Univ., Comput. Inf. Sci., vol. 23, no. 1, pp. 29–36, Jan. 2011
D. Wu and D.-W. Sun, ‘‘Advanced applications of hyperspectral imag- ing technology for food quality and safety analysis and assessment: A review—Part I: Fundamentals,’’ Innov. Food Sci. Emerg. Technol., vol. 19, pp. 1–14, Jul. 2013.
L. B. Furstenau, M. K. Sott, L. M. Kipper, E. L. Machado, J. R. Lopez-Robles, M. S. Dohan, M. J. Cobo, A. Zahid, Q. H. Abbasi, and M. A. Imran, ‘‘Link between sustainability and industry 4.0: Trends, challenges and new perspectives,’’ IEEE Access, vol. 8, pp. 140079–140096, 2020.
S. Munera, C. Besada, J. Blasco, S. Cubero, A. Salvador, P. Talens, and N. Aleixos, ‘‘Astringency assessment of persimmon by hyperspectral imaging,’’ Postharvest Biol. Technol., vol. 125, pp. 35–41, Mar. 2017.
M. Taghizadeh, A. A. Gowen, and C. P. O’Donnell, ‘‘Comparison of hyperspectral imaging with conventional RGB imaging for quality eval- uation of Agaricus bisporus mushrooms,’’ Biosyst. Eng., vol. 108, no. 2, pp. 191–194, Feb. 2011
S. Ponte, ‘‘Estándares, comercio y equidad: Lecciones de la industria de los cafés especiales,’’ Economía Mundial del café, Centro de Investigaciones Para el Desarrollo de Copenhague, Anaheim, CF, Tech. Rep. 5 de mayo de, 2002, pp. 131–163
M. Sott, L. Furstenau, L. Kipper, F. Giraldo, J. Lpez-Robles, M. Cobo, A. Zahid, Q. Abbasi, and M. Imran, ‘‘Precision techniques and agri- culture 4.0 technologies to promote sustainability in the coffee sector: State of the art, challenges and future trends,’’ IEEE Access, vol. 8, pp. 149854–149867, 2020.
A. G. Costa, D. A. G. D. Sousa, J. L. Paes, J. P. B. Cunha, and M. V. M. D. Oliveira, ‘‘Classification of robusta coffee fruits at different maturation stages using colorimetric characteristics,’’ Engenharia Agrí- cola, vol. 40, no. 4, pp. 518–525, Aug. 2020
L. Cavigelli, D. Bernath, M. Magno, and L. Benini, ‘‘Computationally efficient target classification in multispectral image data with deep neural networks,’’ CoRR, vol. 10, 2016
A. H. Shahin, A. Kamal, and M. A. Elattar, ‘‘Deep ensemble learning for skin lesion classification from dermoscopic images,’’ in Proc. 9th Cairo Int. Biomed. Eng. Conf. (CIBEC), Dec. 2018, pp. 150–153
J. P. Rodríguez, D. C. Corrales, J.-N. Aubertot, and J. C. Corrales, ‘‘A com- puter vision system for automatic cherry beans detection on coffee trees,’’ Pattern Recognit. Lett., vol. 136, pp. 142–153, Aug. 2020.
Z. Huo, G. Du, F. Luo, Y. Qiao, and J. Luo, ‘‘D-MSCD: Mean-standard deviation curve descriptor based on deep learning,’’ IEEE Access, vol. 8, pp. 204509–204517, 2020
dc.rights.spa.fl_str_mv Derechos reservados - IEEE, 2022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - IEEE, 2022
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IEEE
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/f3e7b50f-927e-47a2-8c13-ab000b9f168f/download
https://red.uao.edu.co/bitstreams/0b8bf46c-0f22-4b2c-802d-0c0486de9fe0/download
https://red.uao.edu.co/bitstreams/b36af18e-6d68-4b48-aa9a-f6fa4a65d538/download
https://red.uao.edu.co/bitstreams/97c97f22-bd95-4695-a2eb-16227e51a4c0/download
bitstream.checksum.fl_str_mv 93808f2db1fc820458411614c0a20e62
20b5ba22b1117f71589c7318baa2c560
272d0d55ac8c85d6468953ca51e8485a
e6acf4637f6769dc9d4741b62e07995b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260017878007808
spelling Tamayo Monsalve, Manuel Alejandro6b905e9c60929c6fee3ea5a25474f77bMercado Ruiz, Esteban79a149e7e68595ee144cc0eb66897184Villa Pulgarin, Juan Pablo71fcb77691fb889a1e38604be5293a5aBravo Ortíz, Mario Alejandrofa72add33fa480a7780d9a9dad24e5e4Arteaga Arteaga, Harold Brayan4a94f99f494e44119ad843f4f82d1fd5Mora Rubio, Alejandro24d14ce7d99f40e5774328bf81af3821Alzate Grisales, Jesús Alejandro39e5efd4131c23f57386bc2e978d3d0bArias Garzón, Daniel8fe49ba9e2899b17037e0f9fa8f0687fRomero Cano, Víctorac8a4e8955699e0474b9d0266969e148Orozco Arias, SimónOsorio, Gustavoff632fa9f70ee8fad6f38268a81bb956Tabares Soto, Reinelab800effcb910eccdd754c6d1ed7b2472023-05-11T18:51:22Z2023-05-11T18:51:22Z2022-0421693536https://hdl.handle.net/10614/14730Universidad Autónoma de OccidenteRepositorio Educativo Digital UAOhttps://red.uao.edu.co/This work presents a framework for coffee maturity classification from multispectral image data based on Convolutional Neural Networks (CNNs). The system leverages the use of multispectral image acquisition systems that generate large amounts of data, by taking advantage of the ability of CNNs to extract meaningful patterns from very high-dimensional data. We validated the use of five different popular CNN architectures on the classification of cherry coffee fruits according to their ripening stage. The different models were trained on a training dataset balanced in different ways, which resulted in a top accuracy higher than 98% when applied to the classification of 600 coffee fruits in 5 different stages of ripening. This work has the potential of providing the farmer with a high-quality, optimized, accurate and viable method for classifying coffee fruits. In order to foster future research in this area, the data used in this work, which was acquired with a custom-developed multispectral image acquisition system, have been released 12 páginasapplication/pdfengIEEEDerechos reservados - IEEE, 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Coffee maturity classification using convolutional neural networks and transfer learningArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Redes neuronales (Computadores)Neural networks (Computer science)Coffee maturity classificationConvolutional neural networkData augmentationDeep learningMultispectral imagesTransfer learning429824297110Tamayo Monsalve, M. A., Mercado Ruiz, E., Villa Pulgarin, J. P., Bravo Ortíz., M. A., Arteaga, H. B. Arteaga. A. Mora Rubio. Alzate Grisales, J. A., Arias Garzon., D. Romero Cano, V., Orozco Arias, S., Osorio, G., Tabares Soto, R. (2022). Coffee Maturity Classification Using Convolutional Neural Networks and Transfer Learning. IEEE Access, 10, 42971-42982. https://hdl.handle.net/10614/14730IEEE AccessG. Gyarmati and T. Mizik, ‘‘The present and future of the precision agri- culture,’’ in Proc. IEEE 15th Int. Conf. Syst. Syst. Eng. (SoSE), Jun. 2020, pp. 593–596S. Cubero, N. Aleixos, E. Moltó, J. Gómez-Sanchis, and J. Blasco, ‘‘Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables,’’ Food Bioprocess Technol., vol. 4, no. 4, pp. 487–504, May 2011.Y. A. Ohali, ‘‘Computer vision based date fruit grading system: Design and implementation,’’ J. King Saud Univ., Comput. Inf. Sci., vol. 23, no. 1, pp. 29–36, Jan. 2011D. Wu and D.-W. Sun, ‘‘Advanced applications of hyperspectral imag- ing technology for food quality and safety analysis and assessment: A review—Part I: Fundamentals,’’ Innov. Food Sci. Emerg. Technol., vol. 19, pp. 1–14, Jul. 2013.L. B. Furstenau, M. K. Sott, L. M. Kipper, E. L. Machado, J. R. Lopez-Robles, M. S. Dohan, M. J. Cobo, A. Zahid, Q. H. Abbasi, and M. A. Imran, ‘‘Link between sustainability and industry 4.0: Trends, challenges and new perspectives,’’ IEEE Access, vol. 8, pp. 140079–140096, 2020.S. Munera, C. Besada, J. Blasco, S. Cubero, A. Salvador, P. Talens, and N. Aleixos, ‘‘Astringency assessment of persimmon by hyperspectral imaging,’’ Postharvest Biol. Technol., vol. 125, pp. 35–41, Mar. 2017.M. Taghizadeh, A. A. Gowen, and C. P. O’Donnell, ‘‘Comparison of hyperspectral imaging with conventional RGB imaging for quality eval- uation of Agaricus bisporus mushrooms,’’ Biosyst. Eng., vol. 108, no. 2, pp. 191–194, Feb. 2011S. Ponte, ‘‘Estándares, comercio y equidad: Lecciones de la industria de los cafés especiales,’’ Economía Mundial del café, Centro de Investigaciones Para el Desarrollo de Copenhague, Anaheim, CF, Tech. Rep. 5 de mayo de, 2002, pp. 131–163M. Sott, L. Furstenau, L. Kipper, F. Giraldo, J. Lpez-Robles, M. Cobo, A. Zahid, Q. Abbasi, and M. Imran, ‘‘Precision techniques and agri- culture 4.0 technologies to promote sustainability in the coffee sector: State of the art, challenges and future trends,’’ IEEE Access, vol. 8, pp. 149854–149867, 2020.A. G. Costa, D. A. G. D. Sousa, J. L. Paes, J. P. B. Cunha, and M. V. M. D. Oliveira, ‘‘Classification of robusta coffee fruits at different maturation stages using colorimetric characteristics,’’ Engenharia Agrí- cola, vol. 40, no. 4, pp. 518–525, Aug. 2020L. Cavigelli, D. Bernath, M. Magno, and L. Benini, ‘‘Computationally efficient target classification in multispectral image data with deep neural networks,’’ CoRR, vol. 10, 2016A. H. Shahin, A. Kamal, and M. A. Elattar, ‘‘Deep ensemble learning for skin lesion classification from dermoscopic images,’’ in Proc. 9th Cairo Int. Biomed. Eng. Conf. (CIBEC), Dec. 2018, pp. 150–153J. P. Rodríguez, D. C. Corrales, J.-N. Aubertot, and J. C. Corrales, ‘‘A com- puter vision system for automatic cherry beans detection on coffee trees,’’ Pattern Recognit. Lett., vol. 136, pp. 142–153, Aug. 2020.Z. Huo, G. Du, F. Luo, Y. Qiao, and J. Luo, ‘‘D-MSCD: Mean-standard deviation curve descriptor based on deep learning,’’ IEEE Access, vol. 8, pp. 204509–204517, 2020Comunidad generalPublicationORIGINALCoffee_Maturity_Classification_Using_Convolutional_Neural_Networks_and_Transfer_Learning.pdfCoffee_Maturity_Classification_Using_Convolutional_Neural_Networks_and_Transfer_Learning.pdftexto completo del artículoapplication/pdf2647218https://red.uao.edu.co/bitstreams/f3e7b50f-927e-47a2-8c13-ab000b9f168f/download93808f2db1fc820458411614c0a20e62MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/0b8bf46c-0f22-4b2c-802d-0c0486de9fe0/download20b5ba22b1117f71589c7318baa2c560MD52TEXTCoffee_Maturity_Classification_Using_Convolutional_Neural_Networks_and_Transfer_Learning.pdf.txtCoffee_Maturity_Classification_Using_Convolutional_Neural_Networks_and_Transfer_Learning.pdf.txtExtracted texttext/plain61245https://red.uao.edu.co/bitstreams/b36af18e-6d68-4b48-aa9a-f6fa4a65d538/download272d0d55ac8c85d6468953ca51e8485aMD53THUMBNAILCoffee_Maturity_Classification_Using_Convolutional_Neural_Networks_and_Transfer_Learning.pdf.jpgCoffee_Maturity_Classification_Using_Convolutional_Neural_Networks_and_Transfer_Learning.pdf.jpgGenerated Thumbnailimage/jpeg15906https://red.uao.edu.co/bitstreams/97c97f22-bd95-4695-a2eb-16227e51a4c0/downloade6acf4637f6769dc9d4741b62e07995bMD5410614/14730oai:red.uao.edu.co:10614/147302024-04-02 16:45:12.833https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - IEEE, 2022open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K