Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra online
La adopción de la inteligencia artificial (IA) en los procesos de compra online está transformando las empresas y mejorando la experiencia de compra en línea del consumidor. Es esencial entender las variables influyentes en el uso de una IA por parte de los consumidores online, dada la falta de inve...
- Autores:
-
Colonia Sánchez, Tomás
Cuero Banguero, Jireth Marcela
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/15625
- Acceso en línea:
- https://hdl.handle.net/10614/15625
https://red.uao.edu.co/
- Palabra clave:
- Inteligencia artificial
Comercio electrónico
Comportamiento del consumidor
Modelo de ecuaciones estructurales
Experiencia de compra
Mercadeo y Negocios Internacionales
Artificial intelligence
E-commerce
Consumer behavior
Structural equation model
Shopping experience
- Rights
- openAccess
- License
- Derechos reservados - Universidad Autónoma de Occidente, 2024
id |
REPOUAO2_46ef9033418a70d9d2ab4ebcf84321d7 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/15625 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra online |
title |
Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra online |
spellingShingle |
Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra online Inteligencia artificial Comercio electrónico Comportamiento del consumidor Modelo de ecuaciones estructurales Experiencia de compra Mercadeo y Negocios Internacionales Artificial intelligence E-commerce Consumer behavior Structural equation model Shopping experience |
title_short |
Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra online |
title_full |
Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra online |
title_fullStr |
Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra online |
title_full_unstemmed |
Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra online |
title_sort |
Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra online |
dc.creator.fl_str_mv |
Colonia Sánchez, Tomás Cuero Banguero, Jireth Marcela |
dc.contributor.advisor.none.fl_str_mv |
Caicedo Marulanda, Carolina |
dc.contributor.author.none.fl_str_mv |
Colonia Sánchez, Tomás Cuero Banguero, Jireth Marcela |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.contributor.jury.none.fl_str_mv |
López Ospina, Carlos Andrés |
dc.subject.proposal.spa.fl_str_mv |
Inteligencia artificial Comercio electrónico Comportamiento del consumidor Modelo de ecuaciones estructurales Experiencia de compra Mercadeo y Negocios Internacionales |
topic |
Inteligencia artificial Comercio electrónico Comportamiento del consumidor Modelo de ecuaciones estructurales Experiencia de compra Mercadeo y Negocios Internacionales Artificial intelligence E-commerce Consumer behavior Structural equation model Shopping experience |
dc.subject.proposal.eng.fl_str_mv |
Artificial intelligence E-commerce Consumer behavior Structural equation model Shopping experience |
description |
La adopción de la inteligencia artificial (IA) en los procesos de compra online está transformando las empresas y mejorando la experiencia de compra en línea del consumidor. Es esencial entender las variables influyentes en el uso de una IA por parte de los consumidores online, dada la falta de investigación en este campo. Este estudio recolectó 586 datos válidos a través de encuestas en la ciudad de Cali y se analizaron utilizando un modelo de ecuaciones estructurales (SEM) para determinar la relación entre estas variables y su impacto en el comportamiento de compra del consumidor online. Los resultados ofrecen información valiosa para las empresas que buscan mejorar la experiencia de compra en línea de sus clientes a través de la IA en sus plataformas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-12T16:48:03Z |
dc.date.available.none.fl_str_mv |
2024-07-12T16:48:03Z |
dc.date.issued.none.fl_str_mv |
2024-04-25 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Colonia Sánchez, T. Y Cuero Banguero, J. M. (2024). Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra online. (Proyecto de grado). Universidad Autónoma de Occidente. Cali. Colombia. https://hdl.handle.net/10614/15625 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/15625 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Respositorio Educativo Digital UAO |
dc.identifier.repourl.none.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
Colonia Sánchez, T. Y Cuero Banguero, J. M. (2024). Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra online. (Proyecto de grado). Universidad Autónoma de Occidente. Cali. Colombia. https://hdl.handle.net/10614/15625 Universidad Autónoma de Occidente Respositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/15625 https://red.uao.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Adamopoulou, E., y Moussiades, L. (2020). An overview of Chatbot technology. En IFIP advances in information and communication technology (pp. 373-383). DOI: 10.1007/978-3-030-49186-4_31 ADP. (2018). Artificial Intelligence – the Future of Automation in Workforce Management. SPARK Blog ADP. https://www.adp.com/spark/articles/2017/10/artificial-intelligencethe-future-of-automation-in-workforce-management.aspx Afroz Lari, H., Vaishnava, K., y K. S., M. (2022). Artifical Intelligence in E-commerce: Applications, Implications and Challenges. Asian Journal of Management, 13(03), 235-244. DOI: 10.52711/2321-5763.2022.00041 Ajzen, I., y Fishbein, M. (1977). Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological bulletin, 84(5), 888- 918. https://doi.org/10.1037/0033-2909.84.5.888 Ajzen, I., y Fishbein, M. (1980). Understanding Attitudes and Predicting Social Behavior.Prentice Hall. https://search.worldcat.org/es/title/Understanding-attitudes-and- predicting-socialbehavior/oclc/5726878 Al Kuwaiti, A., Nazer, K., Al-Reedy, A., Al-Shehri, S., Al-Muhanna, A., Subbarayalu, A. V., Al Muhanna, D., y Al-Muhanna, F. A. (2023). A Review of the Role of Artificial Intelligence in Healthcare. Journal of Personalized Medicine, 13(6), 951. https://doi.org/10.3390/jpm13060951 Al-Sharafi, M. A., Arshah, R. A., Herzallah, F. A. T., y Alajmi, Q. (2017). The effect of perceived ease of use and usefulness on customers intention to use online banking services: the mediating role of perceived trust. International Journal of InnovativeComputing, 7(1), 9-14. https://doi.org/10.11113/ijic.v7n1.139 Ameen, N., Tarhini, A., Reppel, A., y Anand, A. (2020). Customer experiences in theage of artificial intelligence. Computers in Human Behavior, 114(2021), 106548. DOI: 10.1016/j.chb.2020.106548 André, Q., Carmon, Z., Wertenbroch, K., Crum, A., Frank, D., Goldstein, W., Huber, J., Van Boven, L., Weber, B., y Yang, H. (2017). Consumer choice and autonomyI in the age of artificial intelligence and big data. Customer Needs and Solutions, 5(1-2), 28–37. https://doi.org/10.1007/s40547-017-0085-8 Bakos, J. Y. (1997). Reducing buyer search costs: implications for electronic marketplaces. Management Science, 43(12), pp.1676-1692. http://www.jstor.org/stable/2634535 Bäckman, L., y Dixon, R. A. (1992). Psychological compensation: A theoretical framework. Psychological Bulletin, 112(2), 259-283. https://doi.org/10.1037/0033-2909.112.2.259 Bollen, K. A. (1989). Structural Equations with Latent Variables. John Wiley & Sons. https://doi.org/10.1002/9781118619179 Bou-Ghanem, D. (2020). Factors that Influence the Acceptance of Artificial Intelligence Technology by the Consumer. The Tenth International Conference on Engaged Management Scholarship. https://dx.doi.org/10.2139/ssrn.3687765 Buitrago-Rodríguez, J. N., Tovar-Sánchez, L. M., y Lamos-Díaz, H. (2018). Modelo de ecuaciones estructurales para el estudio de la percepción de los estudiantes de pregrado de ingeniería industrial con el Proyecto Educativo del Programa-PEP. Revista Educación en Ingeniería, 13(26), 90-100. https://doi.org/10.26507/rei.v13n26.895 Chintalapati, S. y Pandey, SK (2022). Artificial intelligence in marketing: A systematic literature review. International Journal of Market Research, 64 (1), 38-68. https://doi.org/10.1177/14707853211018428 DANE. (2018). Censo Nacional de Población y Vivienda, 2018 - Colombia. DANE. https://www.dane.gov.co/ Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptanceof information technology. Management Information Systems Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008 Davis, F. D. (1989). El Modelo de Aceptación Tecnológica (TAM) [Imagen]. Perceived usefulness, perceived ease of use, and user acceptance of information technology. Management Information Systems Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008 Dickinger, A., Arami, M., y Meyer, D. (2008). The role of perceived enjoyment and socialnorm in the adoption of technology with network externalities. European Journal of Information Systems, 17(6), 4-11. https://doi.org/10.1057/palgrave.ejis.3000726 Eckhardt, A. (2009). The significant others of subjective norm - A scientometric study of subjective norm in IS top-journals over two decades. ECIS 2009. https://www.semanticscholar.org/paper/The-significant-others-of-subjective-norm-Astudy-Eckhardt/1527ca8880cab390b28e8dfcaeab6d252ec079ea Euromonitor. (2023). What Are the Top 10 Consumer Trends in 2023?. Euromonitor.com.https://www.euromonitor.com/article/what-are-the-top10-consumer- trends-in-2023 Filieri, R., Alguezaui, S. y McLeay, F. (2015). Why do travelers trust TripAdvisor? Antecedents of trust towards consumer-generated media and its influence on recommendation adoption and word of mouth. Tourism Management. 51. 174-185. https://doi.org/10.1016/j.tourman.2015.05.007 FORBES. (2023). El 2024 será el año de la verdadera masificación de la IA. Forbes Colombia. https://forbes.co/2023/12/26/red-forbes/el-2024-sera-el-ano-de-la- verdaderamasificacion-de-la-ia Fornell, C., y Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal Of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312 Franco, F. (2012). Compensation and Organisational Performance: Theory, Research and Practice (1st Edition). European Accounting Review, 21(1), 183-186. https://doi.org/10.1080/09638180.2012.675164 García, C. (2023). BBVA presenta solución de comercio electrónico para los negocios en Colombia. BBVA NOTICIAS. https://www.bbva.com/es/co/bbva-presenta-solucion- decomercio-electronico-para-negocios-en-colombia/ Gefen, D., Karahanna, E., y Straub, D. W. (2003). Trust and TAM in Online Shopping: An Integrated Model. Management Information Systems Quarterly, 27(1), 51. https://doi.org/10.2307/30036519 Ghimire, A., Thapa, S., Jha, A. K., Adhikari, S., y Kumar, A. (2020). Accelerating Business Growth with Big Data and Artificial Intelligence. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). 441-448. DOI: 10.1109/ISMAC49090.2020.9243318 Grajales, T. (2000). Tipos de investigación. Universidad de Baja California. Revisado en 2023, 14, 112-116. https://idoc.pub/documents/el-concepto-de-investigaciontevni-grajales-gmwl1dp2302lj Griffin, James, (1986). Well-being: its meaning, measurement and moral importance. Oxford Text Archive. https://doi.org/10.1093/0198248431.001.0001 Griffith, E. y Simonite, T. (2018) Facebook’s virtual assistant M is dead. So are chatbots.Wired Business, 8 January. Available at: https://www.wired.com/story/facebooks-virtualassistant-m-is-dead-so-are-chatbots/ (accessed 23 September 2018). Hair, J. F., Anderson, R. E. y Tatham, R. L. (1988). Multivariate Data Analysis with Readings. Journal of the Royal Statistical Society Series A: Statistics in Society. 151(3). 558-559. https://doi.org/10.2307/2983017 Han, S., Yang, H., 2018. Understanding adoption of intelligent personal assistants: a parasocial relationship perspective. Industrial Management & Data Systems. 118(3), 618–636. https://doi.org/10.1108/IMDS- 05- 2017-0214. Herawati, N. (2013). Pengaruh faktor-faktor motivasional terhadap intensitas perilaku mahasiswa yang menggunakan e-learning di stie perbanas surabaya [Tesis doctoral Stie Perbanas Surabaya]. Perbanas Institutional repository. http://eprints.perbanas.ac.id/1456/2/COVER.pdf Ivanov, S., Webster, C., y Berezina, K. (2017). Adoption of robots and service automation by tourism and hospitality companies. Revista Turismo & Desenvolvimento. 27(28), 1501- 1517. ISSN: 2182-1453 Jacoby, J., Olson, J. C., y Haddock, R. A. (1971). Price, brand name, and product composition characteristics as determinants of perceived quality. Journal Of Applied Psychology. 55(6). 570-579. https://doi.org/10.1037/h0032045 Jadhav, P. P., Samnani, A., Alachiya, A., Shah, V., y Selvam, A. (2022). Intelligent Chatbot. International Journal of Advanced Research in Science, Communication and Technology. 2(4). https://doi.org/10.48175/ijarsct-3996 Jamankulova F., Toshniyozova M. y Nizomova D. (2022). The Most Necessary Aspects of Artificial Intelligence in Different Fields. Mathematical Statistician and Engineering Applications, 71(4), 7536–7542. https://doi.org/10.17762/msea.v71i4.1372 Jatimoyo, D., Rohman, F., y Djazuli, A. (2021). The effect of perceived ease of use on continuance intention through perceived usefulness and trust. International Journal of Research in Business and Social Science, 10(4), 430-437. https://doi.org/10.20525/ijrbs.v10i4.1223 Jenneboer, L., Herrando, C., y Constantinides, E. (2022). The Impact of chatbots on Customer Loyalty: A Systematic literature review. Journal of Theoretical and Applied Electronic Commerce Research, 17(1), 212-229. https://doi.org/10.3390/jtaer17010011 Jeffrey, T. R. (2022). Understanding Generation Z Perceptions of Artificial Intelligence in Marketing and Advertising. Advertising & Society Quarterly, 22(4). https://doi.org/10.1353/asr.2021.0052 Jin, E. y Eastin, M. (2022), Birds of a feather flock together: matched personality effects of product recommendation chatbots and users, Journal of Research in Interactive Marketing, 17(3), 416-433. https://doi.org/10.1108/JRIM-03-2022-0089 Kakkar, S., y Monga, V. (2020). A Study on Artificial Intelligence in E - Commerce. International Journal of Advances in Engineering & Scientific Research, 4(4), 62-68. ISSN: 2349-3607 Khan, M.M. (2020). Development of an e-commerce Sales Chatbot. 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), 173-176. DOI:10.1109/HONET50430.2020.9322667 Kim, D. J., Ferrin, D. L., y Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544-564. https://doi.org/10.1016/j.dss.2007.07.001 Kim, J., y Park, H. (2012). Development of a Health Information Technology AcceptanceModel Using Consumers’ Health Behavior Intention. Journal Of Medical Internet Research, 14(5). https://doi.org/10.2196/jmir.2143 Kim, J., Merrill, K., y Collins, C. (2021). AI as a friend or assistant: The mediating roleof perceived usefulness in social AI vs. functional AI. Telematics and Informatics, 64. https://doi.org/10.1016/J.TELE.2021.101694 Kraus, S. J. (1995). Attitudes and the prediction of behavior: A meta-analysis of the empirical literature. Personality and social psychology bulletin, 21(1), 58-75. https://doi.org/10.1177/0146167295211007 Legris, P., Ingham, J., y Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(3), 191-204. https://doi.org/10.1016/s0378-7206(01)00143-4 Li, Y., y Liu, C. S. (2018). Understanding service quality and reputation effects on purchase behavior through image: the moderating roles of service reliability. The International Journal of Transportation Research, 11(10), 580-588. https://doi.org/10.1080/19427867.2018.1478929 Lichtenstein-Vidne, L., Henik, A., y Safadi, Z. (2007). Task-relevance modulates the effects of peripheral distractors. Quarterly Journal of Experimental Psychology, 60(9), 1216-1226. https://doi.org/10.1080/17470210600917892 Lindh, C., Nordman, E. R., Hånell, S. M., Safari, A., & Hadjikhani, A. I. (2020). Digitalization and international online sales: Antecedents of purchase intent. Journal of International Consumer Marketing, 32(4), 324-335. https://doi.org/10.1080/08961530.2019.1707143 Liu, R. (2021). Discussion on the Application of Artificial Intelligence in e-Commerce. Journal of Frontiers of Society, Science and Technology, 1(3), 4-8. https://doi.org/10.23977/JFSST.2021.010302 Lwin, M., Wirtz, J., y Williams, J. D. (2007). Consumer Online Privacy Concerns andResponses: A power–responsibility equilibrium perspective. Journal of the Academy of Marketing Science, 35(4), 572-585. https://doi.org/10.1007/s11747-006-0003-3 Lynch, J.G. y Ariely, D., 2000. Wine Online: Search Costs Affect Competition on Price,Quality, and Distribution. Marketing Science, 19(1), 83-103. https://doi.org/10.1287/mksc.19.1.83.15183 López-Bonilla, L. M., y López-Bonilla, J. M. (2016). Explaining the discrepancy in the mediating role of attitude in the TAM. British Journal Of Educational Technology, 48(4),940-949. https://doi.org/10.1111/bjet.12465 McCarthy, J., Minsky, M., Rochester, N., y Shannon, C. (2006). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Magazine, 27(4). https://doi.org/10.1609/aimag.v27i4.1904 Morris, M., y Zhi, L. (2015). Psychological Functions of Subjective Norms. Journal Of Cross-Cultural Psychology, 46(10), 1279-1287. https://doi.org/10.1177/0022022115612161 Mosavi, S. A., y Ghaedi, M. (2012). An examination of the effects of perceived value and attitude on customers behavioral intentions in e-shopping. African Journal of Business Management, 6(5). https://doi.org/10.5897/AJBM11.2205 Mudgal, S., Agarwal, R., Chaturvedi, J., Gaur, R., y Ranjan, N. (2022). Real-world application, challenges and implication of artificial intelligence in healthcare: an essay. The Pan African Medical Journal, 43(3). https://doi.org/10.11604/pamj.2022.43.3.33384 Nagy, Š., y Hajdú, N. (2021). Consumer acceptance of the use of artificial intelligence in online shopping: evidence from Hungary. Amfiteatru Economic, 23(56). https://doi.org/10.24818/ea/2021/56/155 Nagy, Š., y Hajdú, N. (2021). Modelo teórico inicial del estudio [Imagen]. Consumer acceptance of the use of artificial intelligence in online shopping: evidence from Hungary. Amfiteatru Economic, 23(56). https://doi.org/10.24818/ea/2021/56/155 Nieto, E. (2018). Tipos de investigación. Universidad Santo Domingo de Guzmán. repositorio.unisdg.edu.pe:USDG/34 Njeru, F. (2023). A Review of Artificial Intelligence and its Application in Business. Journal of Enterprise and Business Intelligence, 3(1). https://doi.org/10.53759/5181%2Fjebi202303005 Nuseir, M., y Refae, G. E. (2022). The effects of facilitating conditions, customer experience and brand loyalty on customer-based brand equity through social media marketing. International Journal Of Data And Network Science, 6(3), 875-884. https://doi.org/10.5267/j.ijdns.2022.2.009 Park, S. (2009). An Analysis of the Technology Acceptance Model in UnderstandingUniversity Students Behavioral Intention to Use e-Learning. Journal Educational Technology & Society, 12(3), 150–162. https://www.semanticscholar.org/paper/An-Analysis-of-theTechnology-Acceptance-Model-inPark/f2e97c5834f9ce006aeb2398c13c502acdf6bcbc Pavlou, P. (2001). Integrating Trust in Electronic Commerce with the Technology Acceptance Model: Model Development and Validation. AMCIS 2001 Proceedings. 159. https://aisel.aisnet.org/amcis2001/159?utm_source=aisel.aisnet.org%2Famcis2001%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages Pavlou, P. (2003). Consumer Acceptance of Electronic Commerce: Integrating Trust and Risk with the Technology Acceptance Model. International Journal of Electronic Commerce, 7(3), 69–103. https://dl.acm.org/doi/10.5555/1288216.1288221 Pillai, A., y Mukherjee, J. (2011). User acceptance of hedonic versus utilitarian social networking web sites. Journal of Indian Business Research, 3(3), 180–191. doi:10.1108/17554191111157047. Pop, Ș., Pelau, C., Ciofu, I., y Kondort, G. (2023). Factors Predicting Consumer-AI Interactions. 9th BASIQ International Conference on New Trends in Sustainable Business and Consumption. Constanța, Romania, 8-10 June 2023, 592-597. https://doi.org/10.24818/basiq%2F2023%2F09%2F068 Payments and Commerce Market Intelligence. (2023). Dynamics of E-Commerce in Latin America 2023–2026. https://americasmi.com/insights/digital-payments-and-ecommerce-in-latin-america-data-projections/ Pricewaterhouse Coopers, 2018. Künstliche Intelligenz als Innovationsbeschleuniger in Unternehmen – Zuversicht und Vertrauen in Künstliche Intelligenz. https://www.pwc.de/de/digitale-transformation/kuenstliche-intelligenz/kuenstlicheintelligenz-als-innovationsbeschleuniger-im-unternehmen.pdf Raksadigiri, M. W., y Wahyuni, S. (2020). Perceived ease of use effect on perceived usefulness and attitude towards use and its impact on behavioural intention to use. International Journal Of Advanced Research, 8(12), 439-444. https://doi.org/10.21474/ijar01/12167 Ramadania, S. (2017). The Effect Of Perceived Usefulness, Ease Of Use, Attitude, Self-Efficacy, And Subjective Norms Toward Intention To Use Online Shopping (Doctoral dissertation, Universitas Brawijaya). (tesis doctoral) Raza, S., Abu Bakar, H., y Mohamad, B. (2017). Relationships between the advertising appeal and behavioral intention: The mediating role of the attitude towards advertising appeal. International Conference on Communication and Media: An International Communication Association Regional Conference. 33. https://doi.org/10.1051/SHSCONF%2F20173300022 Rodríguez, J. C., González, H. H., y Molina, A. F. (2021). Libro blanco del comercio electrónico en Colombia: Una guía adaptada a las necesidades de las mipymescolombianas. Universidad EAN. https://repository.universidadean.edu.co/bitstream/handle/10882/10711/FigueroaAndres2021.pdf?sequence=1 Sadiku, M., Fagbohungbe, O., y Musa, S. (2020). Artificial Intelligence in Business.International Journal of Engineering Research and Advanced Technology. https://doi.org/10.31695/ijerat.2020.3625 Shafi, P. M., Jawalkar, G. S., Kadam, M. A., Ambawale, R. R., y Bankar, S. V. (2020). AI—Assisted Chatbot for E-Commerce to Address Selection of Products from Multiple Products. Internet of Things, Smart Computing and Technology: A Roadmap Ahead, 266. https://doi.org/10.1007/978-3-030-39047-1_3 Sharma, A. (2023). Analyzing the Role of Artificial Intelligence in Predicting CustomerBehavior andPersonalizing the Shopping Experience inEcommerce. INTERANTIONALJOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT. 8(4). https://doi.org/10.55041/ijsrem17839 Snoj, B., Pisnik, A., y Mumel, D. (2004). The relationships among perceived quality, perceived risk and perceived product value. Journal Of Product & Brand Management, 13(3), 156-167. https://doi.org/10.1108/10610420410538050 Song, X., Yang, S., Huang, Z., y Huang, T. (2019). The Application of Artificial Intelligence in Electronic Commerce. Journal of Physics: Conference Series, 1302(3). https://doi.org/10.1088/1742-6596%2F1302%2F3%2F032030 Stigler, G. J. y Becker, G. S. (1977). De Gustibus Non Est Disputandum. Idées économiques et sociales. 159, 54-69. https://doi.org/10.3917/IDEE.159.0054 Stigler, G. J., (1961). The Economics of Information. Journal of Political Economy, 69(3), 213-225. http://www.jstor.org/stable/1829263. Sun, H., & Zhang, P. (2006). Causal Relationships between Perceived Enjoyment and Perceived Ease of Use: An Alternative Approach. Journal Of The Association For Information Systems, 7(9), 618-645. https://doi.org/10.17705/1jais.00100 Sun, H. (2010). Transferring Attributes of E-Commerce Systems into Business Benefits:A Relationship Quality Perspective. Journal Of Electronic Commerce Research, 11(2). http://www.csulb.edu/journals/jecr/issues/20102/paper1.pdf Suresh, T. P., Yong, P. L., Chyi, Y. S., y Musa, R. (2023). Connecting with Generation Z: Consumer Acceptance of the Use of Artificial Intelligence in Online Shopping. Journalof Entrepreneurship and Business (JEB), 11(1), 56-68. https://doi.org/10.17687/jeb.v11i1.921 Teo, T. (2009). Is there an attitude problem? Reconsidering the role of attitude in the TAM. British Journal Of Educational Technology, 40(6), 1139-1141. https://doi.org/10.1111/j.1467-8535.2008.00913.x Terrizzi, S., Sherer, S., Meyerhoefer, C., Scheinberg, M., y Levick, D. (2012). Extending the Technology Acceptance Model in Healthcare: Identifying the Role of Trustand Shared Information. Americas Conference on Information Systems. http://aisel.aisnet.org/amcis2012/proceedings/ISHealthcare/19 Tiutiu, M., y Dabija, D. (2023). Improving Customer Experience Using Artificial Intelligence in Online Retail. Proceedings of the International Conference on Business Excellence, 17(1), 1139 - 1147. https://doi.org/10.2478/picbe-2023-0102 Tubadji, A., Denney, T., y Webber, D. (2021). Cultural relativity in consumers ratesof adoption of artificial intelligence. Economic Inquiry, 59(3). https://doi.org/10.1111/ECIN.12978 Trafimow, D., y Fishbein, M. (1994). The Moderating Effect of Behavior Type on the Subjective Norm-Behavior Relationship. The Journal Of Social Psychology, 134(6), 755- 763. https://doi.org/10.1080/00224545.1994.9923010 Vakkari, P. (2000). Relevance and contributing information types of searched documentsin task performance. Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. https://doi.org/10.1145/345508.345512 Widiar, G., Yuniarinto, A., y Yulianti, I. (2023). Perceived Ease of Use’s Effects on Behavioral Intention Mediated by Perceived Usefulness and Trust. Interdisciplinary Social Studies, 2(4), 1829-1844. https://doi.org/10.55324/iss.v2i4.397 Williams, R. (2019). Study: Chatbots to drive $112B in retail sales by 2023. Marketing Dive. https://www.marketingdive.com/news/study-chatbots-to-drive-112b-in-retail-sales-by2023/554416/ Wirth, J., Maier, C. y Laumer, S., (2019). Subjective norm and the privacy calculus: Explaining self-disclosure on social networking. European Conference on Information Systems, Stockholm & Uppsala, Sweden, June 8-14, 2019. ISBN 978-1-7336325-0-8. https://aisel.aisnet.org/ecis2019_rp/131 Wu, K., Zhao, Y., Zhu, Q., Tan, X., y Zheng, H. (2011). A meta-analysis of the impact oftrust on technology acceptance model: Investigation of moderating influence of subject and context type. International Journal Of Information Management, 31(6), 572-581. https://doi.org/10.1016/j.ijinfomgt.2011.03.004 Yang, H., Lee, H., y Zo, H. (2017). User acceptance of smart home services: an extension of the theory of planned behavior. Industrial Management & Data Systems, 117(1), 68-89. https://doi.org/10.1108/IMDS-01-2016-0017 Yang, L., Min, X., y Xing, L. (2022). Exploring the core factors of online purchase decisions by building an E-Commerce network evolution model. Journal Of Retailing AndConsumer Services, 64. https://doi.org/10.1016/j.jretconser.2021.102784 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Autónoma de Occidente, 2024 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Universidad Autónoma de Occidente, 2024 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
41 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.publisher.program.spa.fl_str_mv |
Mercadeo y Negocios Internacionales |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Administración |
dc.publisher.place.spa.fl_str_mv |
Cali |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/cb1509eb-98b7-4a1c-90c5-ba5d1c5872eb/download https://red.uao.edu.co/bitstreams/4a3554d6-c403-4d4d-bda3-1d00219f2f4b/download https://red.uao.edu.co/bitstreams/0dd53c89-eaa1-43d7-838c-410595d8e4fc/download https://red.uao.edu.co/bitstreams/7b994f1e-3cb2-4184-aebb-792cfadcd7b3/download https://red.uao.edu.co/bitstreams/726ddde2-7898-43f9-89e9-e522411c9ee8/download https://red.uao.edu.co/bitstreams/0aff87bf-fa66-4799-a5b1-ec2ed8c411ae/download https://red.uao.edu.co/bitstreams/0158f1b0-b90c-4072-84ef-590d3b70dbf8/download |
bitstream.checksum.fl_str_mv |
3bb032622344244bc56e378546cd7b1a 8bfee3740a239524b176df7f95226bdc 6987b791264a2b5525252450f99b10d1 bec8e1f9eb691cbc88001fdd31dd3133 7dc91764c9b2ad263bbafe9f183382dc 06b01081f6ad2fdcf9134ac6e8265937 084b3ae819d92761f34ad745ddcfb963 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260132046962688 |
spelling |
Caicedo Marulanda, Carolinavirtual::5465-1Colonia Sánchez, TomásCuero Banguero, Jireth MarcelaUniversidad Autónoma de OccidenteLópez Ospina, Carlos Andrésvirtual::5466-12024-07-12T16:48:03Z2024-07-12T16:48:03Z2024-04-25Colonia Sánchez, T. Y Cuero Banguero, J. M. (2024). Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra online. (Proyecto de grado). Universidad Autónoma de Occidente. Cali. Colombia. https://hdl.handle.net/10614/15625https://hdl.handle.net/10614/15625Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/La adopción de la inteligencia artificial (IA) en los procesos de compra online está transformando las empresas y mejorando la experiencia de compra en línea del consumidor. Es esencial entender las variables influyentes en el uso de una IA por parte de los consumidores online, dada la falta de investigación en este campo. Este estudio recolectó 586 datos válidos a través de encuestas en la ciudad de Cali y se analizaron utilizando un modelo de ecuaciones estructurales (SEM) para determinar la relación entre estas variables y su impacto en el comportamiento de compra del consumidor online. Los resultados ofrecen información valiosa para las empresas que buscan mejorar la experiencia de compra en línea de sus clientes a través de la IA en sus plataformasThe adoption of artificial intelligence (AI) in online shopping processes is transforming businesses and improving the consumer's online shopping experience. It is essential to understand the variables influencing the use of AI by online consumers, given the lack of research in this field. This study collected 586 valid data through surveys in the city of Cali and analyzed them using a structural equation model (SEM) to determine the relationship between these variables and their impact on online consumer purchasing behavior. The results offer valuable insights for businesses looking to improve their customers' online shopping experience through AI on their platformsProyecto de grado (Profesional en Mercadeo y Negocios Internacionales)-- Universidad Autónoma de Occidente, 2024PregradoProfesional en Mercadeo y Negocios Internacionales41 páginasapplication/pdfspaUniversidad Autónoma de OccidenteMercadeo y Negocios InternacionalesFacultad de AdministraciónCaliDerechos reservados - Universidad Autónoma de Occidente, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra onlineTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Adamopoulou, E., y Moussiades, L. (2020). An overview of Chatbot technology. En IFIP advances in information and communication technology (pp. 373-383). DOI: 10.1007/978-3-030-49186-4_31ADP. (2018). Artificial Intelligence – the Future of Automation in Workforce Management. SPARK Blog ADP. https://www.adp.com/spark/articles/2017/10/artificial-intelligencethe-future-of-automation-in-workforce-management.aspxAfroz Lari, H., Vaishnava, K., y K. S., M. (2022). Artifical Intelligence in E-commerce: Applications, Implications and Challenges. Asian Journal ofManagement, 13(03), 235-244. DOI: 10.52711/2321-5763.2022.00041Ajzen, I., y Fishbein, M. (1977). Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological bulletin, 84(5), 888-918. https://doi.org/10.1037/0033-2909.84.5.888Ajzen, I., y Fishbein, M. (1980). Understanding Attitudes and Predicting Social Behavior.Prentice Hall. https://search.worldcat.org/es/title/Understanding-attitudes-and- predicting-socialbehavior/oclc/5726878Al Kuwaiti, A., Nazer, K., Al-Reedy, A., Al-Shehri, S., Al-Muhanna, A., Subbarayalu, A. V., Al Muhanna, D., y Al-Muhanna, F. A. (2023). A Review of the Role of Artificial Intelligence in Healthcare. Journal of Personalized Medicine, 13(6), 951. https://doi.org/10.3390/jpm13060951Al-Sharafi, M. A., Arshah, R. A., Herzallah, F. A. T., y Alajmi, Q. (2017). The effect of perceived ease of use and usefulness on customers intention to use online banking services: the mediating role of perceived trust. International Journal of InnovativeComputing, 7(1), 9-14. https://doi.org/10.11113/ijic.v7n1.139Ameen, N., Tarhini, A., Reppel, A., y Anand, A. (2020). Customer experiences in theage of artificial intelligence. Computers in Human Behavior, 114(2021), 106548. DOI: 10.1016/j.chb.2020.106548André, Q., Carmon, Z., Wertenbroch, K., Crum, A., Frank, D., Goldstein, W., Huber, J., VanBoven, L., Weber, B., y Yang, H. (2017). Consumer choice and autonomyI in the age of artificial intelligence and big data. Customer Needs and Solutions, 5(1-2), 28–37. https://doi.org/10.1007/s40547-017-0085-8Bakos, J. Y. (1997). Reducing buyer search costs: implications for electronic marketplaces. Management Science, 43(12), pp.1676-1692. http://www.jstor.org/stable/2634535Bäckman, L., y Dixon, R. A. (1992). Psychological compensation: A theoretical framework. Psychological Bulletin, 112(2), 259-283. https://doi.org/10.1037/0033-2909.112.2.259Bollen, K. A. (1989). Structural Equations with Latent Variables. John Wiley & Sons. https://doi.org/10.1002/9781118619179Bou-Ghanem, D. (2020). Factors that Influence the Acceptance of Artificial Intelligence Technology by the Consumer. The Tenth International Conference on Engaged Management Scholarship. https://dx.doi.org/10.2139/ssrn.3687765Buitrago-Rodríguez, J. N., Tovar-Sánchez, L. M., y Lamos-Díaz, H. (2018). Modelo de ecuaciones estructurales para el estudio de la percepción de los estudiantes de pregrado de ingeniería industrial con el Proyecto Educativo del Programa-PEP. Revista Educación en Ingeniería, 13(26), 90-100. https://doi.org/10.26507/rei.v13n26.895Chintalapati, S. y Pandey, SK (2022). Artificial intelligence in marketing: A systematic literature review. International Journal of Market Research, 64 (1), 38-68. https://doi.org/10.1177/14707853211018428DANE. (2018). Censo Nacional de Población y Vivienda, 2018 - Colombia. DANE. https://www.dane.gov.co/Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptanceof information technology. Management Information Systems Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008Davis, F. D. (1989). El Modelo de Aceptación Tecnológica (TAM) [Imagen]. Perceived usefulness, perceived ease of use, and user acceptance of information technology. Management Information Systems Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008Dickinger, A., Arami, M., y Meyer, D. (2008). The role of perceived enjoyment and socialnorm in the adoption of technology with network externalities. European Journal of Information Systems, 17(6), 4-11. https://doi.org/10.1057/palgrave.ejis.3000726Eckhardt, A. (2009). The significant others of subjective norm - A scientometric study of subjective norm in IS top-journals over two decades. ECIS 2009.https://www.semanticscholar.org/paper/The-significant-others-of-subjective-norm-Astudy-Eckhardt/1527ca8880cab390b28e8dfcaeab6d252ec079eaEuromonitor. (2023). What Are the Top 10 Consumer Trends in 2023?. Euromonitor.com.https://www.euromonitor.com/article/what-are-the-top10-consumer- trends-in-2023Filieri, R., Alguezaui, S. y McLeay, F. (2015). Why do travelers trust TripAdvisor? Antecedents of trust towards consumer-generated media and its influence on recommendation adoption and word of mouth. Tourism Management. 51. 174-185. https://doi.org/10.1016/j.tourman.2015.05.007FORBES. (2023). El 2024 será el año de la verdadera masificación de la IA. Forbes Colombia. https://forbes.co/2023/12/26/red-forbes/el-2024-sera-el-ano-de-la- verdaderamasificacion-de-la-iaFornell, C., y Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal Of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312Franco, F. (2012). Compensation and Organisational Performance: Theory, Research and Practice (1st Edition). European Accounting Review, 21(1), 183-186. https://doi.org/10.1080/09638180.2012.675164García, C. (2023). BBVA presenta solución de comercio electrónico para los negocios en Colombia. BBVA NOTICIAS. https://www.bbva.com/es/co/bbva-presenta-solucion- decomercio-electronico-para-negocios-en-colombia/Gefen, D., Karahanna, E., y Straub, D. W. (2003). Trust and TAM in Online Shopping: An Integrated Model. Management Information Systems Quarterly, 27(1), 51. https://doi.org/10.2307/30036519Ghimire, A., Thapa, S., Jha, A. K., Adhikari, S., y Kumar, A. (2020). Accelerating Business Growth with Big Data and Artificial Intelligence. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). 441-448. DOI: 10.1109/ISMAC49090.2020.9243318Grajales, T. (2000). Tipos de investigación. Universidad de Baja California. Revisado en 2023, 14, 112-116. https://idoc.pub/documents/el-concepto-de-investigaciontevni-grajales-gmwl1dp2302ljGriffin, James, (1986). Well-being: its meaning, measurement and moral importance. Oxford Text Archive. https://doi.org/10.1093/0198248431.001.0001Griffith, E. y Simonite, T. (2018) Facebook’s virtual assistant M is dead. So are chatbots.Wired Business, 8 January. Available at: https://www.wired.com/story/facebooks-virtualassistant-m-is-dead-so-are-chatbots/ (accessed 23 September 2018).Hair, J. F., Anderson, R. E. y Tatham, R. L. (1988). Multivariate Data Analysis with Readings. Journal of the Royal Statistical Society Series A: Statistics in Society. 151(3). 558-559. https://doi.org/10.2307/2983017Han, S., Yang, H., 2018. Understanding adoption of intelligent personal assistants: a parasocial relationship perspective. Industrial Management & Data Systems. 118(3), 618–636. https://doi.org/10.1108/IMDS- 05- 2017-0214.Herawati, N. (2013). Pengaruh faktor-faktor motivasional terhadap intensitas perilaku mahasiswa yang menggunakan e-learning di stie perbanas surabaya [Tesis doctoral Stie Perbanas Surabaya]. Perbanas Institutional repository. http://eprints.perbanas.ac.id/1456/2/COVER.pdfIvanov, S., Webster, C., y Berezina, K. (2017). Adoption of robots and service automation by tourism and hospitality companies. Revista Turismo & Desenvolvimento. 27(28), 1501- 1517. ISSN: 2182-1453Jacoby, J., Olson, J. C., y Haddock, R. A. (1971). Price, brand name, and product composition characteristics as determinants of perceived quality. Journal Of Applied Psychology. 55(6). 570-579. https://doi.org/10.1037/h0032045Jadhav, P. P., Samnani, A., Alachiya, A., Shah, V., y Selvam, A. (2022). Intelligent Chatbot. International Journal of Advanced Research in Science, Communication and Technology. 2(4). https://doi.org/10.48175/ijarsct-3996Jamankulova F., Toshniyozova M. y Nizomova D. (2022). The Most Necessary Aspects of Artificial Intelligence in Different Fields. Mathematical Statistician and Engineering Applications, 71(4), 7536–7542. https://doi.org/10.17762/msea.v71i4.1372Jatimoyo, D., Rohman, F., y Djazuli, A. (2021). The effect of perceived ease of use on continuance intention through perceived usefulness and trust. International Journal of Research in Business and Social Science, 10(4), 430-437. https://doi.org/10.20525/ijrbs.v10i4.1223Jenneboer, L., Herrando, C., y Constantinides, E. (2022). The Impact of chatbots on Customer Loyalty: A Systematic literature review. Journal of Theoretical and Applied Electronic Commerce Research, 17(1), 212-229. https://doi.org/10.3390/jtaer17010011Jeffrey, T. R. (2022). Understanding Generation Z Perceptions of Artificial Intelligence in Marketing and Advertising. Advertising & Society Quarterly, 22(4).https://doi.org/10.1353/asr.2021.0052Jin, E. y Eastin, M. (2022), Birds of a feather flock together: matched personality effects of product recommendation chatbots and users, Journal of Research in Interactive Marketing, 17(3), 416-433. https://doi.org/10.1108/JRIM-03-2022-0089Kakkar, S., y Monga, V. (2020). A Study on Artificial Intelligence in E - Commerce. International Journal of Advances in Engineering & Scientific Research, 4(4), 62-68. ISSN: 2349-3607Khan, M.M. (2020). Development of an e-commerce Sales Chatbot. 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), 173-176. DOI:10.1109/HONET50430.2020.9322667Kim, D. J., Ferrin, D. L., y Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544-564. https://doi.org/10.1016/j.dss.2007.07.001Kim, J., y Park, H. (2012). Development of a Health Information Technology AcceptanceModel Using Consumers’ Health Behavior Intention. Journal Of Medical Internet Research, 14(5). https://doi.org/10.2196/jmir.2143Kim, J., Merrill, K., y Collins, C. (2021). AI as a friend or assistant: The mediating roleof perceived usefulness in social AI vs. functional AI. Telematics and Informatics, 64. https://doi.org/10.1016/J.TELE.2021.101694Kraus, S. J. (1995). Attitudes and the prediction of behavior: A meta-analysis of the empirical literature. Personality and social psychology bulletin, 21(1), 58-75. https://doi.org/10.1177/0146167295211007Legris, P., Ingham, J., y Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(3), 191-204. https://doi.org/10.1016/s0378-7206(01)00143-4Li, Y., y Liu, C. S. (2018). Understanding service quality and reputation effects on purchase behavior through image: the moderating roles of service reliability. The International Journal of Transportation Research, 11(10), 580-588. https://doi.org/10.1080/19427867.2018.1478929Lichtenstein-Vidne, L., Henik, A., y Safadi, Z. (2007). Task-relevance modulates the effects of peripheral distractors. Quarterly Journal of Experimental Psychology, 60(9), 1216-1226. https://doi.org/10.1080/17470210600917892Lindh, C., Nordman, E. R., Hånell, S. M., Safari, A., & Hadjikhani, A. I. (2020). Digitalization and international online sales: Antecedents of purchase intent. Journal of International Consumer Marketing, 32(4), 324-335. https://doi.org/10.1080/08961530.2019.1707143Liu, R. (2021). Discussion on the Application of Artificial Intelligence in e-Commerce. Journal of Frontiers of Society, Science and Technology, 1(3), 4-8.https://doi.org/10.23977/JFSST.2021.010302Lwin, M., Wirtz, J., y Williams, J. D. (2007). Consumer Online Privacy Concerns andResponses: A power–responsibility equilibrium perspective. Journal of the Academy of Marketing Science, 35(4), 572-585. https://doi.org/10.1007/s11747-006-0003-3Lynch, J.G. y Ariely, D., 2000. Wine Online: Search Costs Affect Competition on Price,Quality, and Distribution. Marketing Science, 19(1), 83-103.https://doi.org/10.1287/mksc.19.1.83.15183López-Bonilla, L. M., y López-Bonilla, J. M. (2016). Explaining the discrepancy in the mediating role of attitude in the TAM. British Journal Of Educational Technology, 48(4),940-949. https://doi.org/10.1111/bjet.12465McCarthy, J., Minsky, M., Rochester, N., y Shannon, C. (2006). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Magazine, 27(4). https://doi.org/10.1609/aimag.v27i4.1904Morris, M., y Zhi, L. (2015). Psychological Functions of Subjective Norms. Journal Of Cross-Cultural Psychology, 46(10), 1279-1287. https://doi.org/10.1177/0022022115612161Mosavi, S. A., y Ghaedi, M. (2012). An examination of the effects of perceived value and attitude on customers behavioral intentions in e-shopping. African Journal of Business Management, 6(5). https://doi.org/10.5897/AJBM11.2205Mudgal, S., Agarwal, R., Chaturvedi, J., Gaur, R., y Ranjan, N. (2022). Real-world application, challenges and implication of artificial intelligence in healthcare: an essay. The Pan African Medical Journal, 43(3). https://doi.org/10.11604/pamj.2022.43.3.33384Nagy, Š., y Hajdú, N. (2021). Consumer acceptance of the use of artificial intelligence in online shopping: evidence from Hungary. Amfiteatru Economic, 23(56). https://doi.org/10.24818/ea/2021/56/155Nagy, Š., y Hajdú, N. (2021). Modelo teórico inicial del estudio [Imagen]. Consumer acceptance of the use of artificial intelligence in online shopping: evidence from Hungary. Amfiteatru Economic, 23(56). https://doi.org/10.24818/ea/2021/56/155Nieto, E. (2018). Tipos de investigación. Universidad Santo Domingo de Guzmán. repositorio.unisdg.edu.pe:USDG/34Njeru, F. (2023). A Review of Artificial Intelligence and its Application in Business. Journal of Enterprise and Business Intelligence, 3(1).https://doi.org/10.53759/5181%2Fjebi202303005Nuseir, M., y Refae, G. E. (2022). The effects of facilitating conditions, customer experience and brand loyalty on customer-based brand equity through social media marketing. International Journal Of Data And Network Science, 6(3), 875-884. https://doi.org/10.5267/j.ijdns.2022.2.009Park, S. (2009). An Analysis of the Technology Acceptance Model in UnderstandingUniversity Students Behavioral Intention to Use e-Learning. Journal Educational Technology & Society, 12(3), 150–162. https://www.semanticscholar.org/paper/An-Analysis-of-theTechnology-Acceptance-Model-inPark/f2e97c5834f9ce006aeb2398c13c502acdf6bcbcPavlou, P. (2001). Integrating Trust in Electronic Commerce with the Technology Acceptance Model: Model Development and Validation. AMCIS 2001 Proceedings. 159. https://aisel.aisnet.org/amcis2001/159?utm_source=aisel.aisnet.org%2Famcis2001%2F159&utm_medium=PDF&utm_campaign=PDFCoverPagesPavlou, P. (2003). Consumer Acceptance of Electronic Commerce: Integrating Trust and Risk with the Technology Acceptance Model. International Journal of Electronic Commerce, 7(3), 69–103. https://dl.acm.org/doi/10.5555/1288216.1288221Pillai, A., y Mukherjee, J. (2011). User acceptance of hedonic versus utilitarian social networking web sites. Journal of Indian Business Research, 3(3), 180–191. doi:10.1108/17554191111157047.Pop, Ș., Pelau, C., Ciofu, I., y Kondort, G. (2023). Factors Predicting Consumer-AI Interactions. 9th BASIQ International Conference on New Trends in Sustainable Business and Consumption. Constanța, Romania, 8-10 June 2023, 592-597. https://doi.org/10.24818/basiq%2F2023%2F09%2F068Payments and Commerce Market Intelligence. (2023). Dynamics of E-Commerce in Latin America 2023–2026. https://americasmi.com/insights/digital-payments-and-ecommerce-in-latin-america-data-projections/Pricewaterhouse Coopers, 2018. Künstliche Intelligenz als Innovationsbeschleuniger in Unternehmen – Zuversicht und Vertrauen in Künstliche Intelligenz.https://www.pwc.de/de/digitale-transformation/kuenstliche-intelligenz/kuenstlicheintelligenz-als-innovationsbeschleuniger-im-unternehmen.pdfRaksadigiri, M. W., y Wahyuni, S. (2020). Perceived ease of use effect on perceived usefulness and attitude towards use and its impact on behavioural intention to use. International Journal Of Advanced Research, 8(12), 439-444. https://doi.org/10.21474/ijar01/12167Ramadania, S. (2017). The Effect Of Perceived Usefulness, Ease Of Use, Attitude, Self-Efficacy, And Subjective Norms Toward Intention To Use Online Shopping (Doctoral dissertation, Universitas Brawijaya). (tesis doctoral)Raza, S., Abu Bakar, H., y Mohamad, B. (2017). Relationships between the advertising appeal and behavioral intention: The mediating role of the attitude towards advertising appeal. International Conference on Communication and Media: An International Communication Association Regional Conference. 33.https://doi.org/10.1051/SHSCONF%2F20173300022Rodríguez, J. C., González, H. H., y Molina, A. F. (2021). Libro blanco del comercio electrónico en Colombia: Una guía adaptada a las necesidades de las mipymescolombianas. Universidad EAN. https://repository.universidadean.edu.co/bitstream/handle/10882/10711/FigueroaAndres2021.pdf?sequence=1Sadiku, M., Fagbohungbe, O., y Musa, S. (2020). Artificial Intelligence in Business.International Journal of Engineering Research and Advanced Technology. https://doi.org/10.31695/ijerat.2020.3625Shafi, P. M., Jawalkar, G. S., Kadam, M. A., Ambawale, R. R., y Bankar, S. V. (2020). AI—Assisted Chatbot for E-Commerce to Address Selection of Products from Multiple Products. Internet of Things, Smart Computing and Technology: A Roadmap Ahead, 266. https://doi.org/10.1007/978-3-030-39047-1_3Sharma, A. (2023). Analyzing the Role of Artificial Intelligence in Predicting CustomerBehavior andPersonalizing the Shopping Experience inEcommerce. INTERANTIONALJOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT. 8(4). https://doi.org/10.55041/ijsrem17839Snoj, B., Pisnik, A., y Mumel, D. (2004). The relationships among perceived quality, perceived risk and perceived product value. Journal Of Product & Brand Management, 13(3), 156-167. https://doi.org/10.1108/10610420410538050Song, X., Yang, S., Huang, Z., y Huang, T. (2019). The Application of Artificial Intelligence in Electronic Commerce. Journal of Physics: Conference Series, 1302(3). https://doi.org/10.1088/1742-6596%2F1302%2F3%2F032030Stigler, G. J. y Becker, G. S. (1977). De Gustibus Non Est Disputandum. Idées économiques et sociales. 159, 54-69. https://doi.org/10.3917/IDEE.159.0054Stigler, G. J., (1961). The Economics of Information. Journal of Political Economy, 69(3), 213-225. http://www.jstor.org/stable/1829263.Sun, H., & Zhang, P. (2006). Causal Relationships between Perceived Enjoyment and Perceived Ease of Use: An Alternative Approach. Journal Of The Association For Information Systems, 7(9), 618-645. https://doi.org/10.17705/1jais.00100Sun, H. (2010). Transferring Attributes of E-Commerce Systems into Business Benefits:A Relationship Quality Perspective. Journal Of Electronic CommerceResearch, 11(2). http://www.csulb.edu/journals/jecr/issues/20102/paper1.pdfSuresh, T. P., Yong, P. L., Chyi, Y. S., y Musa, R. (2023). Connecting with Generation Z: Consumer Acceptance of the Use of Artificial Intelligence in Online Shopping. Journalof Entrepreneurship and Business (JEB), 11(1), 56-68. https://doi.org/10.17687/jeb.v11i1.921Teo, T. (2009). Is there an attitude problem? Reconsidering the role of attitude in the TAM. British Journal Of Educational Technology, 40(6), 1139-1141.https://doi.org/10.1111/j.1467-8535.2008.00913.xTerrizzi, S., Sherer, S., Meyerhoefer, C., Scheinberg, M., y Levick, D. (2012). Extending the Technology Acceptance Model in Healthcare: Identifying the Role of Trustand Shared Information. Americas Conference on Information Systems. http://aisel.aisnet.org/amcis2012/proceedings/ISHealthcare/19Tiutiu, M., y Dabija, D. (2023). Improving Customer Experience Using Artificial Intelligence in Online Retail. Proceedings of the International Conference on Business Excellence, 17(1), 1139 - 1147. https://doi.org/10.2478/picbe-2023-0102Tubadji, A., Denney, T., y Webber, D. (2021). Cultural relativity in consumers ratesof adoption of artificial intelligence. Economic Inquiry, 59(3). https://doi.org/10.1111/ECIN.12978Trafimow, D., y Fishbein, M. (1994). The Moderating Effect of Behavior Type on the Subjective Norm-Behavior Relationship. The Journal Of Social Psychology, 134(6), 755- 763. https://doi.org/10.1080/00224545.1994.9923010Vakkari, P. (2000). Relevance and contributing information types of searched documentsin task performance. Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. https://doi.org/10.1145/345508.345512Widiar, G., Yuniarinto, A., y Yulianti, I. (2023). Perceived Ease of Use’s Effects on Behavioral Intention Mediated by Perceived Usefulness and Trust. Interdisciplinary Social Studies, 2(4), 1829-1844. https://doi.org/10.55324/iss.v2i4.397Williams, R. (2019). Study: Chatbots to drive $112B in retail sales by 2023. Marketing Dive. https://www.marketingdive.com/news/study-chatbots-to-drive-112b-in-retail-sales-by2023/554416/Wirth, J., Maier, C. y Laumer, S., (2019). Subjective norm and the privacy calculus: Explaining self-disclosure on social networking. European Conference on Information Systems, Stockholm & Uppsala, Sweden, June 8-14, 2019. ISBN 978-1-7336325-0-8. https://aisel.aisnet.org/ecis2019_rp/131Wu, K., Zhao, Y., Zhu, Q., Tan, X., y Zheng, H. (2011). A meta-analysis of the impact oftrust on technology acceptance model: Investigation of moderating influence of subject and context type. International Journal Of Information Management, 31(6), 572-581. https://doi.org/10.1016/j.ijinfomgt.2011.03.004Yang, H., Lee, H., y Zo, H. (2017). User acceptance of smart home services: an extension of the theory of planned behavior. Industrial Management & Data Systems, 117(1), 68-89. https://doi.org/10.1108/IMDS-01-2016-0017Yang, L., Min, X., y Xing, L. (2022). Exploring the core factors of online purchase decisions by building an E-Commerce network evolution model. Journal Of Retailing AndConsumer Services, 64. https://doi.org/10.1016/j.jretconser.2021.102784Inteligencia artificialComercio electrónicoComportamiento del consumidorModelo de ecuaciones estructuralesExperiencia de compraMercadeo y Negocios InternacionalesArtificial intelligenceE-commerceConsumer behaviorStructural equation modelShopping experienceComunidad generalPublicationhttps://scholar.google.com/citations?user=i12K1DcAAAAJ&hl=esvirtual::5465-10000-0003-0513-7578virtual::5465-10000-0001-9355-427Xvirtual::5466-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000022753virtual::5465-1a183c021-f01e-4ba4-a5c8-004ee18b06b7virtual::5465-1a183c021-f01e-4ba4-a5c8-004ee18b06b7virtual::5465-1d80304f7-8a36-430d-935e-48c746b2fb34virtual::5466-1d80304f7-8a36-430d-935e-48c746b2fb34virtual::5466-1ORIGINALTA11053_Autorización trabajo de grado.pdfTA11053_Autorización trabajo de grado.pdfAutorización para publicación del trabajo de gradoapplication/pdf121453https://red.uao.edu.co/bitstreams/cb1509eb-98b7-4a1c-90c5-ba5d1c5872eb/download3bb032622344244bc56e378546cd7b1aMD51T11053_Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra online.pdfT11053_Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra online.pdfArchivo texto completo del trabajo de grado, PDFapplication/pdf913181https://red.uao.edu.co/bitstreams/4a3554d6-c403-4d4d-bda3-1d00219f2f4b/download8bfee3740a239524b176df7f95226bdcMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/0dd53c89-eaa1-43d7-838c-410595d8e4fc/download6987b791264a2b5525252450f99b10d1MD53TEXTTA11053_Autorización trabajo de grado.pdf.txtTA11053_Autorización trabajo de grado.pdf.txtExtracted texttext/plain4669https://red.uao.edu.co/bitstreams/7b994f1e-3cb2-4184-aebb-792cfadcd7b3/downloadbec8e1f9eb691cbc88001fdd31dd3133MD54T11053_Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra online.pdf.txtT11053_Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra online.pdf.txtExtracted texttext/plain78959https://red.uao.edu.co/bitstreams/726ddde2-7898-43f9-89e9-e522411c9ee8/download7dc91764c9b2ad263bbafe9f183382dcMD56THUMBNAILTA11053_Autorización trabajo de grado.pdf.jpgTA11053_Autorización trabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg13189https://red.uao.edu.co/bitstreams/0aff87bf-fa66-4799-a5b1-ec2ed8c411ae/download06b01081f6ad2fdcf9134ac6e8265937MD55T11053_Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra online.pdf.jpgT11053_Percepción del consumidor sobre el uso de inteligencia artificial como mediadora en procesos de compra online.pdf.jpgGenerated Thumbnailimage/jpeg7215https://red.uao.edu.co/bitstreams/0158f1b0-b90c-4072-84ef-590d3b70dbf8/download084b3ae819d92761f34ad745ddcfb963MD5710614/15625oai:red.uao.edu.co:10614/156252024-07-14 03:01:54.61https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Universidad Autónoma de Occidente, 2024restrictedhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg== |