Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates
The impacts on the morphological, electrical and hardness properties of thermoplastic polyurethane (TPU) plates using multi-walled carbon nanotubes (MWCNTs) as reinforcing fillers have been investigated, using MWCNT loadings between 1 and 7 wt%. Plates of the TPU/MWCNT nanocomposites were fabricated...
- Autores:
-
Hidalgo-Salazar, Miguel Angel
Muñoz-Chilito, José
Lara-Ramos, José A.
Marín, Lorena
Machuca-Martínez, Fiderman
Correa-Aguirre, Juan P.
García-Navarro, Serafín
Roca-Blay, Luis
Rodríguez, Luis A.
Mosquera-Vargas, Edgar
Diosa, Jesús E.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2023
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/15814
- Acceso en línea:
- https://hdl.handle.net/10614/15814
https://red.uao.edu.co/
- Palabra clave:
- Thermoplastic polyurethane
Multi-walled carbon nanotubes
Nanomaterial-reinforced polymer
Impedance spectroscopy
Equivalent circuit modeling
Percolation conduction
- Rights
- openAccess
- License
- Derechos reservados - MDPI, 2023
id |
REPOUAO2_4adb42518692af1db9755e1eeaf92c63 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/15814 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates |
title |
Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates |
spellingShingle |
Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates Thermoplastic polyurethane Multi-walled carbon nanotubes Nanomaterial-reinforced polymer Impedance spectroscopy Equivalent circuit modeling Percolation conduction |
title_short |
Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates |
title_full |
Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates |
title_fullStr |
Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates |
title_full_unstemmed |
Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates |
title_sort |
Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates |
dc.creator.fl_str_mv |
Hidalgo-Salazar, Miguel Angel Muñoz-Chilito, José Lara-Ramos, José A. Marín, Lorena Machuca-Martínez, Fiderman Correa-Aguirre, Juan P. García-Navarro, Serafín Roca-Blay, Luis Rodríguez, Luis A. Mosquera-Vargas, Edgar Diosa, Jesús E. |
dc.contributor.author.none.fl_str_mv |
Hidalgo-Salazar, Miguel Angel Muñoz-Chilito, José Lara-Ramos, José A. Marín, Lorena Machuca-Martínez, Fiderman Correa-Aguirre, Juan P. García-Navarro, Serafín Roca-Blay, Luis Rodríguez, Luis A. Mosquera-Vargas, Edgar Diosa, Jesús E. |
dc.subject.proposal.eng.fl_str_mv |
Thermoplastic polyurethane Multi-walled carbon nanotubes Nanomaterial-reinforced polymer Impedance spectroscopy Equivalent circuit modeling Percolation conduction |
topic |
Thermoplastic polyurethane Multi-walled carbon nanotubes Nanomaterial-reinforced polymer Impedance spectroscopy Equivalent circuit modeling Percolation conduction |
description |
The impacts on the morphological, electrical and hardness properties of thermoplastic polyurethane (TPU) plates using multi-walled carbon nanotubes (MWCNTs) as reinforcing fillers have been investigated, using MWCNT loadings between 1 and 7 wt%. Plates of the TPU/MWCNT nanocomposites were fabricated by compression molding from extruded pellets. An X-ray diffraction analysis showed that the incorporation of MWCNTs into the TPU polymer matrix increases the ordered range of the soft and hard segments. SEM images revealed that the fabrication route used here helped to obtain TPU/MWCNT nanocomposites with a uniform dispersion of the nanotubes inside the TPU matrix and promoted the creation of a conductive network that favors the electronic conduction of the composite. The potential of the impedance spectroscopy technique has been used to determine that the TPU/MWCNT plates exhibited two conduction mechanisms, percolation and tunneling conduction of electrons, and their conductivity values increase as the MWCNT loading increases. Finally, although the fabrication route induced a hardness reduction with respect to the pure TPU, the addition of MWCNT increased the Shore A hardness behavior of the TPU plates |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-09-11T18:58:02Z |
dc.date.available.none.fl_str_mv |
2024-09-11T18:58:02Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Muñoz-Chilito, José, et. al. (2023). Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates. Molecules. 28(8). 11 p. https://doi.org/10.3390/molecules28083598 |
dc.identifier.other.none.fl_str_mv |
Doi: https://doi.org/10.3390/molecules28083598 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/15814 |
dc.identifier.eissn.spa.fl_str_mv |
14203049 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.none.fl_str_mv |
Respositorio Educativo Digital UAO |
dc.identifier.repourl.none.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
Muñoz-Chilito, José, et. al. (2023). Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates. Molecules. 28(8). 11 p. https://doi.org/10.3390/molecules28083598 Doi: https://doi.org/10.3390/molecules28083598 14203049 Universidad Autónoma de Occidente Respositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/15814 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
11 |
dc.relation.citationissue.spa.fl_str_mv |
8 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
28 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Molecules |
dc.relation.references.none.fl_str_mv |
1. Yoon, H.; Jang, J. Conducting-Polymer Nanomaterials for High-Performance Sensor Applications: Issues and Challenges. Adv. Funct. Mater. 2009, 19, 1567–1576. [CrossRef] 2. Georgousis, G.; Pandis, C.; Kalamiotis, A.; Georgiopoulos, P.; Kyritsis, A.; Kontou, E.; Pissis, P.; Micusik, M.; Czanikova, K.; Kulicek, J.; et al. Strain Sensing in Polymer/Carbon Nanotube Composites by Electrical Resistance Measurement. Compos. Part B Eng. 2015, 68, 162–169. [CrossRef] 3. Liu, L.; Xiang, D.; Wu, Y.; Zhou, Z.; Li, H.; Zhao, C.; Li, Y. Conductive Polymer Composites Based Flexible Strain Sensors by 3D Printing: A Mini-Review. Front. Mater. 2021, 8, 1–8. [CrossRef] 4. Han, F.; Li, M.; Ye, H.; Zhang, G. Materials, Electrical Performance, Mechanisms, Applications, and Manufacturing Approaches for Flexible Strain Sensors. Nanomaterials 2021, 11, 1220. [CrossRef] [PubMed] 5. Song, J.H.; Kim, Y.-T.; Cho, S.; Song, W.-J.; Moon, S.; Park, C.-G.; Park, S.; Myoung, J.M.; Jeong, U. Surface-Embedded Stretchable Electrodes by Direct Printing and Their Uses to Fabricate Ultrathin Vibration Sensors and Circuits for 3D Structures. Adv. Mater. 2017, 29, 1702625. [CrossRef] [PubMed] 6. Kumar, S.; Gupta, T.K.; Varadarajan, K.M. Strong, Stretchable and Ultrasensitive MWCNT/TPU Nanocomposites for Piezoresistive Strain Sensing. Compos. Part B Eng. 2019, 177, 107285. [CrossRef] 7. Zhang, S.; Liu, H.; Yang, S.; Shi, X.; Zhang, D.; Shan, C.; Mi, L.; Liu, C.; Shen, C.; Guo, Z. Ultrasensitive and Highly Compressible Piezoresistive Sensor Based on Polyurethane Sponge Coated with a Cracked Cellulose Nanofibril/Silver Nanowire Layer. ACS Appl. Mater. Interfaces 2019, 11, 10922–10932. [CrossRef] 8. Feng, D.; Xu, D.; Wang, Q.; Liu, P. Highly Stretchable Electromagnetic Interference (EMI) Shielding Segregated Polyurethane/Carbon Nanotube Composites Fabricated by Microwave Selective Sintering. J. Mater. Chem. C 2019, 7, 7938–7946. [CrossRef] 9. Khalifa, M.; Anandhan, S.; Wuzella, G.; Lammer, H.; Mahendran, A.R. Thermoplastic Polyurethane Composites Reinforced with Renewable and Sustainable Fillers—A Review. Polym. Technol. Mater. 2020, 59, 1751–1769. [CrossRef] 10. Yao, Y.; Xiao, M.; Liu, W. A Short Review on Self-Healing Thermoplastic Polyurethanes. Macromol. Chem. Phys. 2021, 222, 2100002. [CrossRef] 11. Ahirwar, D.; Telang, A.; Purohit, R.; Namdev, A. A Short Review on Polyurethane Polymer Composite. Mater. Today Proc. 2022, 62, 3804–3810. [CrossRef] 12. Wölfel, B.; Seefried, A.; Allen, V.; Kaschta, J.; Holmes, C.; Schubert, D. Recycling and Reprocessing of Thermoplastic Polyurethane Materials towards Nonwoven Processing. Polymers 2020, 12, 1917. [CrossRef] [PubMed] 13. Calvo-Correas, T.; Benitez, M.; Larraza, I.; Ugarte, L.; Peña-Rodríguez, C.; Eceiza, A. Advanced and Traditional Processing of Thermoplastic Polyurethane Waste. Polym. Degrad. Stab. 2022, 198, 109880. [CrossRef] 14. Yan, Q.; Li, C.; Yan, T.; Shen, Y.; Li, Z. Chemically Recyclable Thermoplastic Polyurethane Elastomers via a Cascade Ring-Opening and Step-Growth Polymerization Strategy from Bio-Renewable δ-Caprolactone. Macromolecules 2022, 55, 3860–3868. [CrossRef] 15. Benedito, A.; Buezas, I.; Giménez, E.; Galindo, B.; D’Amore, A.; Acierno, D.; Grassia, L. Dispersion and characterization of thermoplastic polyurethane/multiwalled carbon nanotubes in co-rotative twin screw extruder. AIP Conf. Proc. 2010, 1255, 227. 16. Gupta, T.K.; Singh, B.P.; Teotia, S.; Katyal, V.; Dhakate, S.R.; Mathur, R.B. Designing of Multiwalled Carbon Nanotubes Reinforced Polyurethane Composites as Electromagnetic Interference Shielding Materials. J. Polym. Res. 2013, 20, 169. [CrossRef] 17. Liu, H.; Gao, J.; Huang, W.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Electrically Conductive Strain Sensing Polyurethane Nanocomposites with Synergistic Carbon Nanotubes and Graphene Bifillers. Nanoscale 2016, 8, 12977–12989. [CrossRef] 18. Christ, J.F.; Aliheidari, N.; Ameli, A.; Pötschke, P. 3D Printed Highly Elastic Strain Sensors of Multiwalled Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites. Mater. Des. 2017, 131, 394–401. [CrossRef] 19. Zheng, Y.; Li, Y.; Dai, K.; Liu, M.; Zhou, K.; Zheng, G.; Liu, C.; Shen, C. Conductive Thermoplastic Polyurethane Composites with Tunable Piezoresistivity by Modulating the Filler Dimensionality for Flexible Strain Sensors. Compos. Part A Appl. Sci. Manuf. 2017, 101, 41–49. [CrossRef] 20. Jun, Y.-S.; Hyun, B.G.; Hamidinejad, M.; Habibpour, S.; Yu, A.; Park, C.B. Maintaining Electrical Conductivity of Microcellular MWCNT/TPU Composites after Deformation. Compos. Part B Eng. 2021, 223, 109113. [CrossRef] 21. Moheimani, R.; Aliahmad, N.; Aliheidari, N.; Agarwal, M.; Dalir, H. Thermoplastic Polyurethane Flexible Capacitive Proximity Sensor Reinforced by CNTs for Applications in the Creative Industries. Sci. Rep. 2021, 11, 1104. [CrossRef] [PubMed] 22. Digar, M.; Wen, T.-C. Ionic Conductivity and Morphological Study of a Thermoplastic Polyurethane Based Electrolyte Comprising of Mixed Soft Segments. Polym. J. 2000, 32, 921–931. [CrossRef] 23. Wen, T.-C.; Du, Y.-L.; Digar, M. Compositional Effect on the Morphology and Ionic Conductivity of Thermoplastic Polyurethane Based Electrolytes. Eur. Polym. J. 2002, 38, 1039–1048. [CrossRef] 24. Chen, W.-C.; Chen, H.-H.; Wen, T.-C.; Digar, M.; Gopalan, A. Morphology and Ionic Conductivity of Thermoplastic Polyurethane Electrolytes. J. Appl. Polym. Sci. 2004, 91, 1154–1167. [CrossRef] 25. Deng, Y.; Cao, Q.; He, Z.; Jing, B.; Wang, X.; Peng, X. A Novel High-Performance Electrospun Thermoplastic Polyurethane/Poly (Vinylidene Fluoride)/Polystyrene Gel Polymer Electrolyte for Lithium Batteries. Acta Chim. Slov. 2017, 64, 95–101. [CrossRef] [PubMed] 26. Park, M.; Woo, H.; Heo, J.; Kim, J.; Thangavel, R.; Lee, Y.; Kim, D. Thermoplastic Polyurethane Elastomer-Based Gel Polymer Electrolytes for Sodium-Metal Cells with Enhanced Cycling Performance. ChemSusChem 2019, 12, 4645–4654. [CrossRef] 27. Yan, T.; Wang, Z.; Pan, Z.-J. Flexible Strain Sensors Fabricated Using Carbon-Based Nanomaterials: A Review. Curr. Opin. Solid State Mater. Sci. 2018, 22, 213–228. [CrossRef] 28. Kanbur, Y.; Tayfun, U. Investigating Mechanical, Thermal, and Flammability Properties of Thermoplastic Polyurethane/Carbon Nanotube Composites. J. Thermoplast. Compos. Mater. 2018, 31, 1661–1675. [CrossRef] 29. Kim, N.P. 3D-Printed Conductive Carbon-Infused Thermoplastic Polyurethane. Polymers 2020, 12, 1224. [CrossRef] 30. Kanoun, O.; Bouhamed, A.; Ramalingame, R.; Bautista-Quijano, J.R.; Rajendran, D.; Al-Hamry, A. Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors. Sensors 2021, 21, 341. [CrossRef] 31. Hoang, A.S. Electrical Conductivity and Electromagnetic Interference Shielding Characteristics of Multiwalled Carbon Nanotube Filled Polyurethane Composite Films. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 025007. [CrossRef] 32. Lima, A.M.F.; de Castro, V.G.; Borges, R.S.; Silva, G.G. Electrical Conductivity and Thermal Properties of Functionalized Carbon Nanotubes/Polyurethane Composites. Polímeros 2012, 22, 117–124. [CrossRef] 33. Fu, X.; Al-Jumaily, A.M.; Ramos, M.; Chen, Y.-F. Comprehensive Analysis on the Electrical Behavior of Highly Stretchable Carbon Nanotubes/Polymer Composite through Numerical Simulation. J. Mater. Res. 2018, 33, 3398–3407. [CrossRef] 34. Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578. [CrossRef] [PubMed] 35. Vadhva, P.; Hu, J.; Johnson, M.J.; Stocker, R.; Braglia, M.; Brett, D.J.L.; Rettie, A.J.E. Electrochemical Impedance Spectroscopy for All-Solid-State Batteries: Theory, Methods and Future Outlook. ChemElectroChem 2021, 8, 1930–1947. [CrossRef] 36. Fang, C.; Yang, R.; Zhang, Z.; Zhou, X.; Lei, W.; Cheng, Y.; Zhang, W.; Wang, D. Effect of Multi-Walled Carbon Nanotubes on the Physical Properties and Crystallisation of Recycled PET/TPU Composites. RSC Adv. 2018, 8, 8920–8928. [CrossRef] 37. Alamusi; Hu, N.; Fukunaga, H.; Atobe, S.; Liu, Y.; Li, J. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites. Sensors 2011, 11, 10691–10723. [CrossRef] 38. Saha, S.; Singh, J.P.; Saha, U.; Goswami, T.H.; Rao, K.U.B. Structure–Property Relationship of SELF-Sustained Homogeneous Ternary Nanocomposites: Key Issues to Evaluate Properties of RrP3HT Wrapped MWNT Dispersed in TPU. Compos. Sci. Technol. 2011, 71, 397–405. [CrossRef] 39. Kwon, S.J.; Ryu, S.H.; Han, Y.K.; Lee, J.; Kim, T.; Lee, S.-B.; Park, B. Electromagnetic Interference Shielding Films with Enhanced Absorption Using Double Percolation of Poly (Methyl Methacrylate) Beads and CIP/MWCNT/TPU Composite Channel. Mater. Today Commun. 2022, 31, 103401. [CrossRef] 40. Liu, L.-C.; Liang, W.-C.; Chen, C.-M. Manufacture of Recyclable Thermoplastic Polyurethane (TPU)/Silicone Blends and Their Mechanical Properties. Manuf. Lett. 2022, 31, 1–5. [CrossRef] 41. Wang, Y.; Chen, X.; Zhu, W.; Huang, X.; Tang, X.; Yang, J. A Comparison of Thermoplastic Polyurethane Incorporated with Graphene Oxide and Thermally Reduced Graphene Oxide: Reduction Is Not Always Necessary. J. Appl. Polym. Sci. 2019, 136, 47745. [CrossRef] 42. Atchudan, R.; Pandurangan, A.; Joo, J. Effects of Nanofillers on the Thermo-Mechanical Properties and Chemical Resistivity of Epoxy Nanocomposites. J. Nanosci. Nanotechnol. 2015, 15, 4255–4267. [CrossRef] [PubMed] 43. Gao, Y.; Zhang, Y.; Williams, G.R.; O’Hare, D.; Wang, Q. Layered Double Hydroxide-Oxidized Carbon Nanotube Hybrids as Highly Efficient Flame Retardant Nanofillers for Polypropylene. Sci. Rep. 2016, 6, 35502. [CrossRef] 44. Vadim, F.L. Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena; Wiley: Hoboken, NJ, USA, 2012; ISBN 9780470627785. 45. Huggins, R.A. Simple Method to Determine Electronic and Ionic Components of the Conductivity in Mixed Conductors a Review. Ionics 2002, 8, 300–313. [CrossRef] 46. Wang, S.; Yan, M.; Li, Y.; Vinado, C.; Yang, J. Separating Electronic and Ionic Conductivity in Mix-Conducting Layered Lithium Transition-Metal Oxides. J. Power Sources 2018, 393, 75–82. [CrossRef] 47. Romero, M.; Mombrú, D.; Pignanelli, F.; Faccio, R.; Mombrú, A.W. Mini-Review: Mixed Ionic–Electronic Charge Carrier Localization and Transport in Hybrid Organic–Inorganic Nanomaterials. Front. Chem. 2020, 8, 1–11. [CrossRef] 48. Liu, H.; Li, Y.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Electrically Conductive Thermoplastic Elastomer Nanocomposites at Ultralow Graphene Loading Levels for Strain Sensor Applications. J. Mater. Chem. C 2016, 4, 157–166. [CrossRef] 49. Jonscher, A.K. Universal Relaxation Law: A Sequel to Dielectric Relaxation in Solids; Chelsea Dielectrics Press: London, UK, 1996; ISBN 9780950871127. 50. Zare, Y.; Rhee, K.Y. A Simple Methodology to Predict the Tunneling Conductivity of Polymer/CNT Nanocomposites by the Roles of Tunneling Distance, Interphase and CNT Waviness. RSC Adv. 2017, 7, 34912–34921. [CrossRef] 51. Khromov, K.Y.; Knizhnik, A.A.; Potapkin, B.V.; Kenny, J.M. Multiscale Modeling of Electrical Conductivity of Carbon Nanotubes Based Polymer Nanocomposites. J. Appl. Phys. 2017, 121, 225102. [CrossRef] 52. Bocharov, G.S.; Eletskii, A.V. Percolation Conduction of Carbon Nanocomposites. Int. J. Mol. Sci. 2020, 21, 7634. [CrossRef] 53. Sanli, A.; Müller, C.; Kanoun, O.; Elibol, C.; Wagner, M.F.X. Piezoresistive Characterization of Multi-Walled Carbon NanotubeEpoxy Based Flexible Strain Sensitive Films by Impedance Spectroscopy. Compos. Sci. Technol. 2016, 122, 18–26. [CrossRef] 54. Chua, C.; Ang, Y.S.; Ang, L.K. Tunneling Injection to Trap-Limited Space-Charge Conduction for Metal-Insulator Junction. Appl. Phys. Lett. 2022, 121, 192109. [CrossRef] 55. Buhl, J.; Lüder, H.; Gerken, M. Injection-Limited and Space Charge-Limited Currents in Organic Semiconductor Devices with Nanopatterned Metal Electrodes. Nanotechnology 2023, 34, 035202. [CrossRef] [PubMed] 56. Naveen, B.S.; Jose, N.T.; Krishnan, P.; Mohapatra, S.; Pendharkar, V.; Koh, N.Y.H.; Lim, W.Y.; Huang, W.M. Evolution of Shore Hardness under Uniaxial Tension/Compression in Body-Temperature Programmable Elastic Shape Memory Hybrids. Polymers 2022, 14, 4872. [CrossRef] 57. Lee, J.; Koo, J.; Ezekoye, O. Thermoplastic polyurethane elastomer nanocomposites: Density and hardness correlations with flammability performance. In Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Denver, CO, USA, 2–5 August 2009; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2009; pp. 1–9. 58. Mansour, G.; Tsongas, K.; Tzetzis, D.; Tzikas, K. Dynamic Mechanical Characterization of Polyurethane/Multiwalled Carbon Nanotube Composite Thermoplastic Elastomers. Polym. Plast. Technol. Eng. 2017, 56, 1505–1515. [CrossRef] 59. Tayfun, U.; Kanbur, Y.; Abacı, U.; Güney, H.Y.; Bayramlı, E. Mechanical, Electrical, and Melt Flow Properties of Polyurethane Elastomer/Surface-Modified Carbon Nanotube Composites. J. Compos. Mater. 2017, 51, 1987–1996. [CrossRef] 60. Waletzko, R.S.; Korley, L.T.J.; Pate, B.D.; Thomas, E.L.; Hammond, P.T. Role of Increased Crystallinity in Deformation-Induced Structure of Segmented Thermoplastic Polyurethane Elastomers with PEO and PEO−PPO−PEO Soft Segments and HDI Hard Segments. Macromolecules 2009, 42, 2041–2053. [CrossRef] |
dc.rights.spa.fl_str_mv |
Derechos reservados - MDPI, 2023 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - MDPI, 2023 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
11 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI |
dc.publisher.place.eng.fl_str_mv |
Basel, Switzerland |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/04983eb8-da05-407c-aba8-570247f4db34/download https://red.uao.edu.co/bitstreams/1376dd2c-33f0-46ce-9475-43726d9f1b24/download https://red.uao.edu.co/bitstreams/555fbb60-25c8-4e04-b6ec-055099b999d0/download https://red.uao.edu.co/bitstreams/47764d9f-9929-4ac2-b407-a8187f87f871/download |
bitstream.checksum.fl_str_mv |
96a0ba785724e36cf2be9b2dffbc4457 6987b791264a2b5525252450f99b10d1 b68a892afedb13f9c2a482de2c4cbdff b5dec5b6264f45f643f9e872662bb73e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259777853718528 |
spelling |
Hidalgo-Salazar, Miguel AngelMuñoz-Chilito, JoséLara-Ramos, José A.Marín, LorenaMachuca-Martínez, FidermanCorrea-Aguirre, Juan P.García-Navarro, SerafínRoca-Blay, LuisRodríguez, Luis A.Mosquera-Vargas, EdgarDiosa, Jesús E.2024-09-11T18:58:02Z2024-09-11T18:58:02Z2023Muñoz-Chilito, José, et. al. (2023). Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates. Molecules. 28(8). 11 p. https://doi.org/10.3390/molecules28083598Doi: https://doi.org/10.3390/molecules28083598https://hdl.handle.net/10614/1581414203049Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/The impacts on the morphological, electrical and hardness properties of thermoplastic polyurethane (TPU) plates using multi-walled carbon nanotubes (MWCNTs) as reinforcing fillers have been investigated, using MWCNT loadings between 1 and 7 wt%. Plates of the TPU/MWCNT nanocomposites were fabricated by compression molding from extruded pellets. An X-ray diffraction analysis showed that the incorporation of MWCNTs into the TPU polymer matrix increases the ordered range of the soft and hard segments. SEM images revealed that the fabrication route used here helped to obtain TPU/MWCNT nanocomposites with a uniform dispersion of the nanotubes inside the TPU matrix and promoted the creation of a conductive network that favors the electronic conduction of the composite. The potential of the impedance spectroscopy technique has been used to determine that the TPU/MWCNT plates exhibited two conduction mechanisms, percolation and tunneling conduction of electrons, and their conductivity values increase as the MWCNT loading increases. Finally, although the fabrication route induced a hardness reduction with respect to the pure TPU, the addition of MWCNT increased the Shore A hardness behavior of the TPU plates11 páginasapplication/pdfengMDPIBasel, SwitzerlandDerechos reservados - MDPI, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite PlatesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85118128Molecules1. Yoon, H.; Jang, J. Conducting-Polymer Nanomaterials for High-Performance Sensor Applications: Issues and Challenges. Adv. Funct. Mater. 2009, 19, 1567–1576. [CrossRef] 2. Georgousis, G.; Pandis, C.; Kalamiotis, A.; Georgiopoulos, P.; Kyritsis, A.; Kontou, E.; Pissis, P.; Micusik, M.; Czanikova, K.; Kulicek, J.; et al. Strain Sensing in Polymer/Carbon Nanotube Composites by Electrical Resistance Measurement. Compos. Part B Eng. 2015, 68, 162–169. [CrossRef] 3. Liu, L.; Xiang, D.; Wu, Y.; Zhou, Z.; Li, H.; Zhao, C.; Li, Y. Conductive Polymer Composites Based Flexible Strain Sensors by 3D Printing: A Mini-Review. Front. Mater. 2021, 8, 1–8. [CrossRef] 4. Han, F.; Li, M.; Ye, H.; Zhang, G. Materials, Electrical Performance, Mechanisms, Applications, and Manufacturing Approaches for Flexible Strain Sensors. Nanomaterials 2021, 11, 1220. [CrossRef] [PubMed] 5. Song, J.H.; Kim, Y.-T.; Cho, S.; Song, W.-J.; Moon, S.; Park, C.-G.; Park, S.; Myoung, J.M.; Jeong, U. Surface-Embedded Stretchable Electrodes by Direct Printing and Their Uses to Fabricate Ultrathin Vibration Sensors and Circuits for 3D Structures. Adv. Mater. 2017, 29, 1702625. [CrossRef] [PubMed] 6. Kumar, S.; Gupta, T.K.; Varadarajan, K.M. Strong, Stretchable and Ultrasensitive MWCNT/TPU Nanocomposites for Piezoresistive Strain Sensing. Compos. Part B Eng. 2019, 177, 107285. [CrossRef] 7. Zhang, S.; Liu, H.; Yang, S.; Shi, X.; Zhang, D.; Shan, C.; Mi, L.; Liu, C.; Shen, C.; Guo, Z. Ultrasensitive and Highly Compressible Piezoresistive Sensor Based on Polyurethane Sponge Coated with a Cracked Cellulose Nanofibril/Silver Nanowire Layer. ACS Appl. Mater. Interfaces 2019, 11, 10922–10932. [CrossRef] 8. Feng, D.; Xu, D.; Wang, Q.; Liu, P. Highly Stretchable Electromagnetic Interference (EMI) Shielding Segregated Polyurethane/Carbon Nanotube Composites Fabricated by Microwave Selective Sintering. J. Mater. Chem. C 2019, 7, 7938–7946. [CrossRef] 9. Khalifa, M.; Anandhan, S.; Wuzella, G.; Lammer, H.; Mahendran, A.R. Thermoplastic Polyurethane Composites Reinforced with Renewable and Sustainable Fillers—A Review. Polym. Technol. Mater. 2020, 59, 1751–1769. [CrossRef] 10. Yao, Y.; Xiao, M.; Liu, W. A Short Review on Self-Healing Thermoplastic Polyurethanes. Macromol. Chem. Phys. 2021, 222, 2100002. [CrossRef] 11. Ahirwar, D.; Telang, A.; Purohit, R.; Namdev, A. A Short Review on Polyurethane Polymer Composite. Mater. Today Proc. 2022, 62, 3804–3810. [CrossRef] 12. Wölfel, B.; Seefried, A.; Allen, V.; Kaschta, J.; Holmes, C.; Schubert, D. Recycling and Reprocessing of Thermoplastic Polyurethane Materials towards Nonwoven Processing. Polymers 2020, 12, 1917. [CrossRef] [PubMed] 13. Calvo-Correas, T.; Benitez, M.; Larraza, I.; Ugarte, L.; Peña-Rodríguez, C.; Eceiza, A. Advanced and Traditional Processing of Thermoplastic Polyurethane Waste. Polym. Degrad. Stab. 2022, 198, 109880. [CrossRef] 14. Yan, Q.; Li, C.; Yan, T.; Shen, Y.; Li, Z. Chemically Recyclable Thermoplastic Polyurethane Elastomers via a Cascade Ring-Opening and Step-Growth Polymerization Strategy from Bio-Renewable δ-Caprolactone. Macromolecules 2022, 55, 3860–3868. [CrossRef] 15. Benedito, A.; Buezas, I.; Giménez, E.; Galindo, B.; D’Amore, A.; Acierno, D.; Grassia, L. Dispersion and characterization of thermoplastic polyurethane/multiwalled carbon nanotubes in co-rotative twin screw extruder. AIP Conf. Proc. 2010, 1255, 227. 16. Gupta, T.K.; Singh, B.P.; Teotia, S.; Katyal, V.; Dhakate, S.R.; Mathur, R.B. Designing of Multiwalled Carbon Nanotubes Reinforced Polyurethane Composites as Electromagnetic Interference Shielding Materials. J. Polym. Res. 2013, 20, 169. [CrossRef] 17. Liu, H.; Gao, J.; Huang, W.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Electrically Conductive Strain Sensing Polyurethane Nanocomposites with Synergistic Carbon Nanotubes and Graphene Bifillers. Nanoscale 2016, 8, 12977–12989. [CrossRef] 18. Christ, J.F.; Aliheidari, N.; Ameli, A.; Pötschke, P. 3D Printed Highly Elastic Strain Sensors of Multiwalled Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites. Mater. Des. 2017, 131, 394–401. [CrossRef] 19. Zheng, Y.; Li, Y.; Dai, K.; Liu, M.; Zhou, K.; Zheng, G.; Liu, C.; Shen, C. Conductive Thermoplastic Polyurethane Composites with Tunable Piezoresistivity by Modulating the Filler Dimensionality for Flexible Strain Sensors. Compos. Part A Appl. Sci. Manuf. 2017, 101, 41–49. [CrossRef] 20. Jun, Y.-S.; Hyun, B.G.; Hamidinejad, M.; Habibpour, S.; Yu, A.; Park, C.B. Maintaining Electrical Conductivity of Microcellular MWCNT/TPU Composites after Deformation. Compos. Part B Eng. 2021, 223, 109113. [CrossRef] 21. Moheimani, R.; Aliahmad, N.; Aliheidari, N.; Agarwal, M.; Dalir, H. Thermoplastic Polyurethane Flexible Capacitive Proximity Sensor Reinforced by CNTs for Applications in the Creative Industries. Sci. Rep. 2021, 11, 1104. [CrossRef] [PubMed] 22. Digar, M.; Wen, T.-C. Ionic Conductivity and Morphological Study of a Thermoplastic Polyurethane Based Electrolyte Comprising of Mixed Soft Segments. Polym. J. 2000, 32, 921–931. [CrossRef] 23. Wen, T.-C.; Du, Y.-L.; Digar, M. Compositional Effect on the Morphology and Ionic Conductivity of Thermoplastic Polyurethane Based Electrolytes. Eur. Polym. J. 2002, 38, 1039–1048. [CrossRef] 24. Chen, W.-C.; Chen, H.-H.; Wen, T.-C.; Digar, M.; Gopalan, A. Morphology and Ionic Conductivity of Thermoplastic Polyurethane Electrolytes. J. Appl. Polym. Sci. 2004, 91, 1154–1167. [CrossRef] 25. Deng, Y.; Cao, Q.; He, Z.; Jing, B.; Wang, X.; Peng, X. A Novel High-Performance Electrospun Thermoplastic Polyurethane/Poly (Vinylidene Fluoride)/Polystyrene Gel Polymer Electrolyte for Lithium Batteries. Acta Chim. Slov. 2017, 64, 95–101. [CrossRef] [PubMed] 26. Park, M.; Woo, H.; Heo, J.; Kim, J.; Thangavel, R.; Lee, Y.; Kim, D. Thermoplastic Polyurethane Elastomer-Based Gel Polymer Electrolytes for Sodium-Metal Cells with Enhanced Cycling Performance. ChemSusChem 2019, 12, 4645–4654. [CrossRef] 27. Yan, T.; Wang, Z.; Pan, Z.-J. Flexible Strain Sensors Fabricated Using Carbon-Based Nanomaterials: A Review. Curr. Opin. Solid State Mater. Sci. 2018, 22, 213–228. [CrossRef] 28. Kanbur, Y.; Tayfun, U. Investigating Mechanical, Thermal, and Flammability Properties of Thermoplastic Polyurethane/Carbon Nanotube Composites. J. Thermoplast. Compos. Mater. 2018, 31, 1661–1675. [CrossRef] 29. Kim, N.P. 3D-Printed Conductive Carbon-Infused Thermoplastic Polyurethane. Polymers 2020, 12, 1224. [CrossRef] 30. Kanoun, O.; Bouhamed, A.; Ramalingame, R.; Bautista-Quijano, J.R.; Rajendran, D.; Al-Hamry, A. Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors. Sensors 2021, 21, 341. [CrossRef] 31. Hoang, A.S. Electrical Conductivity and Electromagnetic Interference Shielding Characteristics of Multiwalled Carbon Nanotube Filled Polyurethane Composite Films. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 025007. [CrossRef] 32. Lima, A.M.F.; de Castro, V.G.; Borges, R.S.; Silva, G.G. Electrical Conductivity and Thermal Properties of Functionalized Carbon Nanotubes/Polyurethane Composites. Polímeros 2012, 22, 117–124. [CrossRef] 33. Fu, X.; Al-Jumaily, A.M.; Ramos, M.; Chen, Y.-F. Comprehensive Analysis on the Electrical Behavior of Highly Stretchable Carbon Nanotubes/Polymer Composite through Numerical Simulation. J. Mater. Res. 2018, 33, 3398–3407. [CrossRef] 34. Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578. [CrossRef] [PubMed] 35. Vadhva, P.; Hu, J.; Johnson, M.J.; Stocker, R.; Braglia, M.; Brett, D.J.L.; Rettie, A.J.E. Electrochemical Impedance Spectroscopy for All-Solid-State Batteries: Theory, Methods and Future Outlook. ChemElectroChem 2021, 8, 1930–1947. [CrossRef] 36. Fang, C.; Yang, R.; Zhang, Z.; Zhou, X.; Lei, W.; Cheng, Y.; Zhang, W.; Wang, D. Effect of Multi-Walled Carbon Nanotubes on the Physical Properties and Crystallisation of Recycled PET/TPU Composites. RSC Adv. 2018, 8, 8920–8928. [CrossRef] 37. Alamusi; Hu, N.; Fukunaga, H.; Atobe, S.; Liu, Y.; Li, J. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites. Sensors 2011, 11, 10691–10723. [CrossRef] 38. Saha, S.; Singh, J.P.; Saha, U.; Goswami, T.H.; Rao, K.U.B. Structure–Property Relationship of SELF-Sustained Homogeneous Ternary Nanocomposites: Key Issues to Evaluate Properties of RrP3HT Wrapped MWNT Dispersed in TPU. Compos. Sci. Technol. 2011, 71, 397–405. [CrossRef] 39. Kwon, S.J.; Ryu, S.H.; Han, Y.K.; Lee, J.; Kim, T.; Lee, S.-B.; Park, B. Electromagnetic Interference Shielding Films with Enhanced Absorption Using Double Percolation of Poly (Methyl Methacrylate) Beads and CIP/MWCNT/TPU Composite Channel. Mater. Today Commun. 2022, 31, 103401. [CrossRef] 40. Liu, L.-C.; Liang, W.-C.; Chen, C.-M. Manufacture of Recyclable Thermoplastic Polyurethane (TPU)/Silicone Blends and Their Mechanical Properties. Manuf. Lett. 2022, 31, 1–5. [CrossRef] 41. Wang, Y.; Chen, X.; Zhu, W.; Huang, X.; Tang, X.; Yang, J. A Comparison of Thermoplastic Polyurethane Incorporated with Graphene Oxide and Thermally Reduced Graphene Oxide: Reduction Is Not Always Necessary. J. Appl. Polym. Sci. 2019, 136, 47745. [CrossRef] 42. Atchudan, R.; Pandurangan, A.; Joo, J. Effects of Nanofillers on the Thermo-Mechanical Properties and Chemical Resistivity of Epoxy Nanocomposites. J. Nanosci. Nanotechnol. 2015, 15, 4255–4267. [CrossRef] [PubMed] 43. Gao, Y.; Zhang, Y.; Williams, G.R.; O’Hare, D.; Wang, Q. Layered Double Hydroxide-Oxidized Carbon Nanotube Hybrids as Highly Efficient Flame Retardant Nanofillers for Polypropylene. Sci. Rep. 2016, 6, 35502. [CrossRef] 44. Vadim, F.L. Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena; Wiley: Hoboken, NJ, USA, 2012; ISBN 9780470627785. 45. Huggins, R.A. Simple Method to Determine Electronic and Ionic Components of the Conductivity in Mixed Conductors a Review. Ionics 2002, 8, 300–313. [CrossRef] 46. Wang, S.; Yan, M.; Li, Y.; Vinado, C.; Yang, J. Separating Electronic and Ionic Conductivity in Mix-Conducting Layered Lithium Transition-Metal Oxides. J. Power Sources 2018, 393, 75–82. [CrossRef] 47. Romero, M.; Mombrú, D.; Pignanelli, F.; Faccio, R.; Mombrú, A.W. Mini-Review: Mixed Ionic–Electronic Charge Carrier Localization and Transport in Hybrid Organic–Inorganic Nanomaterials. Front. Chem. 2020, 8, 1–11. [CrossRef] 48. Liu, H.; Li, Y.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Electrically Conductive Thermoplastic Elastomer Nanocomposites at Ultralow Graphene Loading Levels for Strain Sensor Applications. J. Mater. Chem. C 2016, 4, 157–166. [CrossRef] 49. Jonscher, A.K. Universal Relaxation Law: A Sequel to Dielectric Relaxation in Solids; Chelsea Dielectrics Press: London, UK, 1996; ISBN 9780950871127. 50. Zare, Y.; Rhee, K.Y. A Simple Methodology to Predict the Tunneling Conductivity of Polymer/CNT Nanocomposites by the Roles of Tunneling Distance, Interphase and CNT Waviness. RSC Adv. 2017, 7, 34912–34921. [CrossRef] 51. Khromov, K.Y.; Knizhnik, A.A.; Potapkin, B.V.; Kenny, J.M. Multiscale Modeling of Electrical Conductivity of Carbon Nanotubes Based Polymer Nanocomposites. J. Appl. Phys. 2017, 121, 225102. [CrossRef] 52. Bocharov, G.S.; Eletskii, A.V. Percolation Conduction of Carbon Nanocomposites. Int. J. Mol. Sci. 2020, 21, 7634. [CrossRef] 53. Sanli, A.; Müller, C.; Kanoun, O.; Elibol, C.; Wagner, M.F.X. Piezoresistive Characterization of Multi-Walled Carbon NanotubeEpoxy Based Flexible Strain Sensitive Films by Impedance Spectroscopy. Compos. Sci. Technol. 2016, 122, 18–26. [CrossRef] 54. Chua, C.; Ang, Y.S.; Ang, L.K. Tunneling Injection to Trap-Limited Space-Charge Conduction for Metal-Insulator Junction. Appl. Phys. Lett. 2022, 121, 192109. [CrossRef] 55. Buhl, J.; Lüder, H.; Gerken, M. Injection-Limited and Space Charge-Limited Currents in Organic Semiconductor Devices with Nanopatterned Metal Electrodes. Nanotechnology 2023, 34, 035202. [CrossRef] [PubMed] 56. Naveen, B.S.; Jose, N.T.; Krishnan, P.; Mohapatra, S.; Pendharkar, V.; Koh, N.Y.H.; Lim, W.Y.; Huang, W.M. Evolution of Shore Hardness under Uniaxial Tension/Compression in Body-Temperature Programmable Elastic Shape Memory Hybrids. Polymers 2022, 14, 4872. [CrossRef] 57. Lee, J.; Koo, J.; Ezekoye, O. Thermoplastic polyurethane elastomer nanocomposites: Density and hardness correlations with flammability performance. In Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Denver, CO, USA, 2–5 August 2009; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2009; pp. 1–9. 58. Mansour, G.; Tsongas, K.; Tzetzis, D.; Tzikas, K. Dynamic Mechanical Characterization of Polyurethane/Multiwalled Carbon Nanotube Composite Thermoplastic Elastomers. Polym. Plast. Technol. Eng. 2017, 56, 1505–1515. [CrossRef] 59. Tayfun, U.; Kanbur, Y.; Abacı, U.; Güney, H.Y.; Bayramlı, E. Mechanical, Electrical, and Melt Flow Properties of Polyurethane Elastomer/Surface-Modified Carbon Nanotube Composites. J. Compos. Mater. 2017, 51, 1987–1996. [CrossRef] 60. Waletzko, R.S.; Korley, L.T.J.; Pate, B.D.; Thomas, E.L.; Hammond, P.T. Role of Increased Crystallinity in Deformation-Induced Structure of Segmented Thermoplastic Polyurethane Elastomers with PEO and PEO−PPO−PEO Soft Segments and HDI Hard Segments. Macromolecules 2009, 42, 2041–2053. [CrossRef]Thermoplastic polyurethaneMulti-walled carbon nanotubesNanomaterial-reinforced polymerImpedance spectroscopyEquivalent circuit modelingPercolation conductionComunidad generalPublicationORIGINALMorphological_Electrical_and_Hardness_Characterization_of_Carbon_Nanotube-Reinforced_Thermoplastic_Polyurethane_(TPU)_Nanocomposite_Plates.pdfMorphological_Electrical_and_Hardness_Characterization_of_Carbon_Nanotube-Reinforced_Thermoplastic_Polyurethane_(TPU)_Nanocomposite_Plates.pdfTexto archivo completo el artículo de revistaapplication/pdf2308491https://red.uao.edu.co/bitstreams/04983eb8-da05-407c-aba8-570247f4db34/download96a0ba785724e36cf2be9b2dffbc4457MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/1376dd2c-33f0-46ce-9475-43726d9f1b24/download6987b791264a2b5525252450f99b10d1MD52TEXTMorphological_Electrical_and_Hardness_Characterization_of_Carbon_Nanotube-Reinforced_Thermoplastic_Polyurethane_(TPU)_Nanocomposite_Plates.pdf.txtMorphological_Electrical_and_Hardness_Characterization_of_Carbon_Nanotube-Reinforced_Thermoplastic_Polyurethane_(TPU)_Nanocomposite_Plates.pdf.txtExtracted texttext/plain59888https://red.uao.edu.co/bitstreams/555fbb60-25c8-4e04-b6ec-055099b999d0/downloadb68a892afedb13f9c2a482de2c4cbdffMD53THUMBNAILMorphological_Electrical_and_Hardness_Characterization_of_Carbon_Nanotube-Reinforced_Thermoplastic_Polyurethane_(TPU)_Nanocomposite_Plates.pdf.jpgMorphological_Electrical_and_Hardness_Characterization_of_Carbon_Nanotube-Reinforced_Thermoplastic_Polyurethane_(TPU)_Nanocomposite_Plates.pdf.jpgGenerated Thumbnailimage/jpeg16272https://red.uao.edu.co/bitstreams/47764d9f-9929-4ac2-b407-a8187f87f871/downloadb5dec5b6264f45f643f9e872662bb73eMD5410614/15814oai:red.uao.edu.co:10614/158142024-09-18 10:17:00.039https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2023open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg== |