Application of transfer learning for object recognition using convolutional neural networks
In this work the transfer learning technique is used to create a computational tool that recognizes the objects of the automatic laboratory of the Universidad Autónoma de Occidente in real time. As a pre-trained neural net, the Inception-V3 is used as a feature extractor in the images and on the oth...
- Autores:
-
López Sotelo, Jesús Alfonso
Salazar Gómez, Gustavo Andrés
Díaz Salazar, Nicolas
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11409
- Palabra clave:
- Redes neuronales (Computadores)
Neural networks (Computer science)
Transfer learning
Softmax
Inception-V3
Tensorflow
Neural networks
Convolutional neural network
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_4b1a3144e50821649cbb493f2e7e216e |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11409 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Application of transfer learning for object recognition using convolutional neural networks |
title |
Application of transfer learning for object recognition using convolutional neural networks |
spellingShingle |
Application of transfer learning for object recognition using convolutional neural networks Redes neuronales (Computadores) Neural networks (Computer science) Transfer learning Softmax Inception-V3 Tensorflow Neural networks Convolutional neural network |
title_short |
Application of transfer learning for object recognition using convolutional neural networks |
title_full |
Application of transfer learning for object recognition using convolutional neural networks |
title_fullStr |
Application of transfer learning for object recognition using convolutional neural networks |
title_full_unstemmed |
Application of transfer learning for object recognition using convolutional neural networks |
title_sort |
Application of transfer learning for object recognition using convolutional neural networks |
dc.creator.fl_str_mv |
López Sotelo, Jesús Alfonso Salazar Gómez, Gustavo Andrés Díaz Salazar, Nicolas |
dc.contributor.author.none.fl_str_mv |
López Sotelo, Jesús Alfonso Salazar Gómez, Gustavo Andrés Díaz Salazar, Nicolas |
dc.subject.armarc.spa.fl_str_mv |
Redes neuronales (Computadores) |
topic |
Redes neuronales (Computadores) Neural networks (Computer science) Transfer learning Softmax Inception-V3 Tensorflow Neural networks Convolutional neural network |
dc.subject.armarc.eng.fl_str_mv |
Neural networks (Computer science) |
dc.subject.proposal.eng.fl_str_mv |
Transfer learning Softmax Inception-V3 Tensorflow Neural networks Convolutional neural network |
description |
In this work the transfer learning technique is used to create a computational tool that recognizes the objects of the automatic laboratory of the Universidad Autónoma de Occidente in real time. As a pre-trained neural net, the Inception-V3 is used as a feature extractor in the images and on the other hand a softmax classifier is trained, this contains the classes that are going to be recognized. It was used Tensorflow platform with gpu in Python natively in Windows 10 and Opencv library for the use of video camera and other tools |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2019-11-06T14:37:17Z |
dc.date.available.none.fl_str_mv |
2019-11-06T14:37:17Z |
dc.type.spa.fl_str_mv |
Capítulo de libro |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.isbn.spa.fl_str_mv |
9783030030230 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/11409 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-3-030-03023-0_2 |
identifier_str_mv |
9783030030230 |
url |
http://hdl.handle.net/10614/11409 https://doi.org/10.1007/978-3-030-03023-0_2 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
25 |
dc.relation.citationstartpage.none.fl_str_mv |
14 |
dc.relation.cites.eng.fl_str_mv |
López Sotelo J.A., Díaz Salazar N., Salazar Gomez G.A. (2018) Application of Transfer Learning for Object Recognition Using Convolutional Neural Networks. In: Orjuela-Cañón A., Figueroa-García J., Arias-Londoño J. (eds) Applications of Computational Intelligence. ColCACI 2018. Communications in Computer and Information Science, vol 833. Springer, Cham. https://doi.org/10.1007/978-3-030-03023-0_2 |
dc.relation.ispartofbook.eng.fl_str_mv |
Applications of Computational Intelligence First IEEE Colombian Conference, ColCACI 2018. Communications in Computer and Information Science 833 |
dc.relation.references.none.fl_str_mv |
1. Castrillon, W., Alvarez, D., López, A.: Técnicas de extracción de características en imágenes para el reconocimiento de expresiones faciales. In: Scientia Et Technica, vol. XIV, no. 38, pp. 7–12 (2008) 2. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep scene CNNs (2015) 3. Brown, L.: Deep learning with GPUs (2015) 4. Loncomilla, P.: Deep learning: redes convolucionales (2016) 5. The data science blog. An intuitive explanation of convolutional neural networks. https://goo.gl/KdqfLV 6. Szegedy, C., et al.: Going deeper with convolutions (2014) 7. Alemi, A.: Improving inception and image classification in tensorflow (2016) 8. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision (2015) 9. Tensorflow how to retrain inception´s final layer for new categories. https://www.tensorflow.org/tutorials/image_retraining#bottlenecks |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
12 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.eng.fl_str_mv |
Springer |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/55d62677-9c8b-4fd9-9938-26878357b9ac/download https://red.uao.edu.co/bitstreams/d05509eb-24ee-4a28-8823-832193559981/download https://red.uao.edu.co/bitstreams/19b8fbbb-3ab4-481b-ac4e-a0b4ab2e0420/download https://red.uao.edu.co/bitstreams/842271a4-6f1f-4259-8088-a899f2012e0c/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 9206e9f02c2024d80241b3273e615bcc d1540334af294dba9249a617b16a5bab |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260226284584960 |
spelling |
López Sotelo, Jesús Alfonsovirtual::2828-1Salazar Gómez, Gustavo Andrése4e222934c134bdc1b035f42c9c35605Díaz Salazar, Nicolasc1bddd081489e46d2aa719727a723d16Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-06T14:37:17Z2019-11-06T14:37:17Z20189783030030230http://hdl.handle.net/10614/11409https://doi.org/10.1007/978-3-030-03023-0_2In this work the transfer learning technique is used to create a computational tool that recognizes the objects of the automatic laboratory of the Universidad Autónoma de Occidente in real time. As a pre-trained neural net, the Inception-V3 is used as a feature extractor in the images and on the other hand a softmax classifier is trained, this contains the classes that are going to be recognized. It was used Tensorflow platform with gpu in Python natively in Windows 10 and Opencv library for the use of video camera and other toolsConference Location: Medellín, Colombiaapplication/pdf12 páginasengSpringerDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Application of transfer learning for object recognition using convolutional neural networksCapítulo de librohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Redes neuronales (Computadores)Neural networks (Computer science)Transfer learningSoftmaxInception-V3TensorflowNeural networksConvolutional neural network2514López Sotelo J.A., Díaz Salazar N., Salazar Gomez G.A. (2018) Application of Transfer Learning for Object Recognition Using Convolutional Neural Networks. In: Orjuela-Cañón A., Figueroa-García J., Arias-Londoño J. (eds) Applications of Computational Intelligence. ColCACI 2018. Communications in Computer and Information Science, vol 833. Springer, Cham. https://doi.org/10.1007/978-3-030-03023-0_2Applications of Computational Intelligence First IEEE Colombian Conference, ColCACI 2018. Communications in Computer and Information Science 8331. Castrillon, W., Alvarez, D., López, A.: Técnicas de extracción de características en imágenes para el reconocimiento de expresiones faciales. In: Scientia Et Technica, vol. XIV, no. 38, pp. 7–12 (2008)2. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep scene CNNs (2015)3. Brown, L.: Deep learning with GPUs (2015)4. Loncomilla, P.: Deep learning: redes convolucionales (2016)5. The data science blog. An intuitive explanation of convolutional neural networks. https://goo.gl/KdqfLV6. Szegedy, C., et al.: Going deeper with convolutions (2014)7. Alemi, A.: Improving inception and image classification in tensorflow (2016)8. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision (2015)9. Tensorflow how to retrain inception´s final layer for new categories. https://www.tensorflow.org/tutorials/image_retraining#bottlenecksPublicationfc227fb1-22ec-47f0-afe7-521c61fddd32virtual::2828-1fc227fb1-22ec-47f0-afe7-521c61fddd32virtual::2828-1https://scholar.google.com.au/citations?user=7PIjh_MAAAAJ&hl=envirtual::2828-10000-0002-9731-8458virtual::2828-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000249106virtual::2828-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/55d62677-9c8b-4fd9-9938-26878357b9ac/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/d05509eb-24ee-4a28-8823-832193559981/download20b5ba22b1117f71589c7318baa2c560MD53TEXTApplication of transfer learning for object rcognition using convolutional neural networks.pdf.txtApplication of transfer learning for object rcognition using convolutional neural networks.pdf.txtExtracted texttext/plain23306https://red.uao.edu.co/bitstreams/19b8fbbb-3ab4-481b-ac4e-a0b4ab2e0420/download9206e9f02c2024d80241b3273e615bccMD55THUMBNAILApplication of transfer learning for object rcognition using convolutional neural networks.pdf.jpgApplication of transfer learning for object rcognition using convolutional neural networks.pdf.jpgGenerated Thumbnailimage/jpeg12891https://red.uao.edu.co/bitstreams/842271a4-6f1f-4259-8088-a899f2012e0c/downloadd1540334af294dba9249a617b16a5babMD5610614/11409oai:red.uao.edu.co:10614/114092024-03-07 16:27:34.02https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |